首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA methylation in prostate cancer   总被引:7,自引:0,他引:7  
Prostate cancer is the most common malignancy and the second leading cause of cancer death among men in the United States. There are three well-established risk factors for prostate cancer: age, race and family history. The molecular bases for these risk factors are unclear; however, they may be influenced by epigenetic events. Epigenetic events covalently modify chromatin and alter gene expression. Methylation of cytosine residues within CpG islands on gene promoters is a primary epigenetic event that acts to suppress gene expression. In tumorigenesis, the normal functioning of the epigenetic-regulatory system is disrupted leading to inappropriate CpG island hypermethylation and aberrant expression of a battery of genes involved in critical cellular processes. Cancer-dependent epigenetic regulation of genes involved in DNA damage repair, hormone response, cell cycle control and tumor-cell adhesion/metastasis can contribute significantly to tumor initiation, progression and metastasis and, thereby, increase prostate cancer susceptibility and risk. In this review, we will discuss current research on genes that are hypermethylated in human prostate cancer. We will also discuss the potential involvement of DNA methylation in age-related, race-related and hereditary prostate cancer, and the potential use of hypermethylated genes as biomarkers to detect prostate cancer and assess its risk.  相似文献   

2.
Prostate cancer is one of the most common malignancies, and microRNAs have been recognized to be involved in tumorigenesis of various kinds of cancer including prostate cancer (PCa). Androgen receptor (AR) plays a core role in prostate cancer progression and is responsible for regulation of numerous downstream targets including microRNAs. This study identified an AR-repressed microRNA, miR-421, in prostate cancer. Expression of miR-421 was significantly suppressed by androgen treatment, and correlated to AR expression in different prostate cancer cell lines. Furthermore, androgen-activated AR could directly bind to androgen responsive element (ARE) of miR-421, as predicted by bioinformatics resources and demonstrated by ChIP and luciferase reporter assays. In addition, over-expression of miR-421 markedly supressed cell viability, delayed cell cycle, reduced glycolysis and inhibited migration in prostate cancer cells. According to the result of miR-421 target genes searching, we focused on 4 genes NRAS, PRAME, CUL4B and PFKFB2 based on their involvement in cell proliferation, cell cycle progression and metabolism. The expression of these 4 downstream targets were significantly repressed by miR-421, and the binding sites were verified by luciferase assay. Additionally, we explored the expression of miR-421 and its target genes in human prostate cancer tissues, both in shared microarray data and in our own cohort. Significant differential expression and inverse correlation were found in PCa patients.  相似文献   

3.
Transition to androgen-independence in prostate cancer   总被引:13,自引:0,他引:13  
Prostate carcinoma is the most frequently diagnosed malignancy and the second leading cause of death as a result of cancer in men in the western countries. Withdrawal of androgens or the peripheral blockage of androgen action remain the critical therapeutic options for the treatment of advanced prostate cancer. However, after initial regression, most of the prostate cancers become androgen-independent and progress further, with eventual fatal outcome. Understanding the mechanisms of transition to androgen independence and tumor progression in prostate cancer is critical to finding new ways to treat aged patients that are ineligible for conventional chemotherapy. A large number of different molecular mechanisms might be responsible for the transition to androgen-independence. Many of these involve the androgen receptor (AR) and its signalling pathways, but they might also include genetic changes that affect several genes, which results in the activation of oncogenes or the inactivation of tumor suppressor genes. Here, we discuss the most recent and relevant findings on androgen resistance in prostate cancer in order provide a comprehensive interpretation of the clinical behaviour of tumors at molecular levels.  相似文献   

4.
5.
Prostate cancer is the most frequently diagnosed non-cutaneous tumor of men in Western countries. While surgery is often successful for organ-confined prostate cancer, androgen ablation therapy is the primary treatment for metastatic prostate cancer. However, this therapy is associated with several undesired side-effects, including increased risk of cardiovascular diseases. Shortening the period of androgen ablation therapy may benefit prostate cancer patients. Intermittent Androgen Deprivation therapy improves quality of life, reduces toxicity and medical costs, and delays disease progression in some patients. Cell culture and xenograft studies using androgen receptor (AR)-positive castration-resistant human prostate cancers cells (LNCaP, ARCaP, and PC-3 cells over-expressing AR) suggest that androgens may suppress the growth of AR-rich prostate cancer cells. Androgens cause growth inhibition and G1 cell cycle arrest in these cells by regulating c-Myc, Skp2, and p27Kip via AR. Higher dosages of testosterone cause greater growth inhibition of relapsed tumors. Manipulating androgen/AR signaling may therefore be a potential therapy for AR-positive advanced prostate cancer.  相似文献   

