首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A novel and patented procedure is described for the sonochemical fabrication of a new class of microelectrode array based sensor with electrode element populations of up to 2 x 10(5) cm(-2). For some years it has been accepted that microelectrode arrays offer an attractive route for lowering minimum limits of detection and imparting stir (convectional mass transport) independence to sensor responses; despite this no commercial biosensors, to date, have employed microelectrode arrays, largely due to the cost of conventional fabrication routes that have not proved commercially viable for disposable devices. Biosensors formed by our sonochemical approach offer unrivalled sensitivity and impart stir independence to sensor responses. This format lends itself for mass fabrication due to the simplicity and inexpensiveness of the approach; in the first instance impedimetric and amperometric sensors are reported for glucose as model systems. Sensors already developed for ethanol, oxalate and a number of pesticide determinations will be reported in subsequent publications.  相似文献   

2.
A polymer-modified sonochemically fabricated glucose oxidase microelectrode array with microelectrode population densities of up to 2.5 x 10(5) microelectrodes per square centimetres is reported. These microelectrode sensors were formed by first depositing an insulating film on commercial screen printed electrodes which was subsequently sonicated to form cavities of regular sizes in the film. Electropolymerisation of aniline at the microelectrode cavities formed polyaniline protrusions containing entrapped glucose oxidase. Chemical deposition of polysiloxane from dichlorodimethysilane was used to deposit a thin protective and diffusion mass transport controlling coating over the electrodes. The physical and electrochemical properties of these films were studied. The performance of the final glucose oxidase based microelectrode sensor array is reported.  相似文献   

3.
An ammonia-sensing air gap microelectrode has been designed on the basis of a neutral carrier pH-sensing inner electrode. This electrode has a tip diameter of 2 to 5 microns, has a simple design, is easy to fabricate, and has a long shelf life. Its response to ammonium is linear in the range 3 x 10(-5) to 10(-2) M and its response time (95%) is 10 to 15 s. The electrode was converted to a microsensor for urea by immobilization of urease within its tip. The linear response to urea ranged from 3 x 10(-4) to 10(-2) M and the response time was 15 to 20 s.  相似文献   

4.
A novel enzyme-linked DNA hybridization assay on an interdigitated array (IDA) microelectrode integrated into a microfluidic channel is demonstrated with sub-nM detection limit. To improve the detection limit as compared to conventional electrochemical biosensors, a recyclable redox product, 4-aminophenol (PAP) is used with an IDA microelectrode. The IDA has a modest and easily fabricated inter-digit spacing of 10 μm, yet we were able to demonstrate 97% recycling efficiency of PAP due to the integration in a microfluidic channel. With a 70 nL sample volume, the characterized detection limit for PAP of 1.0 × 10?1? M is achieved, with a linear dynamic range that extends from 1.0 × 10?? to 1.0 × 10?? M. This detection limit, which is the lowest reported detection limit for PAP, is due to the increased sensitivity provided by the sample confinement in the microfluidic channel, as well as the increased repeatability due to perfectly static flow in the microchannel and an additional anti-fouling step in the protocol. DNA sequence detection is achieved through a hybridization sandwich of an immobilized complementary probe, the target DNA sequence, and a second complementary probe labeled with β-galactosidase (β-GAL); the β-GAL converts its substrate, 4-aminophenyl-d-galactopyranoside (PAPG), into PAP. In this report we present the lowest reported observed detection limit (1.0 × 10?1? M) for an enzyme-linked DNA hybridization assay using an IDA microelectrode and a redox signaling paradigm. Thus, we have demonstrated highly sensitive detection of a targeted DNA sequence using a low-cost easily fabricated electrochemical biosensor integrated into a microfluidic channel.  相似文献   

5.
In this paper, we report a novel electrochemical detection approach for platelet-derived growth factor (PDGF) via "sandwich" structure and gold nanoparticles (Au-NPs) mediated amplification technique. The "sandwich" structure is fabricated based on the fact that PDGF has two aptamer-binding sites, which makes it possible for one PDGF molecule to connect with two aptamers simultaneously. It is found that this electrochemical system with "sandwich" structure and Au-NPs can significantly amplify the signal of electrochemical probe [Ru(NH(3))(5)Cl](2+) for PDGF detection, and thus increase the detection sensitivity significantly. As a result, this PDGF detection approach obtains an extraordinarily low detection limit of 1 x 10(-14)M for purified samples, 1 x 10(-12)M for contaminated-ridden samples or undiluted blood serum. This detection approach can also exhibit good stability and excellent specificity.  相似文献   

