首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
An extracellular serine peptidase, purified from the culture supernatant of the sub-Arctic psychrophilic bacterium strain PA-43, is monomeric, with a relative molecular mass of 76000, and an unusually low pI of 3.8. The peptidase is active towards N-succinyl AAPF p-nitroanilide and N-succinyl AAPL p-nitroanilide, indicating a chymotrypsin-like substrate specificity. It is inhibited by the serine peptidase inactivator phenylmethylsulfonyl fluoride, but not by EDTA or EGTA, suggesting that added metal ions are not necessary for activity. The enzyme is most active at pH 8.3 and at 55-60 degrees C, although it is unstable at 60 degrees C. It is nevertheless remarkably stable for an enzyme from a psychrophilic microorganism, remaining active after 1 week at 20 degrees C and after five freeze-thaw cycles. Comparison of the N-terminal 40 amino acid residues with other archived sequences revealed highest similarity to the alkaline serine protease (aprx) from Bacillus subtilis.  相似文献   

2.
A novel psychrotrophic bacterium secreting a protease was isolated from a mountain soil in Korea. On the basis of a 16S rDNA sequence analysis and physiological properties, the isolate was identified as an Azospirillum sp. The protease purified from the culture supernatant was a monomer in its native form with an apparent molecular mass of 48.6 kDa on SDS-PAGE. The protease was active in a broad pH range around 8.5 and at temperatures up to 40 degrees C and stable at temperatures below 30 degrees C for 3 days. The proteolytic activity was inhibited by iodoacetamide and EDTA. The Mg2+ ion did not activate the enzyme much but reversed the inhibition by EDTA, suggesting that the protease belongs to a cysteine protease stabilized by the Mg2+ ion.  相似文献   

3.
Several thermophilic anaerobic bacteria with keratinolytic activity growing at temperatures between 50 degrees C and 90 degrees C were isolated from samples collected on the island of S?o Miguel in the Azores (Portugal). On the basis of morphological, physiological, and 16S rDNA studies, the isolate 2KXI was identified as a new species of the genus Thermoanaerobacter, designated Thermoanaerobacter keratinophilus. This strain, which grows optimally at 70 degrees C, pH 7.0, and 0.5% NaCl, is the first member of the genus Thermoanaerobacter that has been described for its ability to degrade native keratin. Around 70% of native wool was solubilized after 10 days of incubation under anaerobic conditions. The strain was shown to possess intracellular and extracellular proteases optimally active at 60 degrees C, pH 7.0, and 85 degrees C, pH 8.0, respectively. Keratin hydrolysis was demonstrated in vitro using a sodium dodecyl sulfate gel containing feather meal. The extracellular protease responsible for breaking down keratin fibers was purified to homogeneity in only one step by applying hydroxyapatite column chromatography. The enzyme belongs to the serine-type proteases and has a molecular mass of 135 kDa.  相似文献   

4.
A new cysteine protease (SpCP) with a molecular mass of about 50 kDa and optimal functioning at pH 8.0 was isolated from the culture medium of a Serratia proteamaculans 94 psychrotolerant strain using affinity and gel permeation chromatography. The enzyme N terminal amino acid sequence (SPVEEAEGDGIVLDV-) exhibits a reliable similarity to N terminal sequences of gingipains R, cysteine proteases from Polphyromonas gingivalis. Unlike gingipains R, SpCP displays a double substrate specificity and cleaves bonds formed by carboxylic groups of Arg, hydrophobic amino acid residues (Val, Leu, Ala, Tyr, and Phe), Pro, and Gly. SpCP can also hydrolyze native collagen. The enzyme catalysis is effective in a wide range of temperatures. Kinetic studies of Z-Ala-Phe-Arg-pNA hydrolysis catalyzed by the protease at 4 and 37 degrees C showed that a decrease in temperature by more than 30 degrees C causes a 1.3-fold increase in the kcat/Km ratio. Thus, SpCP is an enzyme adapted to low positive temperatures. A protease displaying such properties was found in microorganisms of the Serratia genus for the first time and may serve as a virulent factor for these bacteria.  相似文献   

