首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We previously reported that infection with the periodontopathic bacterium Actinobacillus actinomycetemcomitans induced apoptosis in a mouse macrophage cell line J774.1. In the present study, we examined the involvement of cytochrome c and caspases in the induction of apoptosis in A. actinomycetemcomitans-infected J774.1 cells. Following infection, the expression levels of cytochrome c, and cleaved forms of caspase-3 and caspase-9 in the cells were examined using immunoblot analysis. Cytochrome c was released from mitochondria into the cytoplasm after A. actinomycetemcomitans-infected J774.1 cells were cultured for 6 h, and caspase-3 and caspase-9 were found to be cleaved forms in the cells. Further, caspase-9 activity was markedly increased, and phosphorylated p53 was detected in the cells 30 h following infection. These results suggest that apoptosis in A. actinomycetemcomitans-infected J774.1 cells is regulated by the release of cytochrome c from mitochondria into cytoplasm and the subsequent activation of caspases through phosphorylation of p53.  相似文献   

2.
HSP27 inhibits cytochrome c-dependent activation of procaspase-9.   总被引:25,自引:0,他引:25  
We have previously shown that the small heat shock protein HSP27 inhibited apoptotic pathways triggered by a variety of stimuli in mammalian cells. The present study demonstrates that HSP27 overexpression decreases U937 human leukemic cell sensitivity to etoposide-induced cytotoxicity by preventing apoptosis. As observed for Bcl-2, HSP27 overexpression delays poly(ADP-ribose)polymerase cleavage and procaspase-3 activation. In contrast with Bcl-2, HSP27 overexpression does not prevent etoposide-induced cytochrome c release from the mitochondria. In a cell-free system, addition of cytochrome c and dATP to cytosolic extracts from untreated cells induces the proteolytic activation of procaspase-3 in both control and bcl-2-transfected U937 cells but fails to activate procaspase-3 in HSP27-overexpressing cells. Immunodepletion of HSP27 from cytosolic extracts increases cytochrome c/dATP-mediated activation of procaspase-3. Overexpression of HSP27 also prevents procaspase-9 activation. In the cell-free system, immunodepletion of HSP27 increases LEDH-AFC peptide cleavage activity triggered by cytochrome c/dATP treatment. We conclude that HSP27 inhibits etoposide-induced apoptosis by preventing cytochrome c and dATP-triggered activity of caspase-9, downstream of cytochrome c release.  相似文献   

3.
Heat shock proteins (HSPs) play important roles in cellular stress resistance. Previous reports had already suggested that HSP27 played multiple roles in preventing doxorubicin-induced cardiotoxicity. Although HSP25 might have biological functions similar to its human homolog HSP27, the mechanism of HSP25 is still unclear in doxorubicin-induced cardiomyocyte apoptosis. To investigate HSP25 biological function on doxorubicin-induced apoptosis, flow cytometry was employed to analyze cell apoptosis in over-expressing HSP25 H9c2 cells in presence of doxorubicin. Unexpectedly, the H9c2 cells of over-expressing HSP25 have no protective effect on doxorubicin-induced apoptosis. Moreover, no detectable interactions were detected by coimmunoprecipitation between HSP25 and cytochrome c, and HSP25 over-expression failed in preventing cytochrome c release induced by doxorubicin. However, down-regulation of endogenous HSP25 by a specific small hairpin RNA aggravates apoptosis in H9c2 cells. Subsequent studies found that HSP25, but not HSP90, HSP70, and HSP20, interacted with SIRT1. Knockdown of HSP25 decreased the interaction between SIRT1 and p53, leading to increased p53 acetylation on K379, up-regulated pro-apoptotic Bax protein expression, induced cytochrome c release, and triggered caspase-3 and caspase-9 activation. These findings indicated a novel mechanism by which HSP25 regulated p53 acetylation through dissociation of SIRT1 from p53 in doxorubicin-induced H9c2 cell apoptosis.  相似文献   

