首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heme and bacteriochlorophyll a (BChl) biosyntheses share the same pathway to protoporphyrin IX, which then branches as follows. Fe(2+) chelation into the macrocycle by ferrochelatase results in heme formation, and Mg(2+) addition by Mg-chelatase commits the porphyrin to BChl synthesis. It was recently discovered that a bchD (Mg-chelatase) mutant of Rhodobacter sphaeroides produces an alternative BChl in which Mg(2+) is substituted by Zn(2+). Zn-BChl has been found in only one other organism before, the acidophilic Acidiphilium rubrum. Our objectives in this work on the bchD mutant were to 1) elucidate the Zn-BChl biosynthetic pathway in this organism and 2) understand causes for the low amounts of Zn-BChl produced. The bchD mutant was found to contain a Zn-protoporphyrin IX pool, analogous to the Mg-protoporphyrin IX pool found in the wild type strain. Inhibition of ferrochelatase with N-methylprotoporphyrin IX caused Zn-protoporphyrin IX and Zn-BChl levels to decline by 80-90% in the bchD mutant, whereas in the wild type strain, Mg-protoporphyrin IX and Mg-BChl levels increased by 170-240%. Two early metabolites of the Zn-BChl pathway were isolated from the bchD mutant and identified as Zn-protoporphyrin IX monomethyl ester and divinyl-Zn-protochlorophyllide. Our data support a model in which ferrochelatase synthesizes Zn-protoporphyrin IX, and this metabolite is acted on by enzymes of the BChl pathway to produce Zn-BChl. Finally, the low amounts of Zn-BChl in the bchD mutant may be due, at least in part, to a bottleneck upstream of the step where divinyl-Zn-protochlorophyllide is converted to monovinyl-Zn-protochlorophyllide.  相似文献   

2.
A photosynthetic reaction center (RC) complex was isolated from a purple bacterium, Acidiphilium rubrum. The RC contains bacteriochlorophyll a containing Zn as a central metal (Zn-BChl a) and bacteriopheophytin a (BPhe a) but no Mg-BChl a. The absorption peaks of the Zn-BChl a dimer (P(Zn)), the accessory Zn-BChl a (B(Zn)), and BPhe a (H) at 4 K in the RC showed peaks at 875, 792, and 753 nm, respectively. These peaks were shorter than the corresponding peaks in Rhodobacter sphaeroides RC that has Mg-BChl a. The kinetics of fluorescence from P(Zn)(*), measured by fluorescence up-conversion, showed the rise and the major decay with time constants of 0.16 and 3.3 ps, respectively. The former represents the energy transfer from B(Zn)(*) to P(Zn), and the latter, the electron transfer from P(Zn) to H. The angle between the transition dipoles of B(Zn) and P(Zn) was estimated to be 36 degrees based on the fluorescence anisotropy. The time constants and the angle are almost equal to those in the Rb. sphaeroides RC. The high efficiency of A. rubrum RC seems to be enabled by the chemical property of Zn-BChl a and by the L168HE modification of the RC protein that modifies P(Zn).  相似文献   

3.
To elucidate the mechanism for formation of zinc-containing bacteriochlorophyll a in the photosynthetic bacterium Acidiphilium rubrum, we isolated homologs of magnesium chelatase subunits (bchI, -D, and -H). A. rubrum bchI and -H were encoded by single genes located on the clusters bchP-orf168-bchI-bchD-orf320-crtI and bchF-N-B-H-L as in Rhodobacter capsulatus, respectively. The deduced sequences of A. rubrum bchI, -D, and -H had overall identities of 59. 8, 40.5, and 50.7% to those from Rba. capsulatus, respectively. When these genes were introduced into bchI, bchD, and bchH mutants of Rba. capsulatus for functional complementation, all mutants were complemented with concomitant synthesis of bacteriochlorophyll a. Analyses of bacteriochlorophyll intermediates showed that A. rubrum cells accumulate magnesium protoporphyrin IX monomethyl ester without detectable accumulation of zinc protoporphyrin IX or its monomethyl ester. These results indicate that a single set of magnesium chelatase homologs in A. rubrum catalyzes the insertion of only Mg(2+) into protoporphyrin IX to yield magnesium protoporphyrin IX monomethyl ester. Consequently, it is most likely that zinc-containing bacteriochlorophyll a is formed by a substitution of Zn(2+) for Mg(2+) at a step in the bacteriochlorophyll biosynthesis after formation of magnesium protoporphyrin IX monomethyl ester.  相似文献   

