首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Notochord cells in ascidian embryos are formed by the inducing action of cells of presumptive endoderm, as well as neighboring presumptive notochord, at the 32-cell stage. Studies of the timing of induction using recombinations of isolated blastomeres have suggested that notochord induction must be initiated before the decompaction of blastomeres at the 32-cell stage and is completed by the 64-cell stage. However, it is not yet clear how the duration of notochord induction is strictly limited. In the present paper, the aim was to determine in detail when the presumptive notochord blastomeres lost their competence to respond, and when the presumptive endoderm blastomeres produced inducing signals for the notochord. Presumptive notochord blastomeres and presumptive endoderm blastomeres were isolated from early 32-cell embryos, and were heterochronously recombined at various stages ranging from the early 32-cell stage to the 64-cell stage. Presumptive notochord blastomeres could respond to inductive signals at the early 32-cell stage, and started to lose their responsiveness at the decompaction stage. By contrast, the presumptive endoderm blastomeres persisted in their inducing capacity even at the 64-cell stage. These observations suggest that the loss of competence in presumptive notochord blastomeres limits the duration of notochord induction in intact ascidian embryos.  相似文献   

3.
Fibroblast growth factor 23 (FGF23) is a phosphaturic hormone produced by bone and exerts its function in the target organs by binding the FGF receptor (FGFR) and Klotho. Since recent studies suggested that extracellular inorganic phosphate (Pi) itself triggers signal transduction and regulates gene expression in some cell types, we tested the notion that extracellular Pi induces signal transduction in the target cells of FGF23 also and influences its signaling, utilizing a human embryonic kidney cell line HEK293. HEK293 cells expressed low levels of klotho, and treatment with a recombinant FGF23[R179Q], a proteolysis‐resistant mutant of FGF23, resulted in phosphorylation of ERK1/2 and induction of early growth response‐1 (EGR1) expression. Interestingly, increased extracellular Pi resulted in activation of the Raf/MEK/ERK pathway and expression of EGR1, which involved type III sodium/phosphate (Na+/Pi) cotransporter PiT‐1. Since the effects of an inhibitor of Na+/Pi cotransporter on FGF23 signaling suggested that the signaling triggered by increased extracellular Pi shares the same downstream cascade as FGF23 signaling, we further investigated their convergence point. Increasing the extracellular Pi concentration resulted in the phosphorylation of FGF receptor substrate 2α (FRS2α), as did treatment with FGF23. Knockdown of FGFR1 expression diminished the phosphorylation of both FRS2α and ERK1/2 induced by the Pi. Moreover, overexpression of FGFR1 rescued the decrease in Pi‐induced phosphorylation of ERK1/2 in the cells where the expression of PiT‐1 was knocked down. These results suggest that increased extracellular Pi triggers signal transduction via PiT‐1 and FGFR and influences FGF23 signaling in HEK293 cells. J. Cell. Biochem. 111: 1210–1221, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
5.
6.
7.
杨志  姚俊  曹新 《遗传》2018,40(7):515-524
内耳是感受听觉和平衡觉的复杂器官。在内耳发育过程中,成纤维生长因子(fibroblast growth factor, FGF)信号通路参与了听基板的诱导、螺旋神经节(statoacoustic ganglion, SAG)的发育以及Corti器感觉上皮的分化。FGF信号开启了内耳早期发育的基因调控网络,诱导前基板区域以及听基板的形成。正常表达的FGF信号分子可促进听囊腹侧成神经细胞的特化,但成熟SAG神经元释放的过量FGF5可抑制此过程,形成负反馈环路使SAG在稳定状态下发育。FGF20在Notch信号通路的调控下参与了前感觉上皮区域向毛细胞和支持细胞的分化过程,而内毛细胞分泌的FGF8可调控局部支持细胞分化为柱细胞。人类FGF信号通路异常可导致多种耳聋相关遗传病。此外,FGF信号通路在低等脊椎动物毛细胞自发再生以及干细胞向内耳毛细胞诱导过程中都起到了关键作用。本文综述了FGF信号通路在内耳发育调控以及毛细胞再生中的作用及其相关研究进展,以期为毛细胞再生中FGF信号通路调控机制的阐明奠定理论基础。  相似文献   