6.
A novel hydrogen peroxide biosensor was fabricated for the determination of H(2)O(2). The precursor film was first electropolymerized on the glassy carbon electrode with p-aminobenzene sulfonic acid (p-ABSA) by cyclic voltammetry (CV). Then thionine (Thi) was adsorbed to the film to form a composite membrane, which yielded an interface containing amine groups to assemble gold nanoparticles (nano-Au) layer for immobilization of horseradish peroxidase (HRP). The electrochemical characteristics of the biosensor were studied by CV and chronoamperometry. The factors influencing the performance of the resulting biosensor were studied in detail. The biosensor responded to H(2)O(2) in the linear range from 2.6 x 10(-6) mol/L to 8.8 x 10(-3) mol/L with a detection limit of 6.4 x 10(-7) mol/L. Moreover, the studied biosensor exhibited good accuracy and high sensitivity. The proposed method was economical and efficient, making it potentially attractive for the application to real sample analysis.  相似文献   

7.
Fast continuous cyclic voltammetry was used as a detection method for penicillin V in a flow injection system. Additionally, a special computer-based numerical calculation method (using fast Fourier transformation) providing enhancement of the analyte signal and noise reduction is introduced here. During the measurements, the potential waveform (consisting of the potential steps of cleaning, stripping, and the potential ramp) was continuously applied to an Au disk microelectrode (12.5 microm in radius). In particular, the effects of accumulation potential, sweep rate, and delay time on the sensitivity and selectivity of the method were investigated. Eventually, the stripping time was found to be less than 300 ms, the detection limit of the method was 7.0x10(-12) M, and the associated relative standard deviation at 5.0x10(-6) M penicillin V was 2.3 for eight runs.  相似文献   

8.
A light-addressable microelectrode chip with 3600 TiN electrodes was fabricated. Amorphous silicon (a-Si:H) serves as a photo conductor. The electrodes on the chip are addressed by a laser spot and electrical properties of the system are determined. DC measurements show a dark to bright dynamic of 10(6)-10(7). The AC impedance dynamic @ 1 kHz/100 mV and thus the signal-to-noise-ratio is determined to 60. This value is quite sufficient for electrophysiological measurements. For the first time, recordings from cardiac myocytes are reported using the principle of light-addressing. Measurements were done with a standard laser scan microscope (Zeiss LSM 410).  相似文献   

9.
Disposable microsensors on polymer substrates consisting of fully integrated on-chip planar cobalt (Co) microelectrodes, Ag/AgCl reference electrodes, and microfluidic channels have been designed, fabricated, and characterized for phosphate concentration measurement in aqueous solution. The planar Co microelectrode shows phosphate-selective potential response over the range from 10(-5) to 10(-2)M in acidic medium (pH 5.0) for both inorganic (KH(2)PO(4)) and organic (adenosine 5'-triphosphate (ATP) and adenosine 5'-diphosphates (ADP)) phosphate compounds. This microfabricated sensor also demonstrates significant reproducibility with a small repeated sensing deviation (i.e. relative standard deviation (R.S.D.)<1%) on a single chip and a small chip-to-chip deviation (i.e. R.S.D.<2.5%). Specifically, while keeping the high selectivity, sensitivity, and stability of a conventional bulk Co-wire electrode, the proposed phosphate sensor yields advantages such as ease of use, cost effectiveness, reduced analyte consumption, and ease of integrating into disposable polymer lab-on-a-chip devices. The capability to sense both inorganic and organic phosphate compounds makes this sensor applicable in diverse areas such as environmental monitoring, soil extract analysis, and clinical diagnostics.  相似文献   