4.
We demonstrated earlier that as a result of the I(L177)H mutation in the photosynthetic reaction center (RC) of the bacterium Rhodobacter sphaeroides, one of the bacteriochlorophylls (BChl) binds with the L-subunit, simultaneously raising coordination stability of the central magnesium atom of the bacteriochlorophyll associated with the protein. In this study, spectral properties of wild type RC and I(L177)H in the presence of urea and SDS as well as at 48°C were examined. It is shown that the I(L177)H mutation decreases the RC stability. Under denaturing conditions, some changes indicating breakdown of oligomeric structure of the complex and loss of interaction between pigments and their protein environment are observed in I(L177)H RC spectra. In addition, pheophytinization of bacteriochlorophylls occurs in both types of RC in the presence of SDS. However, an 811-nm band is observed in the spectrum of the mutant RC under these conditions, which indicates retention of one of the BChl molecules in the protein binding site and stable coordination of its central magnesium atom. It is shown that in both types of RC, monomeric BChl BB can be modified by sodium borohydride treatment and then extracted by acetone-methanol mixture. Spectral properties of the BChl covalently bound with the protein in I(L177)H RC do not change. The results demonstrate that BChl PA is the molecule of BChl tightly bound with the L-sub- unit in mutant RC as it was supposed earlier.  相似文献   

5.
A conserved orf of previously unknown function (herein designated as puhE) is located 3' of the reaction centre H (puhA) gene in purple photosynthetic bacteria, in the order puhABCE in Rhodobacter capsulatus. Disruptions of R. capsulatus puhE resulted in a long lag in the growth of photosynthetic cultures inoculated with cells grown under high aeration, and increased the level of the peripheral antenna, light-harvesting complex 2 (LH2). The amount of the photosynthetic reaction centre (RC) and its core antenna, light-harvesting complex 1 (LH1), was reduced; however, there was no decrease in expression of a lacZ reporter fused to the puf (RC and LH1) promoter, in RC assembly in the absence of LH1, or in LH1 assembly in the absence of the RC. In strains that lack LH2, disruption of puhE increased the in vivo absorption at 780 nm, which we attribute to excess bacteriochlorophyll a (BChl) pigment production. This effect was seen in the presence and absence of PufQ, a protein that stimulates BChl biosynthesis. Expression of puhE from a plasmid reduced A(780) production in puhE mutants. We suggest that PuhE modulates BChl biosynthesis independently of PufQ, and that the presence of excess BChl in PuhE(-)LH2(+) strains results in excess LH2 assembly and also interferes with the adaptation of cells during the transition from aerobic respiratory to anaerobic photosynthetic growth.  相似文献   

6.
A photosynthetic reaction center (RC) complex was isolated from a purple bacterium, Acidiphilium rubrum. The RC contains bacteriochlorophyll a containing Zn as a central metal (Zn-BChl a) and bacteriopheophytin a (BPhe a) but no Mg-BChl a. The absorption peaks of the Zn-BChl a dimer (PZn), the accessory Zn-BChl a (BZn), and BPhe a (H) at 4 K in the RC showed peaks at 875, 792, and 753 nm, respectively. These peaks were shorter than the corresponding peaks in Rhodobacter sphaeroides RC that has Mg-BChl a. The kinetics of fluorescence from PZn*, measured by fluorescence up-conversion, showed the rise and the major decay with time constants of 0.16 and 3.3 ps, respectively. The former represents the energy transfer from BZn* to PZn, and the latter, the electron transfer from PZn to H. The angle between the transition dipoles of BZn and PZn was estimated to be 36° based on the fluorescence anisotropy. The time constants and the angle are almost equal to those in the Rb. sphaeroides RC. The high efficiency of A. rubrum RC seems to be enabled by the chemical property of Zn-BChl a and by the L168HE modification of the RC protein that modifies PZn.  相似文献   