4.
K Liu  D Shu  N Song  Z Gai  Y Yuan  J Li  M Li  S Guo  J Peng  H Hong 《PloS one》2012,7(8):e40877
There are conflicting reports on the role of cytochrome c during insect apoptosis. Our previous studies have showed that cytochrome c released from the mitochondria was an early event by western blot analysis and caspase-3 activation was closely related to cytochrome c release during apoptosis induced by baculovirus in Spodoptera litura cells (Sl-1 cell line). In the present study, alteration in mitochondrial morphology was observed by transmission electron microscopy, and cytochrome c release from mitochondria in apoptotic Sl-1 cells induced with Anagrapha falcifera multiple nuclear polyhedrosis virus (AfMNPV) has further been confirmed by immunofluoresence staining protocol, suggesting that structural disruption of mitochondria and the release of cytochrome c are important events during Lepidoptera insect cell apoptosis. We also used Sl-1 cell-free extract system and the technique of RNA interference to further investigate the role of cytochrome c in apoptotic Sl-1 cells induced by AfMNPV. Caspase-3 activity in cell- free extracts supplemented with exogenous cytochrome c was determined and showed an increase with the extension of incubation time. DsRNA-mediated silencing of cytochrome c resulted in the inhibition of apoptosis and protected the cells from AfMNPV-induced cell death. Silencing of expression of cytochrome c had a remarkable effect on pro-caspase-3 and pro-caspase-9 activation and resulted in the reduction of caspase-3 and caspase-9 activity in Sl-1 cells undergoing apoptosis. Caspase-9 inhibitor could inhibit activation of pro-caspase-3, and the inhibition of the function of Apaf-1 with FSBA blocked apoptosis, hinting that Apaf-1 could be involved in Sl-1 cell apoptosis induced by AfMNPV. Taken together, these results strongly demonstrate that cytochrome c plays an important role in apoptotic signaling pathways in Lepidopteran insect cells.  相似文献   

5.
We have recently shown that nitric-oxide (NO)-induced apoptosis in Jurkat human leukemia cells requires degradation of mitochondria phospholipid cardiolipin, cytochrome c release, and activation of caspase-9 and caspase-3. Moreover, an inhibitor of lipid peroxidation, Trolox, suppressed apoptosis in Jurkat cells induced by NO donor glycerol trinitrate. Here we demonstrate that this antiapoptotic effect of Trolox occurred despite massive release of the mitochondrial protein cytochrome c into the cytosol and mitochondrial damage. Incubation with Trolox caused a profound reduction of intracellular ATP concentration in Jurkat cells treated by NO. Trolox prevented cardiolipin degradation and caused its accumulation in Jurkat cells. Furthermore, Trolox markedly downregulated the NO-mediated activation of caspase-9 and caspase-3. Caspase-9 is known to be activated by released cytochrome c and together with caspase-3 is considered the most proximal to mitochondria. Our results suggest that the targets of the antiapoptotic effect of Trolox are located downstream of the mitochondria and that caspase activation and subsequent apoptosis could be blocked even in the presence of cytochrome c released from the mitochondria.  相似文献   

6.
Nitrosylation of cytochrome c during apoptosis   总被引:7,自引:0,他引:7  
Cytochrome c released from mitochondria into the cytoplasm plays a critical role in many forms of apoptosis by stimulating apoptosome formation and subsequent caspase activation. However, the mechanisms regulating cytochrome c apoptotic activity are not understood. Here we demonstrate that cytochrome c is nitrosylated on its heme iron during apoptosis. Nitrosylated cytochrome c is found predominantly in the cytoplasm in control cells. In contrast, when cytochrome c release from mitochondria is inhibited by overexpression of the anti-apoptotic proteins B cell lymphoma/leukemia (Bcl)-2 or Bcl-X(L), nitrosylated cytochrome c is found in the mitochondria. These data suggest that during apoptosis, cytochrome c is nitrosylated in mitochondria and then rapidly released into the cytoplasm in the absence of Bcl-2 or Bcl-X(L) overexpression. In vitro nitrosylation of cytochrome c increases caspase-3 activation in cell lysates. Moreover, the inhibition of intracellular cytochrome c nitrosylation is associated with a decrease in apoptosis, suggesting that cytochrome c nitrosylation is a proapoptotic modification. We conclude that nitrosylation of the heme iron of cytochrome c may be a novel mechanism of apoptosis regulation.  相似文献   