8.
Because retinoic acid (RA) is known to affect anterior-posterior patterning in vertebrate embryos, it was questioned whether it shows similar effects in a more primitive chordate, the ascidian Halocynthia roretzi . Ascidian embryos treated with RA exhibited truncated phenotypes in a dose-dependent manner similar to the anterior truncations seen in vertebrate embryos. The most severely affected larvae possessed a round trunk without the papillae characteristic of the anterior terminal epidermis. Retinoic acid also altered the expression of HrHox-1 and Hroth in a dose-dependent manner. Expression of HrHox-1 increased, whereas expression of Hroth decreased with increasing levels of RA. In treated embryos, HrHox-1 was first expressed pan-ectodermally, then degraded in all but specific regions of the embryo. By contrast, initiation of Hroth expression was not affected, but epidermal expression was lost while expression in the neural tube narrowed toward the anterior in tail-bud embryos. These alterations in the expression of homeobox genes appear to correlate closely to the morphological defects elicited by RA treatment, suggesting broad conservation of developmental patterning mechanisms within the Phylum Chordata.  相似文献   

9.
The 40 notochord cells of the ascidian tadpole invariably arise from two different lineages: the primary (A-line) and the secondary (B-line) lineages. It has been shown that the primary notochord cells are induced by presumptive endoderm blastomeres between the 24-cell and the 64-cell stage. Signaling through the fibroblast growth factor (FGF) pathway is required for this induction. We have investigated the role of the bone morphogenetic protein (BMP) pathway in ascidian notochord formation. HrBMPb (the ascidian BMP2/4 homologue) is expressed in the anterior endoderm at the 44-cell stage before the completion of notochord induction. The BMP antagonist Hrchordin is expressed in a complementary manner in all surrounding blastomeres and appears to be a positive target of the BMP pathway. Unexpectedly, chordin overexpression reduced formation of both primary and secondary notochord. Conversely, primary notochord precursors isolated prior to induction formed notochord in presence of BMP-4 protein. While bFGF protein had a similar activity, notochord precursors showed a different time window of competence to respond to BMP-4 and bFGF. Our data are consistent with bFGF acting from the 24-cell stage, while BMP-4 acts during the 44-cell stage. However, active FGF signaling was also required for induction by BMP-4. In the secondary lineage, notochord specification also required two inducing signals: an FGF signal from anterior and posterior endoderm from the 24-cell stage and a BMP signal from anterior endoderm during the 44-cell stage.  相似文献   

10.
11.
12.
Coordinated regulation of inductive events, both spatially and temporally, during animal development ensures that tissues are induced at their specific positions within the embryo. The ascidian brain is induced in cells at the anterior edge of the animal hemisphere by fibroblast growth factor (FGF) signals secreted from vegetal cells. To clarify how this process is spatially regulated, we first identified the sources of the FGF signal by examining the expression of brain markers Hr-Otx and Hr-ETR-1 in embryos in which FGF signaling is locally inhibited by injecting individual blastomeres with morpholino oligonucleotide against Hr-FGF9/16/20, which encodes an endogenous brain inducer. The blastomeres identified as the inducing sources are A5.1 and A5.2 at the 16-cell stage and A6.2 and A6.4 at the 24-cell stage, which are juxtaposed with brain precursors at the anterior periphery of the embryo at the respective stages. We also showed that all the cells of the animal hemisphere are capable of expressing Hr-Otx in response to the FGF signal. These results suggest that the position of inducers, rather than competence, plays an important role in determining which animal cells are induced to become brain tissues during ascidian embryogenesis. This situation in brain induction contrasts with that in mesoderm induction, where the positions at which the notochord and mesenchyme are induced are determined mainly by intrinsic competence factors that are inherited by signal-receiving cells.  相似文献   

13.
The mechanism of unequal cleavage is one of the most intriguing subjects in cell biology. Previous studies of unequal cleavage have focused on a limited number of organisms such as yeasts, nematodes, sea urchins and annelids. The cleavage pattern of the ascidian embryo is invariant. In the ascidian embryo, the posterior-most blastomeres divide unequally in three successive cleavages. In the present study, it was shown that the ascidian embryo provides another good experimental system with which to analyze the mechanism of unequal cleavage. A novel structure, designated as CAB (centrosome-attracting body), which was found specifically in the unequally cleaving blastomeres was described. In the course of unequal cleavages, first, a thick microtubule bundle appeared between CAB and one of the centrosomes. Then with the shortening of the microtubule bundle, the nucleus with the centrosome was drawn toward CAB, situated at the posterior cortex of the blastomere. Finally, a cleavage furrow formed in the middle of the asymmetrically located mitotic apparatus and produced two blastomeres of different size, generating a smaller cell that inherits CAB. The CAB seemed to play an essential role in the unequal cleavages in the ascidian embryo.  相似文献   