7.
Reaction center (RC) complexes isolated from a Zn-bacteriochlorophyll (BChl) a-containing purple bacterium, Acidiphilium rubrum, were characterized by absorption, circular dichroism, and magnetic circular dichroism (MCD) spectroscopy. The oxidized-minus-reduced difference spectra indicated that, in this RC, the Zn-BChl a is the primary electron donor. The molecular structure of the donor was examined by measuring the ratio of the MCD intensity of the Faraday B-term (B) to the dipole strength (D). In the Q(y) region, B/D for the donor was about half those of bacteriopheophytin a and the accessory Zn-BChl a, indicating that the primary electron donor is a dimer. The magnitude of bleach of the Q(x) band was half that observed in Rhodobacter sphaeroides, suggesting the cation is localized on a single Zn-Bchl a. The absorption intensity of the higher-energy Q(y) exciton band was approximately 28% of that of the lower-energy band, and the exciton splitting was approximately 570 cm(-1), smaller than that in Rb. sphaeroides. These results indicate that, in A. rubrum, the primary electron donor is a Zn-BChl a dimer but that the interaction between the two molecules is rather weak. On the basis of these results, an adaptive strategy for changes in BChl a species is discussed from an evolutionary perspective.  相似文献   

8.
In this work, we report the unique case of bacteriochlorophyll (BChl) - protein covalent attachment in a photosynthetic membrane complex caused by a single mutation. The isoleucine L177 was substituted by histidine in the photosynthetic reaction center (RC) of Rhodobacter sphaeroides. Pigment analysis revealed that one BChl molecule was missing in the acetone-methanol extract of the I(L177)H RCs. SDS-PAGE demonstrated that this BChl molecule could not be extracted with organic solvents apparently because of its stable covalent attachment to the mutant RC L-subunit. Our data indicate that the attached bacteriochlorophyll is one of the special pair BChls, P(A). The chemical nature of this covalent interaction remains to be identified.  相似文献   

9.
Using site-directed mutagenesis, we obtained the mutant of the purple bacterium Rhodobacter sphaeroides with Ile to His substitution at position 177 in the L-subunit of the photosynthetic reaction center (RC). The mutant strain forms stable and photochemically active RC complexes. Relative to the wild type RCs, the spectral and photochemical properties of the mutant RC differ significantly in the absorption regions corresponding to the primary donor P and the monomer bacteriochlorophyll (BChl) absorption. It is shown that the RC I(L177)H contains only three BChl molecules compared to four BChl molecules in the wild type RC. Considering the fact that the properties of both isolated and membrane-associated mutant RCs are similar, we conclude that the loss of a BChl molecule from the mutant RC is caused by the introduced mutation but not by the protein purification procedure. The new mutant missing one BChl molecule but still able to perform light-induced reactions forming the charge-separated state P+QA- appears to be an interesting object to study the mechanisms of the first steps of the primary electron transfer in photosynthesis.  相似文献   

10.
Structural features of bacteriochlorophyll (BChl) a that are required for binding to the light-harvesting proteins of Rhodospirillum rubrum were determined by testing for reconstitution of the B873 or B820 (structural subunit of B873) light-harvesting complexes with BChl a analogues. The results indicate that the binding site is very specific; of the analogues tested, only derivatives of BChl a with ethyl, phytyl, and geranylgeranyl esterifying alcohols and BChl b (phytyl) successfully reconstituted to form B820- and B873-type complexes. BChl analogues lacking magnesium, the C-3 acetyl group, or the C-13(2) carbomethoxy group did not reconstitute to form B820 or B873. Also unreactive were 13(2)-hydroxyBChl a and 3-acetylchlorophyll a. Competition experiments showed that several of these nonreconstituting analogues significantly slowed BChl a binding to form B820 and blocked BChl a-B873 formation, indicating that the analogues may competitively bind to the protein even though they do not form red-shifted complexes. With the R. rubrum polypeptides, BChl b formed complexes that were further red-shifted than those of BChl a; however, the energies of the red shifts, binding behavior, and circular dichroism (CD) spectra were similar. B873 complexes reconstituted with the geranylgeranyl BChl a derivative, which contains the native esterifying alcohol for R. rubrum, showed in-vivo-like CD features, but the phytyl and ethyl B873 complexes showed inverted CD features in the near infrared. The B820 complex with the ethyl derivative was about 30-fold less stable than the two longer esterifying alcohol derivatives, but all formed stable B873 complexes.  相似文献   