10.
A method of indirectly measuring pyruvic acid (PA) by capillary electrophoresis with amperometric detection is proposed for the first time. It is based on the oximation reaction between PA and hydroxylamine (NH(2)OH), and the quantification of PA was performed by direct and sensitive amperometric detection of excessive NH(2)OH after the oximation reaction. This method displayed a good sensitivity, and the detection limits of NH(2)OH and PA are 1.76 x 10(-7) and 3.88 x 10(-7)mol/L, respectively at S/N=3. The linear relationship between the peak current and PA concentration is exhibited over the range from 4 x 10(-6) to 1 x 10(-4)mol/L. This method has been applied to determine PA in rat plasma with satisfactory results.  相似文献   

11.
A composite self-excited PZT-glass cantilever (4mm in length and 2mm wide) was fabricated and used to measure the binding and unbinding of model proteins. A key feature of the cantilever is that its resonant frequency is dependent on its mass. The fabricated cantilever has mass change sensitivity in liquid of 7.2 x 10(-11)g/Hz. Resonant frequency change was measured as protein reacted or bound with the sensing glass cantilever surface. Protein concentrations, 0.1 and 1.0mg/mL, which resulted in nanogram mass change were successfully detected. The mass change sensitivity gave a total mass change of 54+/-0.45 ng for the binding of anti-rabbit IgG (biotin conjugated) to rabbit IgG immobilized cantilever and the subsequent binding of captavidin. The unbinding of anti-rabbit IgG and captavidin gave a total mass change of 54+/-1.70 ng. Fluorescence based assays showed the combined mass of both proteins in the released samples was 54+/-2.24 ng. The binding kinetics of the model proteins is modeled as first order. The initial binding rate constant of anti-rabbit IgG to rabbit IgG was 1.36+/-0.02(min(mg/mL))(-1). The initial binding rate constant of captavidin to biotinylated anti-rabbit IgG was (2.57 x 10(-1))+/-0.003(min(mg/mL))(-1). The significance of the results we report here is that millimeter-sized PZT-actuated glass cantilevers have the sensitivity to measure in real-time protein-protein binding, and the binding rate constant.  相似文献   

12.
The article deals with the optimization of conditions for the chemiluminescence determination. The Daphnia habitat was shown to have no spontaneous chemiluminescence. This was revealed using hydrogen peroxide and luminol, the optimal concentrations of which were 23 and 1.6 x 10(-2) mmol/L. p-Iodphenol at low concentrations (4 x 10(-5)-2 x 10(-3) mmol/L) did not render its effect chemiluminescence signal while at high concentrations (4 x 10(-2) mmol/L) an inhibition of chemiluminescence was observed. To obtain the needed intensity of chemiluminescence no more than 5 daphnia persons is required to incubate in volume of 10 mL of sample for analyzing. The intensity of chemiluminescence of daphnia cultivating medium and the sensitivity of this organism to potassium chromate increased at the temperature increasing from 24 to 32 degrees C. Daphnia cultivating medium can be preserved in refrigerator for several hours without lost of chemiluminescence signal.  相似文献   

13.
Implantable and miniature carbon fiber microelectrode (CFME)-based third-generation biosensor for superoxide anion (O(2)(-)) was fabricated for the first time. The CFME-based biosensor was constructed by electro-deposition of Au nanoparticles on the CFMEs and then modification of the Au nanoparticles by cysteine followed by immobilization of superoxide dismutase (SOD) on the electrodes. The direct electrochemistry of the SOD immobilized on the CFME-based electrodes was efficiently realized by electron transfer promoter - cysteine molecules confined on the Au nanoparticles deposited on the CFMEs. The CFME-based biosensors were demonstrated to possess striking analytical properties for O(2)(-) determination, such as optional operation potentials, high selectivity and sensitivity as well as good stability. Along with the implantable capacity inherent in the CFMEs, these striking analytical properties of the CFME-based biosensors substantially make them potential for in vivo determination of O(2)(-).  相似文献   

