首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Amyloid-beta peptide (Abeta) is pivotal to the pathogenesis of Alzheimer disease. Here we report the formation of a toxic Abeta-Cu2+ complex formed via a histidine-bridged dimer, as observed at Cu2+/peptide ratios of >0.6:1 by EPR spectroscopy. The toxicity of the Abeta-Cu2+ complex to cultured primary cortical neurons was attenuated when either the pi -or tau-nitrogen of the imidazole side chains of His were methylated, thereby inhibiting formation of the His bridge. Toxicity did not correlate with the ability to form amyloid or perturb the acyl-chain region of a lipid membrane as measured by diphenyl-1,3,5-hexatriene anisotropy, but did correlate with lipid peroxidation and dityrosine formation. 31P magic angle spinning solid-state NMR showed that Abeta and Abeta-Cu2+ complexes interacted at the surface of a lipid membrane. These findings indicate that the generation of the Abeta toxic species is modulated by the Cu2+ concentration and the ability to form an intermolecular His bridge.  相似文献   

2.
Aggregation and fibril formation of amyloid-beta (Abeta) peptides Abeta40 and Abeta42 are central events in the pathogenesis of Alzheimer disease. Previous studies have established the ratio of Abeta40 to Abeta42 as an important factor in determining the fibrillogenesis, toxicity, and pathological distribution of Abeta. To better understand the molecular basis underlying the pathologic consequences associated with alterations in the ratio of Abeta40 to Abeta42, we probed the concentration- and ratio-dependent interactions between well defined states of the two peptides at different stages of aggregation along the amyloid formation pathway. We report that monomeric Abeta40 alters the kinetic stability, solubility, and morphological properties of Abeta42 aggregates and prevents their conversion into mature fibrils. Abeta40, at approximately equimolar ratios (Abeta40/Abeta42 approximately 0.5-1), inhibits (> 50%) fibril formation by monomeric Abeta42, whereas inhibition of protofibrillar Abeta42 fibrillogenesis is achieved at lower, substoichiometric ratios (Abeta40/Abeta42 approximately 0.1). The inhibitory effect of Abeta40 on Abeta42 fibrillogenesis is reversed by the introduction of excess Abeta42 monomer. Additionally, monomeric Abeta42 and Abeta40 are constantly recycled and compete for binding to the ends of protofibrillar and fibrillar Abeta aggregates. Whereas the fibrillogenesis of both monomeric species can be seeded by fibrils composed of either peptide, Abeta42 protofibrils selectively seed the fibrillogenesis of monomeric Abeta42 but not monomeric Abeta40. Finally, we also show that the amyloidogenic propensities of different individual and mixed Abeta species correlates with their relative neuronal toxicities. These findings, which highlight specific points in the amyloid peptide equilibrium that are highly sensitive to the ratio of Abeta40 to Abeta42, carry important implications for the pathogenesis and current therapeutic strategies of Alzheimer disease.  相似文献   

3.
Alzheimer's disease (AD) is characterised by the formation of amyloid deposits composed primarily of the amyloid beta-peptide (Abeta). This peptide has been shown to bind redox active metals ions such as copper and iron, leading to the production of reactive oxygen species (ROS) and formation of hydrogen peroxide (H(2)O(2)). The generation of H(2)O(2) has been linked with Abeta neurotoxicity and neurodegeneration in AD. Because of the relative stability of a tyrosyl radical, the tyrosine residue (Tyr-10) is believed to be critical to the neurotoxicity of Abeta. This residue has also been shown to be important to Abeta aggregation and amyloid formation. It is possible that the formation of an Abeta tyrosyl radical leads to increased aggregation via the formation of dityrosine as an early aggregation step, which is supported by the identification of dityrosine in amyloid plaque. The role of dityrosine formation in Abeta aggregation and neurotoxicity is as yet undetermined, partly because there are no facile methods for the synthesis of Abeta dimers containing dityrosine. Here we report the use of horseradish peroxidase and H(2)O(2) to dimerise N-acetyl-L-tyrosine ethyl ester and apply the optimised conditions for dityrosine formation to fully unprotected Abeta peptides. We also report a simple fluorescent plate reader method for monitoring Abeta dimerisation via dityrosine formation.  相似文献   