5.
The major extracellular protease from Pseudomonas fluorescens strain AR-11 has been partially purified by a factor of 300 by a combination of DEAE-cellulose ion-exchange chromatography and gel filtration. The enzyme had a molecular weight of 38 400 and exhibited optimum activity with isoelectrically precipitated casein substrate at pH 6.5 with Km - 0.13 mM. The protease was strongly inhibited by a number of heavy metal ions at the 10 mM level and also inhibited by thiol agents, while 10 mM EDTA led to slight activation. Optimum activity was retained, amounting to 33% of the maximum activity at 4 degrees C and 72% at 20 degrees C. Heat inactivation studies in which the isolated protease was heated at high temperature before subsequent incubation at 35 degrees C with substrate showed that for 50% inactivation 25 s heating at 130 degrees C or 17 s at 140 degrees C of 8.5 s at 150 degrees C was requried. The combination of high stability to heat treatments and retention of considerable activity at low incubation temperatures indicates that such a protease might have considerable significance in the processing and subsequent storage of food and other products.  相似文献   

6.
A novel extracellular serine protease designated Pernisine was purified to homogeneity and characterized from the archaeon Aeropyrum pernix K1. The molecular mass, estimated by SDS-PAGE analysis and by gel filtration chromatography, was about 34 kDa suggesting that the enzyme is monomeric. Pernisine was active in a broad range of pH (5.0-12.0) and temperature (60-120 degrees C) with maximal activity at 90 degrees C and between pH 8.0 and 9.0. In the presence of 1 mM CaCl(2) the activity, as a function of the temperature, reached a maximum at 90 degrees C but at 120 degrees C the enzyme retained almost 80% of its maximal activity. Activity inhibition studies suggest that the enzyme is a serine metalloprotease and biochemical data indicate that Pernisine is a subtilisin-like enzyme. The protease gene, identified from the sequenced genome of A. pernix, was amplified from total genomic DNA by PCR technique to construct the expression plasmid pGEX-Pernisine. The Pernisine, lacking the leader sequence, was expressed in Escherichia coli BL21 strain as a fusion protein with glutathione- S-transferase. The biochemical properties of the recombinant enzyme were found to be similar to those of the native enzyme.  相似文献   

7.
With a view to understand the changes in the conformation of bacterial amylase, the enzyme preparation was conjugated to dextran. Glycosylation of purified bacterial amylase resulted in increased stability against heat, proteolytic enzymes and denaturing agents. Several group specific inhibitors exhibited dose-dependent inhibition and the extent of inhibition was same for native as well as for the glycosylated enzyme. The pH optima of native and glycosylated enzyme remained the same indicating that the ionization at the active site is not greatly influenced as a result of glycosylation. Although the native as well as the glycosylated enzyme bind to the substrate with the same affinity, the rate of reaction differed greatly at 90 and 100 degrees C. At 70 degrees C, the rate of reaction was similar for the conjugated as well as the unconjugated amylase. Thermostability at different temperatures clearly showed that the glycosylated enzyme had greater stability compared to the native enzyme. The divalent cation binding site in the amylase also appears to be unaltered upon glycosylation since EDTA inhibited both enzymes to the same extent and addition of calcium ion restored the activity to almost the same level. These studies showed that conjugating the amylase enzyme with a bulky molecule like dextran does not affect the conformation at the active site.  相似文献   

8.
Extracellular protease from the antarctic yeast Candida humicola.   总被引:5,自引:1,他引:4       下载免费PDF全文
The psychrotrophic, dimorphic yeast Candida humicola, isolated from Antarctic soil, secretes an acidic protease into the medium. The secretion of this protease by C. humicola was found to be dependent on the composition of the medium. In YPD or yeast nitrogen base medium containing either amino acids or ammonium sulfate as the nitrogen source, the activity of the protease in the medium was low (basal level). However, when yeast nitrogen base medium was depleted of amino acids or ammonium sulfate and supplemented with proteins, the activity of the enzyme increased. The secretion of the enzyme was greater during exponential growth at low temperatures than during growth at higher temperatures. The purified protease had a molecular mass of 36,000 Da and was inhibited by pepstatin, iodoacetamide, and sodium dodecyl sulfate. Despite the prevalent cold temperatures in Antarctica, this extracellular protease of the psychrotrophic yeast C. humicola was active at temperatures ranging from 0 to 45 degrees C, with an optimum activity at 37 degrees C.  相似文献   