14.
15.
We report generation of stable transgenic lines of the ascidian Ciona savignyi carrying a Ciona intestinalis-Brachyury-promoter/Green Fluorescent Protein-reporter (Ci-Bra-GFP) construct. The transgenic lines were made using a technique in which the endonuclease I-SceI was coinjected into fertilized eggs with a transgene construct containing flanking recognition sites for I-SceI. Two founder animals, out of 12 F(0) adults tested, were found to transmit the transgene to their offspring (F(1)s) at frequencies of 42% and 23%. The transgene was further inherited by the F(2) in a Mendelian fashion and displayed nonmosaic expression, indicating integration into the genome. The Mendelian inheritance and the absence of mosaicism persisted through the F(3) and F(4) generations. Southern blot analyses showed that the transgene was organized in tandem arrays of no more than 10 copies. Using these Ci-Bra-GFP transgenics, we describe cellular movements and shape changes involved in notochord morphogenesis in both wildtype and mutant embryos.  相似文献   

16.
17.
Cell migration influences cell-cell interactions to drive cell differentiation and organogenesis. To support proper development, cell migration must be regulated both temporally and spatially. Mesoderm cell migration in the Drosophila embryo serves as an excellent model system to study how cell migration is controlled and influences organogenesis. First, mesoderm spreading transforms the embryo into a multilayered form during gastrulation and, subsequently, cells originating from the caudal visceral mesoderm (CVM) migrate along the entire length of the gut. Here we review our studies, which have focused on the role of fibroblast growth factor (FGF) signaling, and compare and contrast these two different cell migration processes: mesoderm spreading and CVM migration. In both cases, FGF acts as a chemoattractant to guide cells’ directional movement but is likely not the only signal that serves this role. Furthermore, FGF likely modulates cell adhesion properties since FGF mutant phenotypes share similarities with those of cell adhesion molecules. Our working hypothesis is that levels of FGF signaling differentially influence cells’ response to result in either directional movement or changes in adhesive properties.  相似文献   

18.
19.
FGF and FGFR signaling in chondrodysplasias and craniosynostosis   总被引:2,自引:0,他引:2  
The first experimental mouse model for FGF2 in bone dysplasia was made serendipitously by overexpression of FGF from a constitutive promoter. The results were not widely accepted, rightfully drew skepticism, and were difficult to publish; because of over 2,000 studies published on FGF‐2 at the time (1993), only a few reported a role of FGF‐2 in bone growth and differentiation. However, mapping of human dwarfisms to mutations of the FGFRs shortly, thereafter, made the case that bone growth and remodeling was a major physiological function for FGF. Subsequent production of numerous transgenic and targeted null mice for several genes in the bone growth and remodeling pathways have marvelously elucidated the role of FGFs and their interactions with other genes. Indeed, studies of the FGF pathway present one of the best success stories for use of experimental genetics in functionally parsing morphogenetic regulatory pathways. What remains largely unresolved is the pleiotropic nature of FGF‐2. How does it accelerate growth in one cell then stimulate apoptosis or retard growth for another cell in the same type of tissue? Some of the answers may come through distinguishing the FGF‐2 protein isoforms, made from alternative translation start sites, these appear to have substantially different functions. Although we have made substantial progress, there is still much to be learned regarding FGF‐2 as a most complex, enigmatic protein. Studies of genetic models in mice and human FGFR mutations have provided strong evidence that FGFRs are important modulators of osteoblast function during membranous bone formation. However, there is some controversy regarding the effects of FGFR signaling in human and murine genetic models. Although significant progress has been made in our understanding of FGFR signaling, several questions remain concerning the signaling pathways involved in osteoblast regulation by activated FGFR. Additionally, little is known about the specific role of FGFR target genes involved in cranial bone formation. These issues need to be addressed in future in in vitro and in vivo approaches to better understand the molecular mechanisms of action of FGFR signaling in osteoblasts that result in anabolic effects in bone formation. J. Cell. Biochem. © 2005 Wiley‐Liss, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号