7.
线粒体途径是细胞凋亡的重要途径之一. 在特定的刺激下,例如高糖条件,可以通过caspase依赖性和非依赖性两种途径诱导多种细胞凋亡.但线粒体凋亡途径在高糖引起成骨细胞凋亡中所起的作用,目前尚不清楚.本研究证明,高糖可以通过线粒体凋亡途径诱导成骨细胞凋亡.Annexin V-FITC/PI流式细胞学检测显示,高糖可诱导MC3T3-E1细胞凋亡.Western印迹检测发现,不同浓度D-葡萄糖(11,22,33 mmol/L)可以引起线粒体中Bax蛋白表达的增加,使Bax蛋白由细胞质中易位到线粒体,激活了线粒体凋亡途径.JC-1荧光探针检测证实,高糖处理成骨细胞后,线粒体膜电位明显降低,表明线粒体途径被激活.而细胞质中的细胞色素c、凋亡诱导因子(AIF)表达增加,细胞色素c和AIF从线粒体中释放到细胞质中,释放到细胞质中的细胞色素c使caspase-3、caspase-9剪切活化,从而激活了caspase依赖性凋亡途径.因此,线粒体凋亡途径可能是高糖诱导成骨细胞凋亡过程中一个重要的途径.  相似文献   

8.
Heat shock protein 70 (HSP70) has been shown to act as an inhibitor of apoptosis. We have also observed an inhibitory effect of HSP70 on apoptotic cell death both in preheated U937 and stably transfected HSP70-overexpressing U937 (U937/HSP70) cells. However, the molecular mechanism whereby HSP70 prevents apoptosis still remains to be solved. To address this issue, we investigated the effect of HSP70 on apoptotic processes in an in vitro system. Caspase-3 cleavage and DNA fragmentation were detected in cytosolic fractions from normal cells upon addition of dATP, but not from preheated U937 or U937/hsp70 cells. Moreover, the addition of purified recombinant HSP70 to normal cytosolic fractions prevented caspase-3 cleavage and DNA fragmentation, suggesting that HSP70 prevents apoptosis upstream of caspase-3 processing. Because cytochrome c was still released from mitochondria into the cytosol by lethal heat shock despite prevention of caspase-3 activation and cell death in both preheated U937 and U937/hsp70 cells, it was evident that HSP70 acts downstream of cytochrome c release. Results obtained in vitro with purified deletion mutants of HSP70 showed that the carboxyl one-third region (from amino acids 438 to 641) including the peptide-binding domain and the carboxyl-terminal EEVD sequence was essential to prevent caspase-3 processing. From these results, we conclude that HSP70 acts as a strong suppressor of apoptosis acting downstream of cytochrome c release and upstream of caspase-3 activation.  相似文献   