9.
Extracellular protease from the antarctic yeast Candida humicola.   总被引:3,自引:0,他引:3  
The psychrotrophic, dimorphic yeast Candida humicola, isolated from Antarctic soil, secretes an acidic protease into the medium. The secretion of this protease by C. humicola was found to be dependent on the composition of the medium. In YPD or yeast nitrogen base medium containing either amino acids or ammonium sulfate as the nitrogen source, the activity of the protease in the medium was low (basal level). However, when yeast nitrogen base medium was depleted of amino acids or ammonium sulfate and supplemented with proteins, the activity of the enzyme increased. The secretion of the enzyme was greater during exponential growth at low temperatures than during growth at higher temperatures. The purified protease had a molecular mass of 36,000 Da and was inhibited by pepstatin, iodoacetamide, and sodium dodecyl sulfate. Despite the prevalent cold temperatures in Antarctica, this extracellular protease of the psychrotrophic yeast C. humicola was active at temperatures ranging from 0 to 45 degrees C, with an optimum activity at 37 degrees C.  相似文献   

10.
Proteases mediate important crucial functions in parasitic diseases, and their characterization contributes to the understanding of host-parasite interaction. A serine protease was purified about 43-fold with a total recovery of 60% from a detergent-soluble extract of promastigotes of Leishmania amazonensis. The purification procedures included aprotinin-agarose affinity chromatography and gel filtration high performance liquid chromatography. The molecular mass of active enzyme was 110 kDa by native gel filtration HPLC and by SDS-PAGE gelatin under non-reducing conditions. Under conditions of reduction using SDS-PAGE gelatin analyses the activity of enzyme was observed in two proteins of 60 and 45 kDa, suggesting that the enzyme may be considered as a dimer. The Leishmania protease was not glycosylated, and its isoelectric point (pI) was around 4.8. The maximal protease activity was at pH 7.0 and 28 degrees C, using a-N-o-tosyl-L-arginyl-methyl ester (L-TAME) as substrate. Assays of thermal stability indicated that this enzyme was totally denatured after pre-treatment at 42 degrees C for 12 min and preserved only 20% of its activity after pre-treatment at 37 degrees C for 24 h, in the absence of substrate. Hemoglobin, bovine serum albumin (BSA), ovalbumin and gelatin were hydrolyzed by Leishmania protease. Inhibition studies indicated that the enzyme belonged to a serine protease class because of a significant impediment by serine protease inhibitors such as benzamidine, aprotinin, and antipain. The activity of the present serine protease is negatively modulated by calcium and zinc and positively modulated by manganese ions. This is the first study that reports the purification of a protease from a detergent-soluble extract of Leishmania species.  相似文献   

11.
Alkaline protease was purified from Bacillus sp. isolated from soil. The pH optimum was 11.5 at 37 degrees C. Calcium divalent cation was effective to stabilize the enzyme especially at higher temperatures. The proteolytic activity was inhibited by active site inhibitors of PMSF (Phenylmethylsulfonyl fluoride), and ions of Mg, Mn, Pb, Li, Zn, Ag, Hg. The enzyme was stable in the presence of some detergents, such as Triton-X-100, Tween-80, SDS (sodium dodecyl sulfate) and EDTA (ethylendiaminetetraacetic acid), pH 11.5 and 37 degrees C for 30 min. The optimum pH was 11.5 at 37 degrees C and the optimum temperature was 62 degrees C at pH 11.5.  相似文献   

12.
Streptomyces strain K1-02, which was identified as a strain of Streptomyces albidoflavus, secreted at least six extracellular proteases when it was cultured on feather meal-based medium. The major keratinolytic serine proteinase was purified to homogeneity by a two-step procedure. This enzyme had a molecular weight of 18,000 and was optimally active at pH values ranging from 6 to 9.5 and at temperatures ranging from 40 to 70 degrees C. Its sensitivity to protease inhibitors, its specificity on synthetic substrates, and its remarkably high level of NH2-terminal sequence homology with Streptomyces griseus protease B (SGPB) showed that the new enzyme, designated SAKase, was homologous to SGPB. We tested the activity of SAKase with soluble and fibrous substrates (elastin, keratin, and type I collagen) and found that it was very specific for keratinous substrates compared to SGPB and proteinase K.  相似文献   