14.
This report describes the development of novel sonochemically fabricated, bioengineered acetylcholinesterase and polyaniline carbon/cobalt phthalocyanine biosensors for the ultra-sensitive determination of a number of different pesticides. Arrays of this type typically have population micro-electrode densities of up to approximately 2 x 10(5) cm(-2); these represent the highest micro-electrode population densities reported to date by any fabrication means. The enzymatic response of the sensors is inhibited upon incubation with the pesticide, and we have shown that Dichlorvos, Parathion and Azinphos may be determined down to concentrations of approximately 1 x 10(-17) M, approximately 1 x 10(-16) M and approximately 1 x 10(-16) M, respectively. These lower limits of detection are lower than otherwise achievable by any other analytical approach. Measurements were performed within a custom built flow injection system that operates at a constant flow of 1 ml min(-1). Sensor stability studies were also performed whereby a stabilizer mixture of sucrose and polygalacturonic acid was added to the immobilised enzyme matrix at the working electrode and left to dry. Sixty-five percent of the initial enzyme activity was found to remain after a period of 92 days to allow storage of these electrodes and facilitating transportation if required.  相似文献   

15.
On the top of a multi-walled carbon nanotubes (MWNTs) modified glassy carbon electrode (MWNTs/GCE), Pt nanoclusters were electrochemically deposited, fabricating a Pt/MWNTs composite modified electrode, Pt/MWNTs/GCE. X-ray photoelectron spectroscopy, powder X-ray diffraction and field emission scanning electron microscope were used for the surface characterization of the electrode, and demonstrated the formation and distribution of Pt clusters of Pt nanoparticles of 8.4 nm in averaged size in the MWNTs matrix. The preliminary study found that this composite modified electrode has strong electrocatalytic activity toward the oxidation of estrogens involving estradiol, estrone and estriol. The voltammetric behavior of estrogens on this electrode was investigated by cyclic voltammetry, linear sweep voltammetry and square-wave voltammetry. In comparison with the MWNTs/GCE or a Pt nanoparticles modified GCE prepared in the similar way, this composite modified electrode exhibited much higher current sensitivity and catalytic activity. This electrode is also stable. The linear range of square-wave voltammetric determination was 5.0 x 10(-7)-1.5 x 10(-5)mol/L for estradiol, 2.0 x 10(-6)-5.0 x 10(-5)mol/L for estrone, and 1.0 x 10(-6)-7.5 x 10(-5)mol/L for estriol. Under an assumption that the concentration ratio of estradiol:estrone:estriol is 2:2:1, the real sample of blood serums was tested for the determination using this electrode. Satisfactory result was obtained with averaged recovery of 105%.  相似文献   

16.
Li XM  Gu SS  Zhang SS 《Oligonucleotides》2008,18(3):287-294
A simple and sensitive method for electrochemical detection of DNA was designed. This DNA sensor was based on a "sandwich" detection strategy, which involved a long capture probe DNA immobilized on glassy carbon electrodes that flanked both the reference DNA and target DNA. Electrochemical signals were measured by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) using aquadichloro(benzimidazole)-copper(II), Cu(bzim)(H(2)O)Cl(2), as an electroactive indicator. An improving amount of Cu(bzim)(H(2)O)Cl(2) was interacted with the hybrid DNA via the incorporation of a long-probe DNA and a reference DNA in this sensor. As a result of this effect, this sensor design significantly enhanced the sensitivity. With 48-mer probe DNA and 27-mer reference DNA, the proposed method could be used for detection of 21-mer ssDNA ranging from 1.32 x 10(-7) to 2.52 x 10(-6) M with a detection limit of 2.94 x 10(-8) M. Electrochemical DNA biosensors were also developed using the same long-probe sequence as the target sequence with the novel hybridization indicator, Cu(bzim) (H(2)O)Cl(2). The detection limits for the complementary 21-mer target and 27-mer target were 9.52 x 10(-8) M and 5.81 x 10(-8) M, respectively. The results showed that the sensor with long-probe DNA and reference DNA is far more sensitive than that with nonswitch assay.  相似文献   

