首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Size parameters of model antigen-antibody (Ag-Ab) complexes formed by the interaction of bovine serum albumin (BSA) and pairs of monoclonal anti-BSA antibodies (mAb) were evaluated by quasielastic light scattering, classical light scattering, and electron microscopy (EM). Mean values for the hydrodynamic radius, radius of gyration, and molecular weight were determined by light scattering. Detailed information regarding the molecular weight distribution and the presence of cycles or open chains was obtained with EM. Average molecular weights were calculated from the EM data, and the Porod-Kratky wormlike chain theory was used to model the conformational behavior of the Ag-mAb complexes. Ag-mAb complexes prepared from three different mAb pairs displayed significantly different properties as assessed by each of the techniques employed. Observations and size parameter calculations from EM photomicrographs were consistent with the results from light scattering. The differences observed between the mab pairs would not have been predicted by idealized thermodynamic models. These results suggest that the geometric constraints imposed by the individual epitope environment and/or the relative epitope location are important in determining the average size of complexes and the ratio of linear to cyclic complexes.  相似文献   

2.
R M Murphy  M L Yarmush  C K Colton 《Biopolymers》1991,31(11):1289-1295
Physiological properties of soluble antigen-antibody (Ag-Ab) complexes depend in part on the size of the complexes. In previous work, the size distribution and structure of model Ag-Ab complexes were determined by electron microscopy. In this study, we used constrained regularization analysis of quasi-elastic light scattering data to estimate molecular weight distributions of model Ag-Ab complexes. A conformational model was necessary to determine appropriate correlations between molecular weight and diffusion coefficient, and to estimate particle structure factors. Porod-Kratky theory proved to be an adequate conformational model for these purposes. The molecular weight distributions determined by constrained regularization compared favorably with distributions obtained either by electron microscopy or by thermodynamic modeling.  相似文献   

3.
The role of the Fc portion of antibody in immune complex-induced suppression was studied in vivo and in vitro. BSA pheasant anti-BSA complexes, formed in antigen excess (Ag1Ab1), were found to suppress both responses to BSA and SRBC. When complexes were formed with F(ab')2 fragments of pheasant anti-BSA, no suppression was observed, indicating that the Fc piece was indeed essential for the induction of Ag-Ab complex-mediated suppression.  相似文献   

4.
Quasi-elastic light scattering (QLS) was used to determine relative epitope specificities of a group of anti-bovine serum albumin (BSA) monoclonal antibodies (MAb). QLS is a non-invasive technique which can determine the mean size and size distributions of macromolecular scatterers by analysis of the fluctuations in the intensity of laser light scattering. When two MAbs are mixed together with antigen, QLS detects the complex formation which results from the Ag-Ab reaction, and can easily distinguish between the large complexes formed by interaction of non-competitive MAbs and the smaller complexes formed by competitive MAbs. In this report, the competitive or non-competitive behavior of six anti-BSA MAbs were assessed by radioimmunoassay (RIA) and QLS analysis. The results obtained by QLS analysis confirmed the RIA findings indicating that the six MAbs examined can be categorized into three distinct, non-interacting groups. QLS analysis represents a simple, and extremely rapid technique for epitope mapping studies.  相似文献   

5.
The structures of protein antigen-antibody (Ag-Ab) interfaces contain information about how Ab recognize Ag as well as how Ag are folded to present surfaces for Ag recognition. As such, the Ab surface holds information about Ag folding that resides with the Ab-Ag interface residues and how they interact. In order to gain insight into the nature of such interactions, a data set comprised of 53 non-redundant 3D structures of Ag-Ab complexes was analyzed. We assessed the physical and biochemical features of the Ag-Ab interfaces and the degree to which favored interactions exist between amino acid residues on the corresponding interface surfaces. Amino acid compositional analysis of the interfaces confirmed the dominance of TYR in the Ab paratope-containing surface (PCS), with almost two fold greater abundance than any other residue. Additionally TYR had a much higher than expected presence in the PCS compared to the surface of the whole antibody (defined as the occurrence propensity), along with aromatics PHE, TRP, and to a lesser degree HIS and ILE. In the Ag epitope-containing surface (ECS), there were slightly increased occurrence propensities of TRP and TYR relative to the whole Ag surface, implying an increased significance over the compositionally most abundant LYS>ASN>GLU>ASP>ARG. This examination encompasses a large, diverse set of unique Ag-Ab crystal structures that help explain the biological range and specificity of Ag-Ab interactions. This analysis may also provide a measure of the significance of individual amino acid residues in phage display analysis of Ag binding.  相似文献   