13.
Seafood is sometimes wasted due to the growth of psychrotolerant microbes which secrete proteases and break down proteins. Stenotrophomonas maltophilia FF11, isolated from frozen Antarctic krill, grows at a wide range of temperatures and secretes more proteases at low temperatures. According to zymogram analysis, two kinds of proteases were produced from this strain. A major protease was produced largely at 15 °C, but not at 37 °C. The temperature-dependent secreted protease was purified to homogeneity. Its molecular mass was determined at 37.4 kDa and its amino acid sequence was also obtained. This protease is a member of the subtilase group according to the NCBI blast analysis. The enzyme was highly stable at high salt concentration (4 M). Interestingly, its activity increased about 1.6-fold under high salt condition. The enzyme remains active and stable in different organic solvents (50 %, v/v) such as dimethylsulfoxide, dimethyl formamide, dioxane and acetone. These properties may provide potential applications in quality control for sea foods, in protein degradation at high salt concentration, in biocatalysis and biotransformation within non-aqueous media, such as detergent and transesterification.  相似文献   

14.
We have examined the effect of conditioning the enzyme trypsin in solution at pH 8.2 in a large magnetic field before determining its reactivity towards a synthetic substrate N-benzoyl DL-arginine p-nitroanilide (BAPA). This "pretreatment" was allowed to proceed for as long as 3(2/3) hr in a magnetic field of 208 kgauss at temperatures 26 and 36 degrees C. No effect on reactivity was observed when such pretreated enzyme solutions were compared with identical but untreated enzyme solutions. A single such reaction, allowed to proceed directly in a magnetic field of 220 kgauss for 9 min, similarly showed no difference in rate from its control.  相似文献   

15.
A Psychrotolerant alkaline protease producing bacterium IIIM-ST045 was isolated from a soil sample collected from the Thajiwas glacier of Kashmir, India and identified as Stenotrophomonas sp. on the basis of its biochemical properties and 16S ribosomal gene sequencing. The strain could grow well within a temperature range of 4–37°C however, showed optimum growth at 15°C. The strain was found to over-produce proteases when it was grown in media containing lactose as carbon source (157.50 U mg−1). The maximum specific enzyme activity (398 U mg−1) was obtained using soya oil as nitrogen source, however, the inorganic nitrogen sources urea, ammonium chloride and ammonium sulphate showed the lowest production of 38.9, 62.2 and 57.9 U mg−1. The enzyme was purified to 18.45 folds and the molecular weight of the partially purified protease was estimated to be ~55 kDa by SDS-PAGE analysis. The protease activity increased as the increase in enzyme concentration while as the optimum enzyme activity was found when casein (1% w/v) was used as substrate. The enzyme was highly active over a wide range of pH from 6.5 to 12.0 showing optimum activity at pH 10.0. The optimum temperature for the enzyme was 15°C. Proteolytic activity reduced gradually with higher temperatures with a decrease of 56% at 40°C. The purified enzyme was checked for the removal of protein containing tea stains using a silk cloth within a temperature range of 10–60°C. The best washing efficiency results obtained at low temperatures indicate that the enzyme may be used for cold washing purposes of delicate fabrics that otherwise are vulnerable to high temperatures.  相似文献   