4.
Ha C  Ryu J  Park CB 《Biochemistry》2007,46(20):6118-6125
The abnormal deposition and aggregation of beta-amyloid (Abeta) on brain tissues are considered to be one of the characteristic neuropathological features of Alzheimer's disease (AD). Environmental conditions such as metal ions, pH, and cell membranes are associated with Abeta deposition and plaque formation. According to the amyloid cascade hypothesis of AD, the deposition of Abeta42 oligomers as diffuse plaques in vivo is an important earliest event, leading to the formation of fibrillar amyloid plaques by the further accumulation of soluble Abeta under certain environmental conditions. In order to characterize the effect of metal ions on amyloid deposition and plaque growth on a solid surface, we prepared a synthetic template by immobilizing Abeta oligomers onto a N-hydroxysuccinimide ester-activated solid surface. According to our study using ex situ atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FT-IR), and thioflavin T (ThT) fluorescence spectroscopy, Cu2+ and Zn2+ ions accelerated both Abeta40 and Abeta42 deposition but resulted only in the formation of "amorphous" aggregates. In contrast, Fe3+ induced the deposition of "fibrillar" amyloid plaques at neutral pH. Under mildly acidic environments, the formation of fibrillar amyloid plaques was not induced by any metal ion tested in this work. Using secondary ion mass spectroscopy (SIMS) analysis, we found that binding Cu ions to Abeta deposits on a solid template occurred by the possible reduction of Cu ions during the interaction of Abeta with Cu2+. Our results may provide insights into the role of metal ions on the formation of fibrillar or amorphous amyloid plaques in AD.  相似文献   

5.
Alzheimer's disease (AD) is a neurodegenerative disorder whose hallmark is the presence of senile plaques and neurofibrillary tangles. Senile plaques are mainly composed of amyloid beta-peptide (Abeta) fibrils and several proteins including acetylcholinesterase (AChE). AChE has been previously shown to stimulate the aggregation of Abeta1-40 into amyloid fibrils. In the present work, the neurotoxicity of different amyloid aggregates formed in the absence or presence of AChE was evaluated in rat pheochromocytoma PC12 cells. Stable AChE-Abeta complexes were found to be more toxic than those formed without the enzyme, for Abeta1-40 and Abeta1-42, but not for amyloid fibrils formed with AbetaVal18-Ala, a synthetic variant of the Abeta1-40 peptide. Of all the AChE-Abeta complexes tested the one containing the Abeta1-40 peptide was the most toxic. When increasing concentrations of AChE were used to aggregate the Abeta1-40 peptide, the neurotoxicity of the complexes increased as a function of the amount of enzyme bound to each complex. Our results show that AChE-Abeta1-40 aggregates are more toxic than those of AChE-Abeta1-42 and that the neurotoxicity depends on the amount of AChE bound to the complexes, suggesting that AChE may play a key role in the neurodegeneration observed in Alzheimer brain.  相似文献   

6.
CD and infrared spectroscopic studies were performed on (i) the inhibitory effects of equimolar quantities of LPFFD-OH and LPYFD-NH(2) on the time-dependent aggregation of amyloid beta-protein (Abeta) (1-42) and (ii) the beta-sheet-breaker effects of two-fold molar excess of the pentapeptides on aggregated Abeta(1-42) aged 1 week. The data obtained from the time-dependent studies demonstrated that LPFFD-OH did not significantly influence, whereas LPYFD-NH(2) exerted some inhibitory effect on the aggregation of Abeta(1-42). When added to a solution of Abeta(1-42) aged 1 week, LPFFD-OH accelerated, while LPYFD-NH(2) delayed, but did not prevent further fibrillogenesis. The difference in the effects of these two pentapeptides on the aggregational profile of Abeta(1-42) is probably due to the difference in their conformational preferences: LPFFD-OH adopts a beta-turn and extended structures, while LPYFD-NH(2) adopts a prevailing beta-turn conformation.  相似文献   