6.
The structures of protein antigen-antibody (Ag-Ab) interfaces contain information about how Ab recognize Ag as well as how Ag are folded to present surfaces for Ag recognition. As such, the Ab surface holds information about Ag folding that resides with the Ab-Ag interface residues and how they interact. In order to gain insight into the nature of such interactions, a data set comprised of 53 non-redundant 3D structures of Ag-Ab complexes was analyzed. We assessed the physical and biochemical features of the Ag-Ab interfaces and the degree to which favored interactions exist between amino acid residues on the corresponding interface surfaces. Amino acid compositional analysis of the interfaces confirmed the dominance of TYR in the Ab paratope-containing surface (PCS), with almost two fold greater abundance than any other residue. Additionally TYR had a much higher than expected presence in the PCS compared to the surface of the whole antibody (defined as the occurrence propensity), along with aromatics PHE, TRP, and to a lesser degree HIS and ILE. In the Ag epitope-containing surface (ECS), there were slightly increased occurrence propensities of TRP and TYR relative to the whole Ag surface, implying an increased significance over the compositionally most abundant LYS > ASN > GLU > ASP > ARG. This examination encompasses a large, diverse set of unique Ag-Ab crystal structures that help explain the biological range and specificity of Ag-Ab interactions. This analysis may also provide a measure of the significance of individual amino acid residues in phage display analysis of Ag binding.  相似文献   

7.
We used dual-polarization interferometry (DPI) to study the interaction kinetics between a 'homopolyvalent' antigen (Ag) and a monoclonal antibody (Ab). A model system, which uses a monoclonal Ab against a homopentameric Ag, C-reactive protein (CRP), is presented with principle and experiments for the study of the interactions between an Ab and an Ag that has multiple identical epitopes. This allows evaluation of the dissociation constant (K(D)) and of the binding stoichiometry by DPI based on measurements of phase changes of Ab-Ag complexes in the transverse magnetic (TM) and transverse electric (TE) polarization modes. The average experimental value of K(D) found by the DPI technique for anti-CRP Ab was shown to be in close agreement with the value obtained by an indirect competition-enzyme-linked immunosorbent assay (ELISA). Moreover, the total number of Ab combining sites on the DPI sensor chip was calculated, and the binding stoichiometry of the surface Ag-Ab complex was obtained. This study illustrates the advantages of the DPI method in biosensing in its capacity for simultaneous evaluation of the thickness and refractive index (density, mass) of adsorbed layers. This allowed a comprehensive analysis of affinity reactions between an Ab having two binding sites and a multi-sited Ag.  相似文献   

8.
The crystal structure of Fab of an Ab PC283 complexed with its corresponding peptide Ag, PS1 (HQLDPAFGANSTNPD), derived from the hepatitis B virus surface Ag was determined. The PS1 stretch Gln2P to Phe7P is present in the Ag binding site of the Ab, while the next three residues of the peptide are raised above the binding groove. The residues Ser11P, Thr12P, and Asn13P then loop back onto the Ag-binding site of the Ab. The last two residues, Pro14P and Asp15P, extend outside the binding site without forming any contacts with the Ab. The PC283-PS1 complex is among the few examples where the light chain complementarity-determining regions show more interactions than the heavy chain complementarity-determining regions, and a distal framework residue is involved in Ag binding. As seen from the crystal structure, most of the contacts between peptide and Ab are through the five residues, Leu3-Asp4-Pro5-Ala6-Phe7, of PS1. The paratope is predominantly hydrophobic with aromatic residues lining the binding pocket, although a salt bridge also contributes to stabilizing the Ag-Ab interaction. The molecular surface area buried upon PS1 binding is 756 A(2) for the peptide and 625 A(2) for the Fab, which is higher than what has been seen to date for Ab-peptide complexes. A comparison between PC283 structure and a homology model of its germline ancestor suggests that paratope optimization for PS1 occurs by improving both charge and shape complementarity.  相似文献   