6.
Vitamin D and prostate cancer   总被引:1,自引:0,他引:1  
Our recent epidemiological study (Ahonen et al., Cancer Causes Control 11(2000) (847–852)) suggests that vitamin D deficiency may increase the risk of initiation and progression of prostate cancer. The nested case–control study was based on a 13-year follow-up of about 19 000 middle-aged men free of clinically verified prostate cancer. More than one-half of the serum samples had 25OH-vitamin D (25-VD) levels below 50 nmol/l, suggesting VD deficiency. Prostate cancer risk was highest among the group of younger men (40–51 years) with low serum 25-VD, whereas low serum 25-VD appeared not to increase the risk of prostate cancer in older men (>51 years). This suggests that VD has a protective role against prostate cancer only before the andropause, when serum androgen concentrations are higher. The lowest 25-VD concentrations in the younger men were associated with more aggressive prostate cancer. Furthermore, the high 25-VD levels delayed the appearance of clinically verified prostate cancer by 1.8 years. Since these results suggest that vitamin D has a protective role against prostate cancer, we tried to determine whether full spectrum lighting (FSL) during working hours could increase serum 25-VD concentrations. After 1-month exposure, there was no significant increase in the serum 25-VD level, although there was a bias towards slightly increasing values in the test group as opposed to decreasing values in controls. There was no significant change in the skin urocanic acid production. The possibility to use FSL in cancer prevention is discussed. In order to clarify the mechanism of VD action on cell proliferation and differentiation, we performed studies with the rat and human prostates as well prostate cancer cell lines. It is possible that 25-VD may have a direct role in the host anticancer defence activity, but the metabolism of vitamin D in the prostate may also play an important role in its action. We raised antibodies against human 1-hydroxylase and 24-hydroxylase. Our preliminary results suggest that vitamin D is actively metabolised in the prostate. Vitamin D appears to upregulate androgen receptor expression, whereas androgens seem to upregulate vitamin D receptor (VDR). This may at least partially explain the androgen dependence of VD action. VD alone or administered with androgen causes a suppression of epithelial cell proliferation. VD can activate mitogen-activated kinases, erk-1 and erk-2, within minutes and p38 within hours. Also, auto/paracrine regulation might be involved, since keratinocyte growth factor (mRNA and protein) was clearly induced by VD. Based on these studies, a putative model for VD action on cell proliferation and differentiation is presented.  相似文献   

7.
8.
The growth and function of the prostate is dependent on androgens. The two predominant androgens are testosterone, which is formed in the testis from androstenedione and 5alpha-dihydrotestosterone, which is formed from testosterone by 5alpha-reductases and is the most active androgen in the prostate. Prostate cancer is one of the most common cancers among men and androgens are involved in controlling the growth of androgen-sensitive malignant prostatic cells. The endocrine therapy used to treat prostate cancer aims to eliminate androgenic activity from the prostatic tissue. Most prostate cancers are initially responsive to androgen withdrawal but become later refractory to the therapy and begin to grow androgen-independently. Using LNCaP prostate cancer cell line we have developed a cell model to study the progression of prostate cancer. In the model androgen-sensitive LNCaP cells are transformed in culture conditions into more aggressive, androgen-independent cells. The model was used to study androgen and estrogen metabolism during the transformation process. Our results indicate that substantial changes in androgen and estrogen metabolism occur in the cells during the process. A remarkable decrease in the oxidative 17beta-hydroxysteroid dehydrogenase activity was seen whereas the reductive activity seemed to increase. The changes suggest that during transformation estrogen influence is increasing in the cells. This is supported by the cDNA microarray screening results which showed over-expression of several genes up-regulated by estrogens in the LNCaP cells line representing progressive prostate cancer. Since local steroid metabolism controls the bioavailability of active steroid hormones in the prostate, the variations in steroid-metabolizing enzymes during cancer progression may be crucial in the regulation of the growth and function of the organ.  相似文献   