7.
There is evidence that binding of metal ions like Zn2+ and Cu2+ to amyloid beta-peptides (Abeta) may contribute to the pathogenesis of Alzheimer's disease. Cu2+ and Zn2+ form complexes with Abeta peptides in vitro; however, the published metal-binding affinities of Abeta vary in an enormously large range. We studied the interactions of Cu2+ and Zn2+ with monomeric Abeta(40) under different conditions using intrinsic Abeta fluorescence and metal-selective fluorescent dyes. We showed that Cu(2+) forms a stable and soluble 1 : 1 complex with Abeta(40), however, buffer compounds act as competitive copper-binding ligands and affect the apparent K(D). Buffer-independent conditional K(D) for Cu(II)-Abeta(40) complex at pH 7.4 is equal to 0.035 micromol/L. Interaction of Abeta(40) with Zn2+ is more complicated as partial aggregation of the peptide occurs during zinc titration experiment and in the same time period (within 30 min) the initial Zn-Abeta(40) complex (K(D) = 60 micromol/L) undergoes a transition to a more tight complex with K(D) approximately 2 micromol/L. Competition of Abeta(40) with ion-selective fluorescent dyes Phen Green and Zincon showed that the K(D) values determined from intrinsic fluorescence of Abeta correspond to the binding of the first Cu2+ and Zn2+ ions to the peptide with the highest affinity. Interaction of both Zn2+ and Cu2+ ions with Abeta peptides may occur in brain areas affected by Alzheimer's disease and Zn2+-induced transition in the peptide structure might contribute to amyloid plaque formation.  相似文献   

8.
Ryu J  Girigoswami K  Ha C  Ku SH  Park CB 《Biochemistry》2008,47(19):5328-5335
Recently discovered evidences suggest that precipitation of Alzheimer's beta-amyloid (Abeta) peptide and the toxicity in Alzheimer's disease (AD) are caused by abnormal interactions with neocortical metal ions, especially Zn2+, Cu2+, and Fe3+. While many studies had focused on the role of a "single" metal ion and its interaction with Abeta peptides, such studies involving "multiple" metal ions have hardly been explored. Here, to explore the nature of codeposition of different metals, two or more metal ions along with Abeta were incubated over a solid template prepared by immobilizing Abeta42 oligomers. The influence of Zn2+,Cu2+, and Fe3+ on Abeta aggregation was investigated by two approaches: co-incubation and sequential addition. Our results using ex situ AFM, ThT-induced fluorescence, and FTIR spectroscopy indicated that the co-incubation of Cu2+, Zn2+, and Fe3+ significantly altered the morphology of aggregates. A concentration dependence study with mixed metal ions suggested that Zn2+ was required at much lower concentrations than Cu2+ to yield nonfibrillar amorphous Abeta deposits. In addition, sequential addition of Zn2+ or Cu2+ on fibrillar aggregates formed by Fe3+ demonstrated that Zn2+ and Cu2+ could possibly change the conformation of the aggregates induced by Fe3+. Our findings elucidate the coexistence of multiple metal ions through their interactions with Abeta peptides or its aggregates.  相似文献   