9.
We demonstrated the feasibility of using integrated optical output grating couplers in direct immunosensing. We monitored as functions of time, first the adsorption of an antigen (Ag) on the waveguide's surface, and subsequently, the binding of the corresponding antibody (Ab), i.e. the formation of the immuno-complex Ag-Ab. The Ag was human immunoglobulin G (h-IgG), and the Ab was rabbit anti-h-IgG. We also studied the adsorption of avidin. The refractive indices nF', thicknesses dF', and surface coverages gamma of the adsorbed adlayers and of the immuno-complex Ag-Ab, respectively, were determined.  相似文献   

10.
In this paper, the complex formation of bovine serum albumin (BSA) and polyacrylic acid (PAA) in the presence metal ions at pH = 7 has been examined by using fluorescence and dynamic light scattering measurements. It has been observed that the most stable complexes of polyacrylic acid and bovine serum albumin have occurred in the presence of copper(II) ions. The other ions have the ability to form weak complexes between polyions and bovine serum albumin. To prior characterizing the interaction between bovine serum albumin and polyacrylic acid, the dynamic light scattering technique have been applied to determine the intensity-size distributions of the solutions of bovine serum albumin, polyacrylic acid, and ternary mixtures containing various molar ratios of bovine serum albumin to polyacrylic acid (the molar ratios of bovine serum albumin to polyacrylic acid has been taken equal to 0.5, 1.0, 1.5, 2.0 and 2.5) prepared at different molar ratios of copper(II) ions/acrylic acid unit. When the molar ratio of copper(II) ions to acrylic acid in the ternary mixtures has been lower than and equals to 0.3, two peaks have been observed in the curves of the intensity-size distributions due to contents of free bovine serum albumin and ternary complexes of polyacrylic acid-copper(II)-bovine serum albumin whereas when the molar ratio of copper(II) ions to acrylic acid equals to 0.4, the hydrodynamic diameter has pointed out only one peak. This result indicates that soluble and stable ternary complexes has occurred when the molar ratio of copper(II) ions to acrylic acid has been taken equal to 0.4.  相似文献   

11.
The interaction of antibodies (Abs) with protein antigens (Ags) of different size, such as hen egg white lysozyme, ovalbumin, and bovine serum albumin, was examined using analytical ultracentrifugation, electrospray ionization time-of-flight mass spectrometry, and surface plasmon resonance in order to estimate regional and segmental Ab flexibility. When both Abs and Ags were free in solution, sedimentation equilibrium and surface plasmon resonance analyses showed the formation of an Ag(2)Ab(1) complexes regardless of Ag size, suggesting that the Fab arms were able to move to avoid interference between Ags bound to Ab combining sites. The Ag(2)Ab(1) complex, as well as the Ag(1)Ab(1) complex, was observed by MS. However, when Abs were immobilized on the surface of a sensor chip through the Fc region, the stoichiometry of the Ag-Ab complex was dependent on the Ag size; Ag(2)Ab(1) forming with hen egg white lysozyme and Ag(1)Ab(1) with ovalbumin and bovine serum albumin. These results indicated that immobilization of the Fc region reduces the dynamic range of the Fab arms and results in interference from the first Ag bound to either combining site, which in turn prevents the binding of the second Ag to the other combining site. Our results allow us to propose that the Fab arms of B-cell receptors whose Fc regions are immobilized on cell surface have a reduced dynamic range.  相似文献   

12.
The classical view of immunoglobulin molecules posits two functional domains defined by the variable (V) and constant (C) regions, which are responsible for antigen binding and antibody effector functions, respectively. These two domains are thought to function independently. However, several lines of evidence strongly suggest that C region domains can affect the specificity and affinity of an antibody for its antigen (Ag), independent of avidity-type effects. In this study, we used isothermal titration calorimetry to investigate the thermodynamic properties of the interactions of four V region-identical monoclonal antibodies with a univalent peptide antigen. Comparison of the binding of IgG1, IgG2a, IgG2b, and IgG3 with a 12-mer peptide mimetic of Cryptococcus neoformans polysaccharide revealed a stoichiometry of 1.9-2.0 with significant differences in thermodynamic binding parameters. Binding of this peptide to the antibodies was dominated by favorable entropy. The interaction of these antibodies with biotinylated peptides manifested greater enthalpy than for native peptides indicating that biotin labeling affected the types of Ag-Ab complexes formed. Our results provide unambiguous thermodynamic evidence for the notion that the C region can affect the interaction of the V region with an Ag.  相似文献   