11.
Pheophytinization of bacteriochlorophyll (BChl) at low pH was investigated in the core (LH1) and peripheral (LH2) light-harvesting complexes, as well as in the ensemble of the reaction center (RC) with the LH1 complex. The stages in disintegration of the native BChl forms in the LH1 complex and in its ensemble with RC were revealed. They were observed as emergence of the absorption band of monomeric BChl and an increase in its intensity, followed by its transformation into the band of monomeric bacteriopheophytin (BPh) and then into the band of aggregated BPh. Unlike the LH1 complex, in the case of the LH2 complex, monomeric BChl was never detected as an intermediate product. While the spectra revealed formation of monomeric BPh, its accumulation did not occur, since its aggregation is very rapid compared to that in the LH1 complex and in the RC-LH1 ensemble. PAAG electrophoresis revealed that pheophytinization of BChl in the LH2 complex was accompanied by disruption of the stable cylindrical structure of this complex with emergence of characteristic fragments consisting of α and β peptides and bearing monomeric BPh, as well as of the α peptide aggregates bearing BPh aggregates. Unlike the LH2 complex, BChl pheophytinization in the LH1 complex did not result in its fragmentation. This is an indication of different types of structural stabilization in the LH1 and LH2 complexes. In the LH2 complex, coordination of bacteriochlorophyll Mg2+ by conservative histidine residues of the α and β polypeptides is the main factor responsible for the maintenance of its cylindrical structure. Stability of the LH1 complex is probably based primarily on the highly specific hydrophobic interactions between the surfaces of individual polypeptide chains, since the presence of hydrogen bonds results in autonomy of each αβBChl2 subunit, rather than in stabilization of the LH1 complex as a whole.  相似文献   

12.
Kirmaier C  He C  Holten D 《Biochemistry》2001,40(40):12132-12139
We have investigated the primary charge separation processes in Rb. capsulatus reaction centers (RCs) bearing the mutations Phe(L181) --> Tyr, Tyr(M208) --> Phe, and Leu(M212) --> His. In the YFH mutant, decay of the excited primary electron donor P occurs with an 11 +/- 2 ps time constant and is trifurcated to give (1) internal conversion to the ground state ( approximately 10% yield), (2) charge separation to the L side of the RC ( approximately 60% yield), and (3) electron transfer to the M-side bacteriopheophytin BPh(M) ( approximately 30% yield). These results relate previous work in which the ionizable residues Lys (at L178) and Asp (at M201) have been used to facilitate charge separation to the M side of the RC, and the widely studied L181 and M208 mutants. One conclusion that comes from this work is that the Tyr (M208) --> Phe and Gly(M201) --> Asp mutations near the L-side bacteriochlorophyll (BChl(L)) raise the free energy of P(+)BChl(L)(-) by comparable amounts. The results also suggest that the free energy of P(+)BChl(M)(-) is lowered more substantially by a Tyr at L181 than a Lys at L178. The results on the YFH mutant further demonstrate that the free energy differences between the L- and M-side charge-separated states play a significant role in the directionality of charge separation in the wild-type RC, and place limits on the contributing role of differential electronic matrix elements on the two sides of the RC.  相似文献   

13.
The core light-harvesting LH1 complex of Rhodospirillum rubrum consists of an assembly of membrane-spanning alpha and beta polypeptides, each of which binds one bacteriochlorophyll (BChl) a molecule. In this work, we describe a technique that allows the replacement of the natural, Mg BChl a cofactors present in this protein by Zn-bacteriopheophytin (Zn-Bpheo). This technique makes use of the well-characterized, reversible dissociation of LH1 induced by the detergent beta-octylglucoside. Incubation of partially dissociated LH1 with exogeneous pigments induces an equilibrium between the protein-bound BChl and the exogeneous pigment. This results in the binding of chemically modified pigments to LH1, in amounts which depend on the pigment composition and concentration of the exchange buffer. This method can yield information on the relative affinities of the LH1 protein-binding sites for the different pigments BChl and Zn-Bpheo and can also be used to obtain fully reassociated LH1 proteins, with a variable content of modified pigment, which may be precisely monitored. Absorption and FT-Raman spectroscopy indicate that this exchange procedure leads to LH1 proteins containing modified pigments, but retaining a binding site structure identical to that of native LH1. Furthermore, examination of the binding curves suggests that there are two distinguishable binding sites, probably corresponding to the two polypeptides, with very different properties. One of these two binding sites shows a marked preference for Zn-Bpheo over BChl, while the other binding site appears to prefer BChl.  相似文献   