9.
The process of amyloid formation by the amyloid beta peptide (Abeta), i.e., the misassembly of Abetapeptides into soluble quaternary structures and, ultimately, amyloid fibrils, appears to be at the center of Alzheimer's disease (AD) pathology. We have shown that abnormal oxidative metabolites, including cholesterol-derived aldehydes, modify Abeta and accelerate the early stages of amyloidogenesis (the formation of spherical aggregates). This process, which we have termed metabolite-initiated protein misfolding, could explain why hypercholesterolemia and inflammation are risk factors for sporadic AD. Herein, the mechanism by which cholesterol metabolites hasten Abeta 1-40 amyloidogenesis is explored, revealing a process that has at least two steps. In the first step, metabolites modify Abeta peptides by Schiff base formation. The Abeta-metabolite adducts form spherical aggregates by a downhill polymerization that does not require a nucleation step, dramatically accelerating Abeta aggregation. In agitated samples, a second step occurs in which fibrillar aggregates form, a step also accelerated by cholesterol metabolites. However, the metabolites do not affect the rate of fibril growth in seeded aggregation assays; their role appears to be in initiating amyloidogenesis by lowering the critical concentration for aggregation into the nanomolar range. Small molecules that block Schiff base formation inhibit the metabolite effect, demonstrating the importance of the covalent adduct. Metabolite-initiated amyloidogenesis offers an explanation for how Abeta aggregation could occur at physiological nanomolar concentrations.  相似文献   

10.
Metal ions have been suggested to induce aggregation of amyloid beta-peptide (Abeta), which is a key event in Alzheimer's disease. However, direct evidence that specific metal-peptide interactions are responsible for the amyloid formation has not previously been provided. Here we present the first example of the metal-induced amyloid formation by an Abeta fragment, which exhibits a clear-cut dependence on the amino acid sequence. A heptapeptide, EFRHDSG, corresponding to the amino acid residues 3-9 of Abeta (Abeta(3-9)) undergoes a conformational transition from irregular to beta-sheet and self-associates into insoluble aggregates upon Cu(II) binding. A Raman spectrum analysis of the Cu(II)-Abeta(3-9) complex and aggregation assays of mutated Abeta(3-9) peptides demonstrated that a concerted Cu(II) coordination of the imidazole side chain of His6, the carboxyl groups of Glu3 and Asp7, and the amino group at the N-terminus is essential for the amyloid formation. Although Abeta(1-9) and Abeta(2-9) also contain the metal binding sites, neither of these peptides forms amyloid depositions in the presence of Cu(II). The results of this study may not only provide new insight into the mechanism of amyloid formation, but also be important as a step toward the construction of proteinaceous materials with a specific function under the control of Cu(II).  相似文献   

11.
Talmard C  Bouzan A  Faller P 《Biochemistry》2007,46(47):13658-13666
Aggregation of the peptide amyloid-beta (Abeta) to amyloid plaques is a key event in Alzheimer's disease. According to the amyloid cascade hypothesis, Abeta aggregates are toxic to neurons via the production of reactive oxygen species and are hence directly involved in the cause of the disease. Zinc ions play an important role, because they are able to bind to Abeta and influence the aggregation properties. In the present work isothermal titration calorimetry and Zn sensors (zincon, Newport Green, and zinquin) were used to investigate the interaction of Zn with the full-length Abeta1-40 and Abeta1-42, as well as the truncated Abeta1-16 and Abeta1-28. The results suggest that Zn binding to Abeta induces a release of approximately 0.9 proton by the peptide. This correspond to the expected value upon Zn binding to the three histidines and indicates that further ligands are not deprotonated upon Zn binding. Such behavior is expected for carboxylates, but not the N-terminus. Moreover, the apparent dissociation constant (Kd,app) of Zn binding to all forms of Abeta is in the low micromolar range (1-20 microM) and rather independent of the aggregation state including soluble Abeta, Abeta fibrils, or Zn-induced Abeta aggregates. Finally, Zn in the soluble or aggregated Zn-Abeta form is well accessible for Zn chelators. The potential repercussions on metal chelation therapy are discussed.  相似文献   