13.
Ichthyophthirius multifiliis, a parasitic ciliate of freshwater fishes, was found to have surface antigens (Ag) which elicited immobilizing antibodies (Ab) when injected into rabbits. An effort was made to purify and characterize these Ag (referred to as immobilization Ag) because of their potential role in protective immunity in fishes. Mice immunized with theront cilia were used for production of immobilizing monoclonal antibodies (MAb). Hybridomas were screened by indirect immunofluorescent light microscopy and immobilization of live parasites. Six hybridomas producing immobilizing MAb were cloned. Immobilizing MAb were used to affinity purify Ag solubilized with Triton X-114 and Na deoxycholate. Two membrane protein Ag of approximately 48 and 60 kDa were identified. Immobilizing MAb failed to react with these Ag on Western blots and, conversely, MAb that reacted with the Ag on Western blots did not immobilize live organisms. These results suggest that immobilization required native conformational epitopes which were altered by Western blotting procedures. Individual MAb reactive on Western blots recognized both the 48- and 60-kDa proteins indicating the presence of common epitopes. Affinity purified Ag elicited immobilizing antisera when injected into rabbits, mice, and channel catfish.  相似文献   

14.
A static light scattering (SLS) study of bovine serum albumin (BSA) mixtures with two anionic graft copolymers of poly(sodium acrylate-co-sodium 2-acrylamido-2-methyl-1-propanesulphonate)-graft-poly(N,N-dimethylacrylamide), with a high composition in poly(N,N-dimethylacrylamide) (PDMAM) side chains, revealed the formation of oppositely charged complexes, at pH lower than 4.9, the isoelectric point of BSA. The core-corona nanoparticles formed at pH = 3.00 were characterized. Their molecular weight and radius of gyration were determined by SLS, while their hydrodynamic radius was determined by dynamic light scattering. Small angle neutron scattering measurements were used to determine the radius of the insoluble complexes, comprising the core of the particles. The values obtained indicated that their size and aggregation number of the nanoparticles were smaller when the content of the graft copolymers in neutral PDMAM side chains was higher. Such particles should be interesting drug delivery candidates, if the gastrointestinal tract was to be used.  相似文献   

15.
The static light scattering and sedimentation equilibrium of solutions of Dextran 70 were measured as functions of concentration up to 100 g/L in pH 7.4 phosphate-buffered saline at temperatures between 5 and 37 °C. The concentration dependence of scattering intensity and the apparent molar mass obtained from sedimentation equilibrium were found to be nearly independent of temperature over this range to within the uncertainty of measurement. Global analysis of the concentration dependence of both properties yielded a reliable estimate of the concentration-dependent thermodynamic activity coefficient, a quantitative measure of the free energy of self-interaction. The self-interaction between Dextran molecules is compared with that of a globular protein (BSA) and a highly crosslinked polymer of similar molar mass (Ficoll 70). The observed concentration dependence of the free energy of Dextran self-interaction may be quantitatively accounted for by a semi-empirical model in which the polymer molecule is represented by a compressible sphere.  相似文献   

16.
Herlyn  D.  Somasundaram  R.  Zaloudik  J.  Jacob  L.  Harris  D.  Kieny  M. -P.  Sears  H.  Mastrangelo  M. 《Cell biochemistry and biophysics》1994,24(1-3):143-153
The CO17-1A/GA733 antigen (Ag), bound by monoclonal antibodies (MAb) CO17-1A and GA733 that define two different epitopes on the Ag, has proven a useful target in passive and active immunotherapy of colorectal carcinoma (CRC). Previous studies suggest that the antitumor effects demonstrated in MAb-treated patients may be mediated by idiotypic cascades. In approaches to active immunotherapy against the Ag, polyclonal goat and monoclonal rat anti-idiotypic antibodies (Ab2) directed against MAb CO17-1A or GA733 (Ab1) were administered as alum precipitates to 54 patients with CRC (stage Dukes' B, C, and D). The majority of the patients treated with the various Ab2 preparations developed anti-anti-idiotypic antibodies (Ab3) that specifically bound to the CO17-1A or GA733 epitope and shared idiotopes with the corresponding Ab1. Approximately 30% of the patients tested developed specific cellular immunity, i.e., Ag-specific T-cells mediating delayed-type hypersensitivity (DTH) reaction in vivo or proliferating on stimulation with the Ag in vitro. The humoral and cellular immune responses may underlie the clinical responses observed in some of the treated patients. Recently, the CO17-1A/GA733 Ag has been molecularly cloned and expressed in baculo-, adeno-, and vaccinia viruses. In preclinical studies, these recombinant Ag preparations elicited specific humoral immunity (cytotoxic antibodies) and cellular immunity (DTH-reactive and proliferative T-cells), similar to the native Ag. Antibody titers elicited in experimental animals by recombinant Ag were significantly higher than those elicited by Ab2, presumably because Ag expresses numerous epitopes, whereas Ab2 mimics a single epitope. Recombinant CO17-1A/GA733 Ag has potential as a vaccine for CRC patients.  相似文献   