9.
The Golgi apparatus is important for the transport of secretory cargo. Glycosylation is a major post-translational event. Recognition of O-glycans on proteins is necessary for glycoprotein trafficking. In this study, specific inhibition of O-glycosylation (Golgi stress) induced the expression of endoplasmic reticulum (ER)-resident heat shock protein (HSP) 47 in NIH3T3 cells, although cell death was not induced by Golgi stress alone. When HSP47 expression was downregulated by siRNA, inhibition of O-glycosylation caused cell death. Three days after the induction of Golgi stress, the Golgi apparatus was disassembled, many vacuoles appeared near the Golgi apparatus and extended into the cytoplasm, the nuclei had split, and cell death assay-positive cells appeared. Six hours after the induction of Golgi stress, HSP47-knockdown cells exhibited increased cleavage of Golgi-resident caspase-2. Furthermore, activation of mitochondrial caspase-9 and ER-resident unfolded protein response (UPR)-related molecules and efflux of cytochrome c from the mitochondria to the cytoplasm was observed in HSP47-knockdown cells 24 h after the induction of Golgi stress. These findings indicate that (i) the ER-resident chaperon HSP47 protected cells from Golgi stress, and (ii) Golgi stress-induced cell death caused by the inhibition of HSP47 expression resulted from caspase-2 activation in the Golgi apparatus, extending to the ER and mitochondria.  相似文献   

10.
We have shown previously that depletion of polyamines delays apoptosis induced by camptothecin in rat intestinal epithelial cells (IEC-6). Mitochondria play an important role in the regulation of apoptosis in mammalian cells because apoptotic signals induce mitochondria to release cytochrome c. The latter interacts with Apaf-1 to activate caspase-9, which in turn activates downstream caspase-3. Bcl-2 family proteins are involved in the regulation of cytochrome c release from mitochondria. In this study, we examined the effects of polyamine depletion on the activation of the caspase cascade, release of cytochrome c from mitochondria, and expression and translocation of Bcl-2 family proteins. We inhibited ornithine decarboxylase, the first rate-limiting enzyme in polyamine synthesis, with alpha-difluoromethylornithine (DFMO) to deplete cells of polyamines. Depletion of polyamines prevented camptothecin-induced release of cytochrome c from mitochondria and decreased the activity of caspase-9 and caspase-3. The mitochondrial membrane potential was not disrupted when cytochrome c was released. Depletion of polyamines decreased translocation of Bax to mitochondria during apoptosis. The expression of antiapoptotic proteins Bcl-x(L) and Bcl-2 was increased in DFMO-treated cells. Caspase-8 activity and cleavage of Bid were decreased in cells depleted of polyamines. These results suggest that polyamine depletion prevents IEC-6 cells from apoptosis by preventing the translocation of Bax to mitochondria, thus preventing the release of cytochrome c.  相似文献   

11.
Ouabain is Na(+)/K(+)-ATPase inhibitor and an endogenous regulator of blood pressure, it has dual effect on vascular endothelial cells(VEC) cell growth and VEC apoptosis is contributed to vascular dysfunction involved in vascular remolding. However, the precise mechanisms of apoptosis induced by ouabain remained unclear. The objective of this study was to identify the differently expressed proteins involved in VEC apoptosis induced by ouabain in order to explore cellular and subcellular mechanisms related to ouabain actions. Human umbilical vein endothelial cells (HUVEC) were exposed to increasing concentrations (0.1 nM to 10 microM) of ouabain at 12-48 h intervals. Cell viability tests revealed that high concentrations of ouabain inhibited cell growth. Flow cytometry and caspase-3 activity analysis confirmed that apoptosis was primarily responsible for ouabain induced cell death. Two-dimensional electrophoresis in conjunction with mass spectrometry revealed that the ouabain-induced apoptosis was accompanied by regulated expression of programmed cell death protein 6, cytochrome C1, endothelin converting enzyme, claudin-1, reticulon-4, galectin-1, ras-related protein rab-11B, calnexin, profilin-1 and heat shock protein 60 (HSP60). Further study on cytochrome c and HSP60 demonstrated that levels of mitochondria and cytosol cytochrome c and HSP60 changed in response to ouabain treatment. Data showed that mitochondria proteins such as HSP60 interferes with HSP60-Bax interactions played an important role in ouabain induced apoptosis. These data bring new sights into physiological role for ouabain in VEC apoptosis and vascular remodeling, thus provide new strategies for new anti-cardiovascular disease drug development or the identification of biomarkers for vascular dysfunction in ouabain related hypertension.  相似文献   