12.
Beta-amyloid peptide (Abeta), which is cleaved from the larger trans-membrane amyloid precursor protein, is found deposited in the brain of patients suffering from Alzheimer's disease and is linked with neurotoxicity. We report the results of studies of Abeta1-42 and the effect of metal ions (Cu2+ and Zn2+) on model membranes using 31P and 2H solid-state NMR, fluorescence and Langmuir Blodgett monolayer methods. Both the peptide and metal ions interact with the phospholipid headgroups and the effects on the lipid bilayer and the peptide structure were different for membrane incorporated or associated peptides. Copper ions alone destabilise the lipid bilayer and induced formation of smaller vesicles but when Abeta1-42 was associated with the bilayer membrane copper did not have this effect. Circular dichroism spectroscopy indicated that Abeta1-42 adopted more beta-sheet structure when incorporated in a lipid bilayer in comparison to the associated peptide, which was largely unstructured. Incorporated peptides appear to disrupt the membrane more severely than associated peptides, which may have implications for the role of Abeta in disease states.  相似文献   

13.
Alzheimer's disease is a neurodegenerative disorder associated with progressive loss of cognitive function and memory. Amyloid beta peptide (Abeta) is the major component of senile plaques and is known to exert its cytotoxic effect mainly by producing H2O2. Vascular endothelial growth factor (VEGF) is elevated in the cerebrospinal fluid (CSF) and brain of AD patients, and H2O2 is one of the factors that induce VEGF. Therefore, we tested whether Abeta might be responsible for the increased VEGF synthesis. We found that Abeta induced the production of H2O2 in vitro. Comparison of the amount of H2O2 required to induce VEGF synthesis in HN33 cells and the amount of H2O2 produced by 10 muM Abeta1-42 in vitro suggested that a toxic concentration of Abeta might induce VEGF synthesis in these cells. However, toxic concentrations of Abeta failed to induce VEGF synthesis in several cell systems. They also had no effect on antioxidant enzymes such as glutathione peroxidase, catalase, and peroxiredoxin in HN33 cells. Cu2+, Zn2+ and Fe3+ are known to accumulate in the brains of AD patients and promote aggregation of Abeta, and Cu2+ by itself induces synthesis of VEGF. However, there was no synergistic effect between Cu2+ and Abeta1-42 in the induction of VEGF synthesis and Zn2+ and Fe3+ also had no effect on the synthesis of VEGF, alone or in combination with Abeta.  相似文献   

14.
The study explores in vitro by circular dichroism and mass spectrometry the effects of pH, Cu+2 ions and sheet-breakers on the secondary structures and self-aggregation of beta-amyloid peptides [Abeta43, Abeta42 and Abeta40] of Alzheimer's disease. Within pH 5.4-7.3, more sheet structures and aggregates containing up to 11 peptide units were observed. Cu+2 ions led to oxidative degradation or aggregation depending on its concentration and time of incubation. beta-sheet breakers can reverse the self-aggregation process, suggesting their potential therapeutic use.  相似文献   

15.
The accumulation of aggregated protein in the cell is associated with the pathology of many diseases and constitutes a major concern in protein production. Intracellular aggregates have been traditionally regarded as nonspecific associations of misfolded polypeptides. This view is challenged by studies demonstrating that, in vitro, aggregation often involves specific interactions. However, little is known about the specificity of in vivo protein deposition. Here, we investigate the degree of in vivo co-aggregation between two self-aggregating proteins, Abeta42 amyloid peptide and foot-and-mouth disease virus VP1 capsid protein, in prokaryotic cells. In addition, the ultrastructure of intracellular aggregates is explored to decipher whether amyloid fibrils and intracellular protein inclusions share structural properties. The data indicate that in vivo protein aggregation exhibits a remarkable specificity that depends on the establishment of selective interactions and results in the formation of oligomeric and fibrillar structures displaying amyloid-like properties. These features allow prokaryotic Abeta42 intracellular aggregates to act as effective seeds in the formation of Abeta42 amyloid fibrils. Overall, our results suggest that conserved mechanisms underlie protein aggregation in different organisms. They also have important implications for biotechnological and biomedical applications of recombinant polypeptides.  相似文献   