17.
The aim of this study was to investigate if a low concentration of endothelin-1 (ET-1; 8 x 10(-10) M) may amplify the skin vasoconstrictor effect of other vasoactive substances in the pathogenesis of skin vasospasm. Pig skin flaps (6 x 16 cm) were perfused with Krebs buffer equilibrated with 95% O(2) and 5% CO(2) at 37 degrees C and pH 7.4. Skin perfusion pressure measured by a pressure transducer and skin perfusion assessed by the dermofluorometry technique were used for assessment of skin vasoconstriction. We observed that ET-1 (8 x 10(-10) M) significantly amplified the concentration-dependent (10(-7)-10(-5) M) skin vasoconstrictor effect of norepinephrine. More importantly, we observed for the first time that this low concentration of ET-1 also amplified the concentration-dependent (10(-8)-10(-6) M) skin vasoconstrictor effect of the thromboxane A(2) mimetic U-46619, and this amplification effect of ET-1 was completely blocked by the protein kinase C (PKC) inhibitor chelerythrine (5 x 10(-6) M). Conversely, the PKC activator phorbol 12,13-dibutyrate (10(-7) M) amplified the vasoconstrictor effect of U-46619. Furthermore, the sensitivity of the skin vasculature to the vasoconstrictor effect of extracellular Ca(2+) in U-46619-induced skin vasoconstriction was significantly enhanced in the presence of 8 x 10(-10) M ET-1. Finally, the cyclooxygenase inhibitor indomethacin (5 x 10(-6) M) did not affect the amplification effect of ET-1 on U-46619-induced skin vasoconstriction. We conclude that a low concentration of ET-1 can amplify the skin vasoconstrictor effect of U-46619 independent of endogenous cyclooxygenase products, and the mechanism may involve activation of PKC and increase in sensitivity of the contractile apparatus to Ca(2+) in smooth muscle cells.  相似文献   

18.
A novel inexpensive and simple amperometric biosensor, based on the immobilization of HRP into redox active [Zn-Cr-ABTS] layered double hydroxide, is applied to the determination of cyanide. The electrochemical transduction step corresponds to the reduction at 0.0 V of ABTS+* enzymatically formed in the presence of H2O2. The biosensor has a fast response to H2O2 (8s) with a linear range of 1.7 x 10(-9) to 2.1 x 10(-6) M and a sensitivity of 875 mA M(-1) cm(-2). The apparent Michaelis-Menten constant (KMapp) is 12 microM. The detection of cyanide is performed via its non competitive inhibiting action on the HRP/[Zn-Cr-ABTS] electrode. The concentration range of the linear response and the apparent inhibition constant (ki) are 5 x 10(-9) to 4 x 10(-8) and 1.4 x 10 (-7) M, respectively.  相似文献   

19.
We are reporting fabrication and characterization of electrochemical sucrose biosensor using ultra-microelectrode (UME) for the detection of heavy metal ions (Hg(II), Ag(I), Pb(II) and Cd(II)). The working UME, with 25 microm diameter, was modified with invertase (INV, EC: 3.2.1.26) and glucose oxidase (GOD, EC: 1.1.3.4) entrapped in agarose-guar gum. The hydrophilic character of the agarose-guar gum composite matrix was checked by water contact angle measurement. The atomic force microscopy (AFM) images of the membranes showed proper confinement of both the enzymes during co-immobilization. The dynamic range for sucrose biosensor was achieved in the range of 1 x 10(-10) to 1 x 10(-7)M with lower detection limit 1 x 10(-10)M at pH 5.5 with 9 cycles of reuse. The spectrophotometric and electrochemical studies showed linear relationship between concentration of heavy metal ions and degree of inhibition of invertase. The toxicity sequence for invertase using both methods was observed as Hg(2+)>Pb(2+)>Ag(+)>Cd(2+). The dynamic linear range for mercury using electrochemical biosensor was observed in the range of 5 x 10(-10) to 12.5 x 10(-10)M for sucrose. The lower detection limit for the fabricated biosensor was found to be 5 x 10(-10)M. The reliability of the electrochemical biosensor was conformed by testing the spike samples and the results were comparable with the conventional photometric DNSA method.  相似文献   

20.
一氧化氮的释放对海马脑片CA1区痫样放电的影响   总被引:4,自引:0,他引:4  
Lu W  Chen G  Cheng JS 《生理学报》1998,50(5):507-513
用自制的一氧化氮(NO)敏感电极-Nafion-壳聚糖合镍修饰铂电极(Nafion-CTS(Ni)-Pt)连续测定了青霉素致痫海马脑片CA1区锥体层神经元NO的释放,并同时观察了NO合酶抑制剂7-nitro-indazole(7-NI)及N^ω-nitro-L-arginine(L-NNA)对诱发痫波及NO释放量的影响。研究观察到:(1)在青霉素致痫脑片模型上,诱发的痫波随青霉素浓度的增加而增多,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号