9.
Notch signalling is implicated in the pathogenesis of a variety of cancers, but its role in prostate cancer is poorly understood. However, selected Notch pathway members are overrepresented in high‐grade prostate cancers. We comprehensively profiled Notch pathway components in prostate cells and found prostate cancer‐specific up‐regulation of NOTCH3 and HES6. Their expression was particularly high in androgen responsive lines. Up‐ and down‐regulating Notch in these cells modulated expression of canonical Notch targets, HES1 and HEY1, which could also be induced by androgen. Surprisingly, androgen treatment also suppressed Notch receptor expression, suggesting that androgens can activate Notch target genes in a receptor‐independent manner. Using a Notch‐sensitive Recombination signal binding protein for immunoglobulin kappa J region (RBPJ) reporter assay, we found that basal levels of Notch signalling were significantly lower in prostate cancer cells compared to benign cells. Accordingly pharmacological Notch pathway blockade did not inhibit cancer cell growth or viability. In contrast to canonical Notch targets, HES6, a HES family member known to antagonize Notch signalling, was not regulated by Notch signalling, but relied instead on androgen levels, both in cultured cells and in human cancer tissues. When engineered into prostate cancer cells, reduced levels of HES6 resulted in reduced cancer cell invasion and clonogenic growth. By molecular profiling, we identified potential roles for HES6 in regulating hedgehog signalling, apoptosis and cell migration. Our results did not reveal any cell‐autonomous roles for canonical Notch signalling in prostate cancer. However, the results do implicate HES6 as a promoter of prostate cancer progression.  相似文献   

10.
11.
12.
《Reproductive biology》2014,14(1):16-24
Prostate cancer is a very common malignancy among Western males. Although most tumors are indolent and grow slowly, some grow and metastasize aggressively. Because prostate cancer growth is usually androgen-dependent, androgen ablation offers a therapeutic option to treat post-resection tumor recurrence or primarily metastasized prostate cancer. However, patients often relapse after the primary response to androgen ablation therapy, and there is no effective cure for cases of castration-resistant prostate cancer (CRPC). The mechanisms of tumor growth in CRPC are poorly understood. Although the androgen receptors (ARs) remain functional in CRPC, other mechanisms are clearly activated (e.g., disturbed growth factor signaling). Results from our laboratory and others have shown that dysregulation of fibroblast growth factor (FGF) signaling, including FGF receptor 1 (FGFR1) activation and FGF8b overexpression, has an important role in prostate cancer growth and progression. Several experimental models have been developed for prostate tumorigenesis and various stages of tumor progression. These models include genetically engineered mice and rats, as well as induced tumors and xenografts in immunodeficient mice. The latter was created using parental and genetically modified cell lines. All of these models greatly helped to elucidate the roles of different genes in prostate carcinogenesis and tumor progression. Recently, patient-derived xenografts have been studied for possible use in testing individual, specific responses of tumor tissue to different treatment options. Feasible and functional CRPC models for drug responsiveness analysis and the development of effective therapies targeting the FGF signaling pathway and other pathways in prostate cancer are being actively investigated.  相似文献   

13.

Background

Sphingosine kinase-1 (SphK1) is an oncogenic lipid kinase notably involved in response to anticancer therapies in prostate cancer. Androgens regulate prostate cancer cell proliferation, and androgen deprivation therapy is the standard of care in the management of patients with advanced disease. Here, we explored the role of SphK1 in the regulation of androgen-dependent prostate cancer cell growth and survival.

Methodology/Principal Findings

Short-term androgen removal induced a rapid and transient SphK1 inhibition associated with a reduced cell growth in vitro and in vivo, an event that was not observed in the hormono-insensitive PC-3 cells. Supporting the critical role of SphK1 inhibition in the rapid effect of androgen depletion, its overexpression could impair the cell growth decrease. Similarly, the addition of dihydrotestosterone (DHT) to androgen-deprived LNCaP cells re-established cell proliferation, through an androgen receptor/PI3K/Akt dependent stimulation of SphK1, and inhibition of SphK1 could markedly impede the effects of DHT. Conversely, long-term removal of androgen support in LNCaP and C4-2B cells resulted in a progressive increase in SphK1 expression and activity throughout the progression to androgen-independence state, which was characterized by the acquisition of a neuroendocrine (NE)-like cell phenotype. Importantly, inhibition of the PI3K/Akt pathway—by negatively impacting SphK1 activity—could prevent NE differentiation in both cell models, an event that could be mimicked by SphK1 inhibitors. Fascinatingly, the reversability of the NE phenotype by exposure to normal medium was linked with a pronounced inhibition of SphK1 activity.

Conclusions/Significance

We report the first evidence that androgen deprivation induces a differential effect on SphK1 activity in hormone-sensitive prostate cancer cell models. These results also suggest that SphK1 activation upon chronic androgen deprivation may serve as a compensatory mechanism allowing prostate cancer cells to survive in androgen-depleted environment, giving support to its inhibition as a potential therapeutic strategy to delay/prevent the transition to androgen-independent prostate cancer.  相似文献   

14.
15.

