首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M Costa  M Weir  A Coulson  J Sulston  C Kenyon 《Cell》1988,55(5):747-756
During postembryonic development in C. elegans, posterior-specific pattern formation requires the gene mab-5. Within the posterior body region, mab-5 activity controls epidermal, neuronal, and mesodermal cell differentiation, and also the direction of cell migration. Here, we show that mab-5 RNA is localized in the posterior body region, indicating that mab-5 activity is targeted to posterior cells, at least in part, by a mechanism that operates at the level of mab-5 RNA synthesis or stabilization. We also show that mab-5 contains a homeobox similar to that of the Drosophila Antennapedia gene. This suggests that mab-5 influences cell differentiation and cell migration by regulating gene expression, and clearly demonstrates that genes containing homeoboxes influence global aspects of pattern formation in organisms other than Drosophila.  相似文献   

2.
3.
The Caenorhabditis elegans lin-39, mab-5 and egl-5 Hox genes specify cell fates along the anterior-posterior body axis of the nematode during postembryonic development, but little is known about Hox gene functions during embryogenesis. Here, we show that the C. elegans labial-like gene ceh-13 is expressed in cells of many different tissues and lineages and that the rostral boundary of its expression domain is anterior to those of the other Hox genes. By transposon-mediated mutagenesis, we isolated a zygotic recessive ceh-13 loss-of-function allele, sw1, that exhibits an embryonic sublethal phenotype. Lineage analyses and immunostainings revealed defects in the organization of the anterior lateral epidermis and anterior body wall muscle cells. The epidermal and mesodermal identity of these cells, however, is correctly specified. ceh-13(sw1) mutant embryos also show fusion and adhesion defects in ectodermal cells. This suggests that ceh-13 plays a role in the anterior organization of the C. elegans embryo and is involved in the regulation of cell affinities.  相似文献   

4.
5.
Mutations at the folded gastrulation (fog) and twisted gastrulation (tsg) loci interfere with early morphogenetic movements in Drosophila melanogaster. fog embryos do not form a normal posterior midgut and although their germbands do elongate, they do not extend dorsally. As a result, when normal embryos have fully extended germbands, the germbands in mutant embryos are folded into the interior on the ventral side of the embryo. tsg embryos have abnormally deep dorsal folds during early gastrulation, associated with the failure of dorsal cells to slip laterally to make way for the expanding germband. Both fog and tsg embryos continue to develop, but form disorganized first instar larvae. fog and tsg are zygotically active genes expressed at least by 10 and 20 min after the onset of gastrulation. Both mutations are viable in homozygous germ cells and the wild-type genes need not be expressed during oogenesis for survival of heterozygous progeny. Elimination of fog+ gene product from maternal germ cells does, however, affect the extent of folding observed during gastrulation in viable heterozygotes. Analysis of fog adult and larval gynandromorphs indicates that normal folded gastrulation gene function is only required at the posterior region of the embryo, most probably in the cells giving rise to the posterior midgut or proctodeum. The relative survival of fog mosaics suggests that embryos with mosaic "lethal foci" also die during embryogenesis, although the typical fog phenotype is only produced when the entire focus is mutant. In contrast to the fog focus, no particular cell must be wild type in tsg mosaics for survival. Wild-type cells on the dorsal side of the embryo, however, are most effective in rescuing the embryo. This indicates that normal tsg gene product may be required only on the dorsal side of the embryo, potentially in the region which gives rise to the amnion serosa.  相似文献   

6.
7.
8.
M Hoch  C Schrder  E Seifert    H Jckle 《The EMBO journal》1990,9(8):2587-2595
Krüppel (Kr), a gap gene of Drosophila, shows complex spatial patterns of expression during the different stages of embryogenesis. In order to identify cis-acting sequences required for normal Kr gene expression, we analysed the expression patterns of fusion gene constructs in transgenic embryos. In these constructs, bacterial lacZ expression was placed under the control of Kr sequences in front of a basal promoter. We identified cis-acting Kr control units which drive beta-galactosidase expression in 10 known locations of Kr expression in early and late embryos. More than one cis-regulatory element drives the expression in the anterior domain at the blastoderm stage, in the nervous system, the midline precursor cells and in the amino-serosa. In addition, two cis-acting elements direct the first zygotic expression of Kr in a striped subpattern within the central region of the blastoderm embryo. Both elements respond to alterations in the activities of maternal organizer genes known to be required for Kr expression in establishing the thoracic and anterior abdominal segments in the wild-type embryo.  相似文献   