14.
A light-harvesting-reaction center (LH1-RC) core complex has been highly purified from a thermophilic purple sulfur bacterium, Thermochromatium tepidum. The bacteriochlorophyll (BChl) a molecules in the LH1 exhibit a Q(y) transition at 914 nm, more than 25 nm red-shift from those of its mesophilic counterparts. The LH1-RC complex was isolated in a monomeric form as confirmed by sucrose density gradient centrifugation, blue native PAGE and size-exclusion chromatography. Four subunits (L, M, H and a tetraheme cytochrome) in RC and two polypeptides (alpha and beta) in LH1 were identified. Spirilloxanthin was determined to be the predominant carotenoid in the core complex. The purified core complex was highly stable, no significant change in the LH1 Q(y) transition was observed over 10 days of incubation at room temperature in dark. Circular dichroism spectrum of the LH1 complex was characterized by low intensity and nonconservative spectral shape, implying a high symmetry of the large LH1 ring and interaction between the BChl a and carotenoid molecules. A dimeric feature of the BChl a molecules in LH1 was revealed by magnetic circular dichroism spectrum. Crystals of the core complex were obtained which diffracted X-rays to about 10 A.  相似文献   

15.
Heterodimer mutant reaction centers (RCs) of Blastochloris viridis were crystallized using microfluidic technology. In this mutant, a leucine residue replaced the histidine residue which had acted as a fifth ligand to the bacteriochlorophyll (BChl) of the primary electron donor dimer M site (HisM200). With the loss of the histidine-coordinated Mg, one bacteriochlorophyll of the special pair was converted into a bacteriopheophytin (BPhe), and the primary donor became a heterodimer supermolecule. The crystals had dimensions 400 × 100 × 100 μm, belonged to space group P43212, and were isomorphous to the ones reported earlier for the wild type (WT) strain. The structure was solved to a 2.5 Å resolution limit. Electron-density maps confirmed the replacement of the histidine residue and the absence of Mg. Structural changes in the heterodimer mutant RC relative to the WT included the absence of the water molecule that is typically positioned between the M side of the primary donor and the accessory BChl, a slight shift in the position of amino acids surrounding the site of the mutation, and the rotation of the M194 phenylalanine. The cytochrome subunit was anchored similarly as in the WT and had no detectable changes in its overall position. The highly conserved tyrosine L162, located between the primary donor and the highest potential heme C380, revealed only a minor deviation of its hydroxyl group. Concomitantly to modification of the BChl molecule, the redox potential of the heterodimer primary donor increased relative to that of the WT organism (772 mV vs. 517 mV). The availability of this heterodimer mutant and its crystal structure provides opportunities for investigating changes in light-induced electron transfer that reflect differences in redox cascades.  相似文献   

16.
High-field electron paramagnetic resonance (HF EPR) has been employed to investigate the primary electron donor electronic structure of Blastochloris viridis heterodimer mutant reaction centers (RCs). In these mutants the amino acid substitution His(M200)Leu or His(L173)Leu eliminates a ligand to the primary electron donor, resulting in the loss of a magnesium in one of the constituent bacteriochlorophylls (BChl). Thus, the native BChl/BChl homodimer primary donor is converted into a BChl/bacteriopheophytin (BPhe) heterodimer. The heterodimer primary donor radical in chemically oxidized RCs exhibits a broadened EPR line indicating a highly asymmetric distribution of the unpaired electron over both dimer constituents. Observed triplet state EPR signals confirm localization of the excitation on the BChl half of the heterodimer primary donor. Theoretical simulation of the triplet EPR lineshapes clearly shows that, in the case of mutants, triplet states are formed by an intersystem crossing mechanism in contrast to the radical pair mechanism in wild type RCs. Photooxidation of the mutant RCs results in formation of a BPhe anion radical within the heterodimer pair. The accumulation of an intradimer BPhe anion is caused by the substantial loss of interaction between constituents of the heterodimer primary donor along with an increase in the reduction potential of the heterodimer primary donor D/D+ couple. This allows oxidation of the cytochrome even at cryogenic temperatures and reduction of each constituent of the heterodimer primary donor individually. Despite a low yield of primary donor radicals, the enhancement of the semiquinone-iron pair EPR signals in these mutants indicates the presence of kinetically viable electron donors.  相似文献   