12.
Smac (second mitochondrial activator of caspases) is released from the mitochondria during apoptosis to relieve inhibition of caspases by the inhibitor of apoptosis proteins (IAPs). The release of Smac antagonizes several IAPs and assists the initiator caspase-9 and effector caspases (caspase-3, caspase-6, and caspase-7) in becoming active, ultimately leading to death of the cell. Translocation of Smac along with cytochrome c and other mitochondrial pro-apoptotic proteins represent important regulatory checkpoints for mitochondria-mediated apoptosis. Whether Smac and cytochrome c translocate by the same mechanism is not known. Here, we show that the time required for Smac efflux from the mitochondria of cells subjected to staurosporine-induced apoptosis is approximately four times longer than the time required for cytochrome c efflux. These results suggest that Smac and cytochrome c may exit the mitochondria by different pathways.  相似文献   

13.
Hsp105 (Hsp105alpha and Hsp105beta), major heat shock proteins in mammalian cells, belong to a subgroup of the HSP70 family, HSP105/110. Previously, we have shown that Hsp105alpha has completely different effects on stress-induced apoptosis depending on cell type. However, the molecular mechanisms by which Hsp105alpha regulates stress-induced apoptosis are not fully understood. Here, we established HeLa cells that overexpress either Hsp105alpha or Hsp105beta by removing doxycycline and examined how Hsp105 modifies staurosporine (STS)-induced apoptosis in HeLa cells. Apoptotic features such as the externalization of phosphatidylserine on the plasma membrane and nuclear morphological changes were induced by the treatment with STS, and the STS-induced apoptosis was suppressed by overexpression of Hsp105alpha or Hsp105beta. In addition, we found that overexpression of Hsp105alpha or Hsp105beta suppressed the activation of caspase-3 and caspase-9 by preventing the release of cytochrome c from mitochondria. Furthermore, the translocation of Bax to mitochondria, which results in the release of cytochrome c from the mitochondria, was also suppressed by the overexpression of Hsp105alpha or Hsp105beta. Thus, it is suggested that Hsp105 suppresses the stress-induced apoptosis at its initial step, the translocation of Bax to mitochondria in HeLa cells.  相似文献   

14.
The importance of the mitochondria in UV-induced apoptosis has become increasingly apparent. Following DNA damage cytochrome c and other pro-apoptotic factors are released from the mitochondria, allowing for formation of the apoptosome and subsequent cleavage and activation of caspase-9. Active caspase-9 then activates downstream caspases-3 and/or -7, which in turn cleave poly(ADP)-ribose polymerase (PARP) and other down-stream targets, resulting in apoptosis. In an effort to understand the mechanisms of Akt-mediated cell survival in breast cancer, we studied the effects of insulin-like growth factor (IGF)-I treatment on UV-treated MCF-7 human breast cancer cells. Apoptosis was induced in MCF-7 cells after UV treatment, as measured by caspase-7 and PARP cleavage, and IGF-I co-treatment protected against this response. Surprisingly caspase-9 cleavage was unchanged with UV and/or IGF-I treatment. Using MCF-7 cells overexpressing caspase-3 we have shown that resistance of caspase-9 to cleavage was not altered by the expression of caspase-3. Furthermore, overexpression of caspase-9 did not enhance PARP or caspase-7 cleavage after UV treatment. Because caspase-8 was activated with UV treatment alone, we believe that UV-induced apoptosis in MCF-7 cells occurs independently of cytochrome c and caspase-9, supporting the existence of a cytoplasmic inhibitor of cytochrome c in MCF-7 cells. We anticipate that such inhibitors may be overexpressed in cancer cells, allowing for treatment resistance.  相似文献   