Background  

Insensitivity of advanced-stage prostate cancer to androgen ablation therapy is a serious problem in clinical practice because it is associated with aggressive progression and poor prognosis. Targeted therapeutic drug discovery efforts are thwarted by lack of adequate knowledge of gene(s) associated with prostate tumorigenesis. Therefore there is the need for studies to provide leads to targeted intervention measures. Here we propose that stable expression of U94, a tumor suppressor gene encoded by human herpesvirus 6A (HHV-6A), could alter gene expression and thereby inhibit the tumorigenicity of PC3 cell line. Microarray gene expression profiling on U94 recombinant PC3 cell line could reveal genes that would elucidate prostate cancer biology, and hopefully identify potential therapeutic targets.  相似文献   

16.
Androgen-independent prostate cancer usually develops as a relapse following androgen ablation therapy. Removing androgen systemically causes vascular degeneration and nutrient depletion of the prostate tumor tissue. The fact that the malignancy later evolves to androgen-independence suggests that some cancer cells are able to survive the challenge of energy/nutrient deprivation. AMP-activated protein kinase (AMPK) is an important manager of energy stress. The present study was designed to investigate the role of AMPK in contributing to the survival of the androgen-independent phenotype. Most of the experiments were carried out in the androgen-dependent LNCaP cells and the androgen-independent C4-2 cells. These two cell lines have the same genetic background, since the C4-2 line is derived from the LNCaP line. Glucose deprivation (GD) was instituted to model energy stress encountered by these cells. The key findings are as follows. First, the activation of AMPK by GD was much stronger in C4-2 cells than in LNCaP cells, and the robustness of AMPK activation was correlated favorably with cell viability. Second, the response of AMPK was specific to energy deficiency rather than to amino acid deficiency. The activation of AMPK by GD was functional, as demonstrated by appropriate phosphorylation changes of mTOR and mTOR downstream substrates. Third, blocking AMPK activation by chemical inhibitor or dominant negative AMPK led to increased apoptotic cell death. The observation that similar results were found in other androgen-independent prostate cancer cell lines, including CW22Rv1 abd VCaP, provided further assurance that AMPK is a facilitator on the road to androgen-independence of prostate cancer cells.  相似文献   

17.
18.
Activin, a member of the TGFbeta superfamily, is expressed in the prostate and inhibits growth. We demonstrate that the effects of activin and androgen on regulation of prostate cancer cell growth are mutually antagonistic. In the absence of androgen, activin induced apoptosis in the androgen-dependent human prostate cancer cell line LNCaP, an effect suppressed by androgen administration. Although activin by itself did not alter the cell cycle distribution, it potently suppressed androgen- induced progression of cells into S-phase of the cell cycle and thus inhibited androgen-stimulated growth of LNCaP cells. Expression changes in cell cycle regulatory proteins such as Rb, E2F-1, and p27 demonstrated a strong correlation with the mutually antagonistic growth regulatory effects of activin and androgen. The inhibitory effect of activin on growth was independent of serine, serine, valine, serine motif phosphorylation of Smad3. Despite their antagonistic effect on growth, activin and androgen costimulated the expression of prostate-specific antigen through a Smad3-mediated mechanism. These observations indicate the existence of a complex cross talk between activin and androgen signaling in regulation of gene expression and growth of the prostate.  相似文献   

19.
20.
Prostate cancer is the second leading cause of cancer related death in American men. Development and progression of clinically localized prostate cancer is highly dependent on androgen signaling. Metastatic tumors are initially responsive to anti-androgen therapy, however become resistant to this regimen upon progression. Genomic and proteomic studies have implicated a role for androgen in regulating metabolic processes in prostate cancer. However, there have been no metabolomic profiling studies conducted thus far that have examined androgen-regulated biochemical processes in prostate cancer. Here, we have used unbiased metabolomic profiling coupled with enrichment-based bioprocess mapping to obtain insights into the biochemical alterations mediated by androgen in prostate cancer cell lines. Our findings indicate that androgen exposure results in elevation of amino acid metabolism and alteration of methylation potential in prostate cancer cells. Further, metabolic phenotyping studies confirm higher flux through pathways associated with amino acid metabolism in prostate cancer cells treated with androgen. These findings provide insight into the potential biochemical processes regulated by androgen signaling in prostate cancer. Clinically, if validated, these pathways could be exploited to develop therapeutic strategies that supplement current androgen ablative treatments while the observed androgen-regulated metabolic signatures could be employed as biomarkers that presage the development of castrate-resistant prostate cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号