17.
Histidine M182 in the reaction center (RC) of Rhodobacter sphaeroides serves as the fifth ligand of the bacterio-chlorophyll (BChl) BB Mg atom. When this His is substituted by an amino acid that is not able to coordinate Mg, bacterio-pheophytin appears in the BB binding site instead of BChl (Katilius, E., et al. (1999) J. Phys. Chem. B, 103, 7386–7389). We have shown that in the presence of the additional mutation I(L177)H the coordination of the BChl BB Mg atom in the double mutant I(L177)H+H(M182)L RC still remains. Changes in the double mutant RC absorption spectrum attributed to BChl absorption suggest that BChl BB Mg atom axial ligation might be realized not from the usual α-side of the BChl macrocycle, but from the opposite, β-side. Weaker coordination of BChl BB Mg atom compared to the other mutant RC BChl molecules suggests that not an amino acid residue but a water molecule might be a possible ligand. The results are discussed in the light of the structural changes that occurred in the RC upon Ile/His substitution in the L177 position.  相似文献   

18.
Makhneva  Z. K.  Moskalenko  A. A. 《Microbiology》2022,91(4):409-416
Microbiology - The interaction of singlet oxygen with bacteriochlorophyll (BChl) in the membranes, LH2 light-harvesting complexes and pigment extracts from Allochromatium (Alc.) vinosum strain MSU...  相似文献   

19.
A pufX gene deletion in the purple bacterium Rhodobacter capsulatus causes a severe photosynthetic defect and increases core light-harvesting complex (LH1) protein and bacteriochlorophyll a (BChl) levels. It was suggested that PufX interrupts the LH1 alpha/beta ring around the reaction centre, allowing quinone/quinol exchange. However, naturally PufX(-) purple bacteria grow photosynthetically with an uninterrupted LH1. We discovered that substitutions of the Rhodobacter-specific LH1 alpha seryl-2 decrease carotenoid levels in PufX(-)R. capsulatus. An LH1 alphaS2F mutation improved the photosynthetic growth of a PufX(-) strain lacking the peripheral LH2 antenna, although LH1 BChl absorption remained above wild-type, suggesting that Rhodobacter-specific carotenoid binding is involved in the PufX(-) photosynthetic defect and LH1 expansion is not. Furthermore, PufX overexpression increased LH1-like BChl absorption without inhibiting photosynthetic growth. PufX(+) LH1 alphaS2-substituted mutant strains had wild-type carotenoid levels, indicating that PufX modulates LH1 carotenoid binding, inducing a conformational change that favours quinone/quinol exchange.  相似文献   

20.
We provide in vivo genetic and in vitro biochemical evidence that RegA directly regulates bacteriochlorophyll and carotenoid biosynthesis in Rhodobacter capsulatus. beta-Galactosidase expression assays with a RegA-disrupted strain containing reporter plasmids for Mg-protoporphyrin IX monomethyl ester oxidative cyclase (bchE), Mg-protoporphyrin IX chelatase (bchD), and phytoene dehydrogenase (crtI) demonstrate RegA is responsible for fourfold anaerobic induction of bchE, threefold induction of bchD, and twofold induction of crtI. Promoter mapping studies, coupled with DNase I protection assays, map the region of RegA binding to three sites in the bchE promoter region. Similar studies at the crtA and crtI promoters indicate that RegA binds to a single region equidistant from these divergent promoters. These results demonstrate that RegA is directly responsible for anaerobic induction of bacteriochlorophyll biosynthesis genes bchE, bchD, bchJ, bchI, bchG, and bchP and carotenoid biosynthesis genes crtI, crtB, and crtA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号