16.
Alzheimer's disease (AD) is characterized by large numbers of senile plaques in the brain that consist of fibrillar aggregates of 40- and 42-residue amyloid-beta (Abeta) peptides. However, the degree of dementia in AD correlates better with the concentration of soluble Abeta species assayed biochemically than with histologically determined plaque counts, and several investigators now propose that soluble aggregates of Abeta are the neurotoxic agents that cause memory deficits and neuronal loss. These endogenous aggregates are minor components in brain extracts from AD patients and transgenic mice that express human Abeta, but several species have been detected by gel electrophoresis in sodium dodecylsulfate (SDS) and isolated by size exclusion chromatography (SEC). Endogenous Abeta aggregation is stimulated at cellular interfaces rich in lipid rafts, and anionic micelles that promote Abeta aggregation in vitro may be good models of these interfaces. We previously found that micelles formed in dilute SDS (2 mM) promote Abeta(1-40) fiber formation by supporting peptide interaction on the surface of a single micelle complex. In contrast, here we report that monomeric Abeta(1-42) undergoes an immediate conversion to a predominant beta-structured conformation in 2 mM SDS which does not proceed to amyloid fibrils. The conformational change is instead rapidly followed by the near quantitative conversion of the 4 kDa monomer SDS gel band to 8-14 kDa bands consistent with dimers through tetramers. Removal of SDS by dialysis gave a shift in the predominant SDS gel bands to 30-60 kDa. While these oligomers resemble the endogenous aggregates, they are less stable. In particular, they do not elute as discrete species on SEC, and they are completed disaggregated by boiling in 1% SDS. It appears that endogenous oligomeric Abeta aggregates are stabilized by undefined processes that have not yet been incorporated into in vitro Abeta aggregation procedures.  相似文献   

17.
We have previously reported that amyloid Abeta, the major component of senile plaques in Alzheimer's disease (AD), binds Cu with high affinity via histidine and tyrosine residues [Atwood, C. S., et al. (1998) J. Biol. Chem. 273, 12817-12826; Atwood, C. S., et al. (2000) J. Neurochem. 75, 1219-1233] and produces H(2)O(2) by catalyzing the reduction of Cu(II) or Fe(III) [Huang, X., et al. (1999) Biochemistry 38, 7609-7616; Huang, X., et al. (1999) J. Biol. Chem. 274, 37111-37116]. Incubation with Cu induces the SDS-resistant oligomerization of Abeta [Atwood, C. S., et al. (2000) J. Neurochem. 75, 1219-1233], a feature characteristic of neurotoxic soluble Abeta extracted from the AD brain. Since residues coordinating Cu are most vulnerable to oxidation, we investigated whether modifications of these residues were responsible for Abeta cross-linking. SDS-resistant oligomerization of Abeta caused by incubation with Cu was found to induce a fluorescence signal characteristic of tyrosine cross-linking. Using ESI-MS and a dityrosine specific antibody, we confirmed that Cu(II) (at concentrations lower than that associated with amyloid plaques) induces the generation of dityrosine-cross-linked, SDS-resistant oligomers of human, but not rat, Abeta peptides. The addition of H2O2 strongly promoted Cu-induced dityrosine cross-linking of Abeta1-28, Abeta1-40, and Abeta1-42, suggesting that the oxidative coupling is initiated by interaction of H2O2 with a Cu(II) tyrosinate. The dityrosine modification is significant since it is highly resistant to proteolysis and is known to play a role in increasing structural strength. Given the elevated concentration of Cu in senile plaques, our results suggest that Cu interactions with Abeta could be responsible for causing the covalent cross-linking of Abeta in these structures.  相似文献   