16.
Characterization of proteases formed by Bacteroides fragilis   总被引:5,自引:0,他引:5  
Bacteroides fragilis NCDO 2217 produced three major proteases, P1, P2 and P3 of estimated molecular masses 73, 52 and 34 kDa respectively. Protease P1 weakly hydrolysed azocasein but strongly hydrolysed valyl-alanine p-nitroanilide (VAPNA), glycyl-proline p-nitroanilide (GPRPNA), and to a lesser extent leucine p-nitroanilide (LPNA), indicating it to be an exopeptidase. Proteases P2 and P3 hydrolysed only azocasein and LPNA. The high protease:arylamidase ratios of these enzymes indicated that they were probably endopeptidases. Experiments with protease inhibitors suggested that P1 and P2 had characteristics of serine and metalloproteases respectively and that P3 was a cysteine protease. The proteolytic activity of whole cells was stimulated by divalent metal ions such as Mn2+, Ca2+ and Mg2+, but was strongly inhibited (about 95%) by Cu2+ and Zn2+. The temperature optimum for protein hydrolysis was 43 degrees C. Proteolysis was temperature sensitive, however (90% reduction at 60 degrees C) and was maximal at alkaline pH, with two broad peaks at pH 7.9 and pH 8.8. Cell fractionation showed that P1 was located intracellularly and in the periplasm, whereas P2 and P3 were largely associated with the outer membrane. Release of the membrane-bound proteases by treatment with 1 M-NaCl suggested that ionic interactions were involved in the association of these enzymes with the membranes.  相似文献   

17.
A feather-degrading bacterium was isolated from poultry decomposition feathers in China. The strain, named L1, showed significant feather-degrading activity because it grew and reproduced quickly on basal medium containing 10 g/L of native feather as the source of energy, carbon, and nitrogen. According to the phenotypic characteristics and 16S rRNA profile, the isolate belongs to Stenotrophomonas maltophilia. Keratinase activity of the isolate was determined during cultivation on raw feathers at different temperatures and initial pH. Maximum growth and feather-degrading activity of the bacterium were observed at 40°C and initial pH ranging from 7.5 to 8.0. The crude enzyme was purified by ammonium sulphate precipitation, Sephadex G-100 chromatographic and ceramic hydroxyapatite (CHT) chromatographic. Its molecular mass estimated as 35.2 kDa in SDS-PAGE. The enzyme had an optimum activity at the pH was 7.8 and the temperature was 40°C. The keratinase was wholly inhibited by a serine protease inhibitor, PMSF. Its activity was activated or inhibited by different metal ions. The keratinase activity of enzyme from strain L1 functioned on different keratins, such as feather, hair, wool, horn, and so on.  相似文献   

18.
19.
B Bckle  B Galunsky    R Müller 《Applied microbiology》1995,61(10):3705-3710
A serine protease from the keratin-degrading Streptomyces pactum DSM 40530 was purified by casein agarose affinity chromatography. The enzyme had a molecular weight of 30,000 and an isoelectric point of 8.5. The proteinase was optimally active in the pH range from 7 to 10 and at temperatures from 40 to 75 degrees C. The enzyme was specific for arginine and lysine at the P1 site and for phenylalanine and arginine at the P1' site. It showed a high stereoselectivity and secondary specificity with different synthetic substrates. The keratinolytic activity of the purified proteinase was examined by incubation with the insoluble substrates keratin azure, feather meal, and native and autoclaved chicken feather downs. The S. pactum proteinase was significantly more active than the various commercially available proteinases. After incubation with the purified proteinase, a rapid disintegration of whole feathers was observed. But even after several days of incubation with repeated addition of enzymes, less than 10% of the native keratin substrate was solubilized. In the presence of dithiothreitol, degradation was more than 70%.  相似文献   

20.
A strain of Bacillus sp (Bacillus R-4) produces a protease and a carbohydrolase both of which have the ability to lyse Rhizopus cell walls. Of the enzymes, the carbohydrolase has been purified to an ultracentrifugally and electrophoretically homogeneous state, and identified as a chitosanase. The enzyme was active on glycol chitosan as well as chitosan. Molecular weight of the purified enzyme was estimated as 31 000 and isoelectric point as pH 8.30. The enzyme was most active at pH 5.6 and at 40 degrees C with either Rhizopus cell wall or glycol chitosan as substrate, and was stable over a range of pH 4.5 to 7.5 at 40 degrees C for 3 h. The activity was lost by sulfhydryl reagents and restored by either reduced glutathione of L-cysteine. An abrupt decrease in viscosity of the reaction mixture suggested an endowise cleavage of chitosan by this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号