15.
Apo cytochrome c inhibits caspases by preventing apoptosome formation   总被引:2,自引:0,他引:2  
Caspases are cysteine proteases and potent inducers of apoptosis. Their activation and activity is therefore tightly regulated. There are several mechanisms by which caspases can be activated but one key pathway involves release of holo cytochrome c from mitochondria into the cytoplasm. Cytoplasmic holo cytochrome c binds to apoptotic protease activating factor-1 (Apaf-1), driving the formation of an Apaf-1 oligomer (the apoptosome) which in turn binds and activates caspase-9. Previously we showed that the apo form of cytochrome c (lacking heme) can bind Apaf-1 and block both holo-dependent caspase activation in cell extracts and Bax-induced apoptosis in cells. Here we tested the ability of apo cytochrome c to inhibit caspase-9 activation induced by recombinant Apaf-1. Furthermore, using purified proteins and size exclusion chromatography we show that apo cytochrome c prevents holo cytochrome c-dependent apoptosome formation.  相似文献   

16.
TNFalpha-related apoptosis inducing ligand (TRAIL) has been shown to induce apoptosis in prostate cancer cells. However, some prostate cancer cells, such as LNCaP are resistant to TRAIL. In addition to the involvement of several pathways in the TRAIL-resistance of LNCaP, it has been shown that mitochondrial response to TRIAL is low in these cells. Therefore, in this study, using in vitro cell free and reconstitution models, we have demonstrated that mitochondria from these cells are capable of responding to apoptotic stimuli. Furthermore, experiments to determine the influence of cytochrome c on apoptotic response noted that incubation of cytosol with exogenous cytochrome c induced truncation of Bid. We have demonstrated that truncation of Bid by exogenous cytochrome c is mediated through the activation of caspases-9 and -3. Incubation of cytosol with recombinant caspases-9 and -3 in the absence or presence of inhibitors showed that activation of caspase-9, leading to the activation of caspase-3 was necessary for the truncation of Bid. Published results indicate that in apoptotic cells cytochrome c is released from the mitochondria in two installments, an early small amount and a late larger amount. Our results suggest that the initial release of cytochrome generates tBid that is capable of translocation into the mitochondria causing further release of cytochrome c. Thus, in addition to providing functional explanation for the biphasic release of cytochrome c from mitochondria, we demonstrate the presence of a feedback amplification of mitochondrial apoptotic signal.  相似文献   

17.
ASK1 activates JNK and p38 mitogen-activated protein kinases and constitutes a pivotal signaling pathway in cytokine- and stress-induced apoptosis. However, little is known about the mechanism of how ASK1 executes apoptosis. Here we investigated the roles of caspases and mitochondria in ASK1-induced apoptosis. We found that benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (zVAD-fmk), a broad-spectrum caspase inhibitor, mostly inhibited ASK1-induced cell death, suggesting that caspases are required for ASK1-induced apoptosis. Overexpression of ASK1DeltaN, a constitutively active mutant of ASK1, induced cytochrome c release from mitochondria and activation of caspase-9 and caspase-3 but not of caspase-8-like proteases. Consistently, caspase-8-deficient (Casp8 (-/-)) cells were sensitive to ASK1-induced caspase-3 activation and apoptosis, suggesting that caspase-8 is dispensable for ASK1-induced apoptosis, whereas ASK1 failed to activate caspase-3 in caspase-9-dificient (Casp9 (-/-)) cells. Moreover, mitochondrial cytochrome c release, which was not inhibited by zVAD-fmk, preceded the onset of caspase-3 activation and cell death induced by ASK1. ASK1 thus appears to execute apoptosis mainly by the mitochondria-dependent caspase activation.  相似文献   