18.
The lipid peroxidation product 4-hydroxy-2-nonenal (HNE) is proposed to be a toxic factor in the pathogenesis of Alzheimer disease. The primary products of lipid peroxidation are phospholipid hydroperoxides, and degraded reactive aldehydes, such as HNE, are considered secondary peroxidation products. In this study, we investigated the role of amyloid-beta peptide (A beta) in the formation of phospholipid hydroperoxides and HNE by copper ion bound to A beta. The A beta1-42-Cu2+ (1:1 molar ratio) complex showed an activity to form phospholipid hydroperoxides from a phospholipid, 1-palmitoyl-2-linoleoyl phosphatidylcholine, through Cu2+ reduction in the presence of ascorbic acid. The phospholipid hydroperoxides were considered to be a racemic mixture of 9-hydroperoxide and 13-hydroperoxide of the linoleoyl residue. When Cu2+ was bound to 2 molar equivalents of A beta(1-42) (2 A beta1-42-Cu2+), lipid peroxidation was inhibited. HNE was generated from one of the phospholipid hydroperoxides, 1-palmitoyl-2-(13-hydroperoxy-cis-9, trans-11-octadecadienoyl) phosphatidylcholine (PLPC-OOH), by free Cu2+ in the presence of ascorbic acid through Cu2+ reduction and degradation of PLPC-OOH. HNE generation was markedly inhibited by equimolar concentrations of A beta(1-40) (92%) and A beta(1-42) (92%). However, A beta(1-42) binding 2 or 3 molar equivalents of Cu2+ (A beta1-42-2Cu2+, A beta1-42-3Cu2+) acted as a pro-oxidant to form HNE from PLPC-OOH. These findings suggest that, at moderate concentrations of copper, A beta acts primarily as an antioxidant to prevent Cu2+-catalyzed oxidation of biomolecules, but that, in the presence of excess copper, pro-oxidant complexes of A beta with Cu2+ are formed.  相似文献   

19.
ABSTRACT: BACKGROUND: The amyloid-beta peptide (Abeta42) is the main component of the inter-neuronal amyloid plaques characteristic of Alzheimer's disease (AD). The mechanism by which Abeta42 and other amyloid peptides assemble into insoluble neurotoxic deposits is still not completely understood and multiple factors have been reported to trigger their formation. In particular, the presence of endogenous metal ions has been linked to the pathogenesis of AD and other neurodegenerative disorders. RESULTS: Here we describe a rapid and high-throughput screening method to identify molecules able to modulate amyloid aggregation. The approach exploits the inclusion bodies (IBs) formed by Abeta42 when expressed in bacteria. We have shown previously that these aggregates retain amyloid structural and functional properties. In the present work we demonstrate that their in vitro refolding is selectively sensitive to the presence of aggregation-promoting metal ions, allowing the detection of inhibitors of metal-promoted amyloid aggregation with potential therapeutic interest. CONCLUSIONS: Because IBs can be produced at high levels and easily purified, the method overcomes one of the main limitations in screens to detect amyloid modulators: the use of expensive and usually highly insoluble synthetic peptides.  相似文献   

20.
Beta-amyloid (Abeta) is a major protein component of senile plaques in Alzheimer's disease, and is neurotoxic when aggregated. The size of aggregated Abeta responsible for the observed neurotoxicity and the mechanism of aggregation are still under investigation; however, prevention of Abeta aggregation still holds promise as a means to reduce Abeta neurotoxicity. In research presented here, we show that Hsp20, a novel alpha-crystallin isolated from the bovine erythrocyte parasite Babesia bovis, was able to prevent aggregation of denatured alcohol dehydrogenase when the two proteins are present at near equimolar levels. We then examined the ability of Hsp20 produced as two different fusion proteins to prevent Abeta amyloid formation as indicated by Congo Red binding; we found that not only was Hsp20 able to dramatically reduce Congo Red binding, but it was able to do so at molar ratios of Hsp20 to Abeta of 1 to 1000. Electron microscopy confirmed that Hsp20 does prevent Abeta fibril formation. Hsp20 was also able to significantly reduce Abeta toxicity to both SH-SY5Y and PC12 neuronal cells at similar molar ratios. At high concentrations of Hsp20, the protein no longer displays its aggregation inhibition and toxicity attenuation properties. Size exclusion chromatography indicated that Hsp20 was active at low concentrations in which dimer was present. Loss of activity at high concentrations was associated with the presence of higher oligomers of Hsp20. This work could contribute to the development of a novel aggregation inhibitor for prevention of Abeta toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号