9.
10.
X Lin  G J Hwang    J L Zimmerman 《Plant physiology》1996,112(3):1365-1374
The early events in plant embryogenesis are critical for pattern formation, since it is during this process that the primary apical meristems and the embryo polarity axis are established. However, little is known about the molecular events that are unique to the early stages of embryogenesis. This study of gene expression during plant embryogenesis is focused on identifying molecular markers from carrot (Daucus carota) somatic embryos and characterizing the expression and regulation of these genes through embryo development. A cDNA library, prepared from polysomal mRNA of globular embryos, was screened using a subtracted probe; 49 clones were isolated and preliminarily characterized. Sequence analysis revealed a large set of genes, including many new genes, that are expressed in a variety of patterns during embryogenesis and may be regulated by different molecular mechanisms. To our knowledge, this group of clones represents the largest collection of embryo-enhanced genes isolated thus far, and demonstrates the utility of the subtracted-probe approach to the somatic embryo system. It is anticipated that many of these genes may serve as useful molecular markers for early embryo development.  相似文献   

11.
Drosophila segmentation is governed by a well-defined gene regulation network. The evolution of this network was investigated by examining the expression profiles of a complete set of segmentation genes in the early embryos of the mosquito, Anopheles gambiae. There are numerous differences in the expression profiles as compared with Drosophila. The germline determinant Oskar is expressed in both the anterior and posterior poles of Anopheles embryos but is strictly localized within the posterior plasm of Drosophila. The gap genes hunchback and giant display inverted patterns of expression in posterior regions of Anopheles embryos, while tailless exhibits an expanded pattern as compared with Drosophila. These observations suggest that the segmentation network has undergone considerable evolutionary change in the dipterans and that similar patterns of pair-rule gene expression can be obtained with different combinations of gap repressors. We discuss the evolution of separate stripe enhancers in the eve loci of different dipterans.  相似文献   

12.
13.
Seeds of the longcell mutant in maize (Zea mays L) have a defective-kernel phenotype: the embryo aborts at the early coleoptilar stage and the endosperm is reduced in size. Mutant embryos have severe alterations in morphogenesis. They have a suspensor-, an embryo axis- and a scutellum-like structure, but the shoot apical meristem (SAM) is not formed. Scanning electron microscopy showed that most of the cells in longcell embryos are tubular and abnormally enlarged. The level of expression of several genes involved in basic metabolism is not severely affected during early and mid embryogenesis, but storage molecule accumulation is reduced. Genes which in normal conditions are only expressed after germination, are expressed during kernel development in the longcell seeds. Mutant embryos undergo cell death in late embryogenesis. Nuclei in dying embryos are TUNEL positive, and different genes coding for hydrolytic enzymes are up-regulated. The expression of genes related to oxidative stress is also altered in longcell embryos. These results lead us to suggest that the longcell mutant may be cytokinesis-defective.  相似文献   

14.
15.
16.
Wang W  Cronmiller C  Brautigan DL 《Genetics》2008,179(4):1823-1833
Protein phosphatase-1 (PP1) is a major Ser/Thr phosphatase conserved among all eukaryotes, present as the essential GLC7 gene in yeast. Inhibitor-2 (I-2) is an ancient PP1 regulator, named GLC8 in yeast, but its in vivo function is unknown. Unlike mammals with multiple I-2 genes, in Drosophila there is a single I-2 gene, and here we describe its maternally derived expression and required function during embryogenesis. During oogenesis, germline expression of I-2 results in the accumulation of RNA and abundant protein in unfertilized eggs; in embryos, the endogenous I-2 protein concentrates around condensed chromosomes during mitosis and also surrounds interphase nuclei. An I-2 loss-of-function genotype is associated with a maternal-effect phenotype that results in drastically reduced progeny viability, as measured by reduced embryonic hatch rates and larval lethality. Embryos derived from I-2 mutant mothers show faulty chromosome segregation and loss of mitotic synchrony in cleavage-stage embryos, patchy loss of nuclei in syncytial blastoderms, and cuticular pattern defects in late-stage embryos. Transgenic expression of wild-type I-2 in mutant mothers gives dose-dependent rescue of the maternal effect on embryo hatch rate. We propose that I-2 is required for proper chromosome segregation during Drosophila embryogenesis through the coordinated regulation of PP1 and Aurora B.  相似文献   

17.
18.
19.
20.
Reproduction in flowering plants is characterized by double fertilization and the resulting formation of both the zygotic embryo and the associated endosperm. In many species it is possible to experimentally deviate pollen development towards an embryogenic pathway. This developmental switch, referred to as microspore embryogenesis or androgenesis, leads to the formation of embryos similar to zygotic embryos. In a screen for genes specifically expressed during early androgenesis, two maize genes were isolated by mRNA differential display. Both genes represent new molecular markers expressed at a very young stage of androgenic embryogenesis. When their expression pattern was studied during normal reproductive development, both showed early endosperm-specific expression. Investigation of the cytological features of young androgenic embryos revealed that they present a partially coenocytic organization similar to that of early endosperm. These findings suggest that maize androgenesis may possibly involve both embryogenesis and the establishment of endosperm-like components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号