18.
We investigated the apoptotic pathway activated by crambene (1-cyano-2-hydroxy-3-butene), a plant nitrile, on pancreatic acinar cells. As evidenced by annexin V-FITC staining, crambene treatment for 3 h induced the apoptosis but not necrosis of pancreatic acini. Caspase-3, -8, and -9 activities in acini treated with crambene were significantly higher than in untreated acini. Treatment with caspase-3, -8, and -9 inhibitors inhibited annexin V staining, as well as caspase-3 activity, pointing to an important role of these caspases in crambene-induced acinar cell apoptosis. The mitochondrial membrane potential was collapsed, and cytochrome c was released from the mitochondria in crambene-treated acini. Neither TNF-alpha nor Fas ligand levels were changed in pancreatic acinar cells after crambene treatment. These results provide evidence for the induction of pancreatic acinar cell apoptosis in vitro by crambene and suggest the involvement of mitochondrial pathway in pancreatic acinar cell apoptosis.  相似文献   

19.
Smac/DIABLO was recently identified as a protein released from mitochondria in response to apoptotic stimuli which promotes apoptosis by antagonizing inhibitors of apoptosis proteins. Furthermore, Smac/DIABLO plays an important regulatory role in the sensitization of cancer cells to both immune-and drug-induced apoptosis. However, little is known about the role of Smac/DIABLO in hydrogen peroxide (H(2)O(2))-induced apoptosis of C2C12 myogenic cells. In this study, Hoechst 33258 staining was used to examine cell morphological changes and to quantitate apoptotic nuclei. DNA fragmentation was observed by agarose gel electrophoresis. Intracellular translocation of Smac/DIABLO from mitochondria to the cytoplasm was observed by Western blotting. Activities of caspase-3 and caspase-9 were assayed by colorimetry and Western blotting. Full-length Smac/DIABLO cDNA and antisense phosphorothioate oligonucleotides against Smac/DIABLO were transiently transfected into C2C12 myogenic cells and Smac/DIABLO protein levels were analyzed by Western blotting. The results showed that: (1) H(2)O(2) (0.5 mmol/L) resulted in a marked release of Smac/DIABLO from mitochondria to cytoplasm 1 h after treatment, activation of caspase-3 and caspase-9 4 h after treatment, and specific morphological changes of apoptosis 24 h after treatment; (2) overexpression of Smac/DIABLO in C2C12 cells significantly enhanced H(2)O(2)-induced apoptosis and the activation of caspase-3 and caspase-9 (P<0.05). (3) Antisense phosphorothioate oligonucleotides against Smac/DIABLO markedly inhibited de novo synthesis of Smac/DIABLO and this effect was accompanied by decreased apoptosis and activation of caspase-3 and caspase-9 induced by H(2)O(2) (P<0.05). These data demonstrate that H(2)O(2) could result in apoptosis of C2C12 myogenic cells, and that release of Smac/DIABLO from mitochondria to cytoplasm and the subsequent activation of caspase-9 and caspase-3 played important roles in H(2)O(2)-induced apoptosis in C2C12 myogenic cells.  相似文献   

20.
Kim HE  Jiang X  Du F  Wang X 《Molecular cell》2008,30(2):239-247
During apoptosis, cytochrome c is released from mitochondria to the cytosol, where it binds Apaf-1. The Apaf-1/cytochrome c complex then oligomerizes either into heptameric caspase-9-activating apoptosome, which subsequently activates caspase-3 and caspase-7, or bigger inactive aggregates, depending on the availability of nucleotide dATP/ATP. A tumor suppressor protein, PHAPI, enhances caspase-9 activation by promoting apoptosome formation through an unknown mechanism. We report here the identification of cellular apoptosis susceptibility protein (CAS) and heat shock protein 70 (Hsp70) as mediators of PHAPI activity. PHAPI, CAS, and Hsp70 function together to accelerate nucleotide exchange on Apaf-1 and prevent inactive Apaf-1/cytochrome c aggregation. CAS expression is induced by multiple apoptotic stimuli including UV irradiation. Knockdown of CAS by RNA interference (RNAi) in cells attenuates apoptosis induced by UV light and causes endogenous Apaf-1 to form aggregates. These studies indicated that PHAPI, CAS, and Hsp70 play an important regulatory role during apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号