17.
We designed and fabricated the nanomechanical Pb(Zr0.52Ti0.48)O3 (PZT) cantilever; we demonstrated a novel electrical measurement, under a controlled ambient temperature and humidity, for label-free detection of a prostate-specific antigen (PSA); and we achieved a detection sensitivity as low as 10 pg/ml. For the fabrication of our nanomechanical PZT cantilevers, we used composite layers of Ta/Pt/PZT/Pt/SiO2 on a SiN(x) supporting layer for electrical self-sensing without external oscillators. This method allows PSA proteins to be detected via a simple electrical measurement of the resonant frequency change generated by the molecular interaction of the antigen (Ag) and the antibody (Ab). The resonant frequency shifted due to the specific binding of the PSA Ag to its Ab which is immobilized via calixcrown self-assembled monolayers on an Au surface deposited on a nanomechanical PZT cantilever. We determined the resonant frequency shift as the value of -172 Hz and -273 Hz, when the concentration of PSA Ag was 1 ng/ml, with the cantilever dimensions of 100 microm x 300 microm and 50 microm x 150 microm, respectively. Theoretical and experimental analysis suggests that the minimum detectable sensitivity for a resonant frequency shift due to a PSA Ag-Ab interaction depends on the dimensions of the nanomechanical PZT cantilever. These results also demonstrate that the experimentally measured resonant frequency shift is larger than that calculated theoretically due to the compressive stress of the PSA Ag-Ab interaction.  相似文献   

18.
The usefulness of laser light scattering as a technique for determining protein conformation has been investigated by studying the self-association and drug binding of bovine serum albumin (BSA). The diffusion coefficients of BSA monomers and dimers have been measured and the ratio of these two quantities indicates that in the dimer, the subunit separation is 2.2 times the monomeric hydrodynamic radius. The binding of salicylate to BSA causes an increase in its diffusion coefficient corresponding to a reduction in the frictional drag of the solvent on the protein molecules. It has been found that data obtained using laser light scattering may be interpreted confidently only when proper care has been taken in sample preparation and the scattered intensity autocorrelation function has been appropriately analyzed.  相似文献   

19.
The interaction of antigen (Ag) and antibody (Ab) with poly diallyldimethylammonium chloride (PDDA) in aqueous solutions has been studied by optical absorption and resonance light‐scattering (RLS) spectroscopies. The formation of the three‐component‐complex is due to aggregates of Ab or Ag with PDDA by electrostatic interaction and aggregates of Ab with Ag by immunoreaction. The influences of some experimental factors, including incubation time, pH value, concentration of PDDA and concentration of Ab, on the aggregation process have also been studied. A linear relationship between the concentration of Ag and the RLS intensity was found. Under the optimal conditions, for a given concentration of Ab (4.6 µg/mL), the enhancement of RLS intensity is in proportion to the concentration of Ag in the range 0.03–0.83 µg/mL. The RLS could, in combination with immunoassay, be a rapid and sensitive detection method for Ag. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Immunization with IgG/Ag or IgE/Ag complexes leads to a higher production of specific Abs than immunization with Ag alone. The enhancing effect of IgE is exclusively dependent upon the low-affinity receptor for IgE, Fc epsilon RII, whereas the mechanism behind IgG-mediated enhancement is unknown. We have investigated whether receptors for the Fc part of IgG are required for responses to IgG/Ag. Mice lacking the gamma subunit of Fc receptors (FcRs) (FcR gamma-/-), Fc gamma RII (Fc gamma RII-/-), or Fc gamma RIII (Fc gamma RIII-/-) were immunized with BSA-2,4,6-trinitrophenyl (TNP) alone or BSA-TNP complexed to monoclonal TNP-specific IgG1, IgG2a, or IgG2b. As expected, all subclasses enhanced the Ab-response to BSA in wild-type mice. Enhancement was in the same order of magnitude in Fc gamma RIII-/- mice (相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号