首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 332 毫秒
1.
Nicotinic acid (niacin) has been used clinically to manage dyslipidemia for many years. The molecular target of nicotinic acid was unknown until the recent revelation of human G-coupled receptor HM74a as the high affinity receptor for nicotinic acid. In searching for a cell line expressing endogenous human HM74a receptor, we have identified that the A431 cell line, a human epidermoid cell line, expresses a high level of HM74a receptor. An HM74a-specific real time PCR probe set was designed and the mRNA levels of HM74a in A431 and 32 other cultured cell lines were measured quantitatively. When the mRNA expression of HM74a in A431 cells was compared to that in human primary preadipocytes, adipocytes and adipose tissue, we found that the level in A431 was about 10- fold higher than that in adipocytes and adipose tissue. The ratio of HM74a:HM74 mRNA was measured quantitatively and it was determined to be 3:2 in A431 cells. The function of the HM74a receptor in A431 cells was evaluated for its ability to inhibit forskolin-induced cAMP production. Pertussis toxin treatment abolished the inhibition. Our data suggest that the A431 cell line may serve as a cellular model for further investigation of niacin/HM74a-mediated signal transduction in modulating metabolism. A431 cell line may also provide a valuable cell model to study prostaglandin production upon HM74a activation to improve our understanding of niacin/HM74a-mediated skin flushing. The first two author contributed equally.  相似文献   

2.
Nicotinic acid has been used clinically for over 40 years in the treatment of dyslipidemia producing a desirable normalization of a range of cardiovascular risk factors, including a marked elevation of high density lipoprotein and a reduction in mortality. The precise mechanism of action of nicotinic acid is unknown, although it is believed that activation of a G(i)-G protein-coupled receptor may contribute. Utilizing available information on the tissue distribution of nicotinic acid receptors, we identified candidate orphan receptors. The selected orphan receptors were screened for responses to nicotinic acid, in an assay for activation of G(i)-G proteins. Here we describe the identification of the G protein-coupled receptor HM74 as a low affinity receptor for nicotinic acid. We then describe the subsequent identification of HM74A in follow-up bioinformatics searches and demonstrate that it acts as a high affinity receptor for nicotinic acid and other compounds with related pharmacology. The discovery of HM74A as a molecular target for nicotinic acid may facilitate the discovery of superior drug molecules to treat dyslipidemia.  相似文献   

3.
Nicotinic acid (niacin), a vitamin of the B complex, has been used for almost 50 years as a lipid-lowering drug. The pharmacological effect of nicotinic acid requires doses that are much higher than those provided by a normal diet. Its primary action is to decrease lipolysis in adipose tissue by inhibiting hormone-sensitive triglyceride lipase. This anti-lipolytic effect of nicotinic acid involves the inhibition of cyclic adenosine monophosphate (cAMP) accumulation in adipose tissue through a G(i)-protein-mediated inhibition of adenylyl cyclase. A G-protein-coupled receptor for nicotinic acid has been proposed in adipocytes. Here, we show that the orphan G-protein-coupled receptor, 'protein upregulated in macrophages by interferon-gamma' (mouse PUMA-G, human HM74), is highly expressed in adipose tissue and is a nicotinic acid receptor. Binding of nicotinic acid to PUMA-G or HM74 results in a G(i)-mediated decrease in cAMP levels. In mice lacking PUMA-G, the nicotinic acid-induced decrease in free fatty acid (FFA) and triglyceride plasma levels was abrogated, indicating that PUMA-G mediates the anti-lipolytic and lipid-lowering effects of nicotinic acid in vivo. The identification of the nicotinic acid receptor may be useful in the development of new drugs to treat dyslipidemia.  相似文献   

4.
As a treatment for dyslipidemia, oral doses of 1-3 grams of nicotinic acid per day lower serum triglycerides, raise high density lipoprotein cholesterol, and reduce mortality from coronary heart disease (Tavintharan, S., and Kashyap, M. L. (2001) Curr. Atheroscler. Rep. 3, 74-82). These benefits likely result from the ability of nicotinic acid to inhibit lipolysis in adipocytes and thereby reduce serum non-esterified fatty acid levels (Carlson, L. A. (1963) Acta Med. Scand. 173, 719-722). In mice, nicotinic acid inhibits lipolysis via PUMA-G, a Gi/o-coupled seven-transmembrane receptor expressed in adipocytes and activated macrophages (Tunaru, S., Kero, J., Schaub, A., Wufka, C., Blaukat, A., Pfeffer, K., and Offermanns, S. (2003) Nat. Med. 9, 352-355). The human ortholog HM74a is also a nicotinic acid receptor and likely has a similar role in anti-lipolysis. Endogenous levels of nicotinic acid are too low to significantly impact receptor activity, hence the natural ligands(s) of HM74a/PUMA-G remain to be elucidated. Here we show that the fatty acid-derived ketone body (D)-beta-hydroxybutyrate ((D)-beta-OHB) specifically activates PUMA-G/HM74a at concentrations observed in serum during fasting. Like nicotinic acid, (D)-beta-OHB inhibits mouse adipocyte lipolysis in a PUMA-G-dependent manner and is thus the first endogenous ligand described for this orphan receptor. These findings suggests a homeostatic mechanism for surviving starvation in which (D)-beta-OHB negatively regulates its own production, thereby preventing ketoacidosis and promoting efficient use of fat stores.  相似文献   

5.
A G-protein coupled receptor to niacin (nicotinic acid) was identified recently but the physiological/pharmacological role of the receptor remains poorly defined. We present our studies to demonstrate that HM74A, but not HM74, binds niacin at high affinities and effectively mediates Gi signaling events in human embryonic kidney HEK293 cells as well as in 3T3L1 adipocytes expressing HM74A. Furthermore, HM74A, but not HM74, expressed in differentiated 3T3L1 adipocytes effectively mediated inhibition of lipolysis by niacin. Our results provided direct evidence indicating that HM74A, but not HM74, was sufficient to mediate anti-lipolytic effect of niacin in adipose tissue.  相似文献   

6.
Nicotinic acid has been used for several decades to treat dyslipidemia. In mice, the lipid-lowing effect of nicotinic acid is mediated by the Gi coupled receptor PUMA-G. In humans, high (GPR109A) and low (GPR109B) affinity nicotinic acid receptors have been characterized. Here we identify monomethylfumarate as a GPR109A agonist. Monomethylfumarate is the active metabolite of the psoriasis drug Fumaderm. We show that monomethylfumarate activates GPR109A in a calcium based aequorin assay, cAMP assay and demonstrate competitive binding with nicotinic acid. We show that GPR109A is highly expressed in neutrophils and epidermal keratinocytes, and that its expression is increased in human psoriatic lesions. Our findings provide evidence that GPR109A is a target for the drug Fumaderm and suggest that niacin should be investigated to treat psoriasis in addition to its role in treating lipid disorders.  相似文献   

7.
HM74A is a G protein-coupled receptor for nicotinic acid (niacin), which has been used clinically to treat dyslipidemia for decades. The molecular mechanisms whereby niacin exerts its pleiotropic effects on lipid metabolism remain largely unknown. In addition, the most common side effect in niacin therapy is skin flushing that is caused by prostaglandin release, suggesting that the phospholipase A(2) (PLA(2))/arachidonic acid (AA) pathway is involved. Various eicosanoids have been shown to activate peroxisome-proliferator activated receptors (PPAR) that play a diverse array of roles in lipid metabolism. To further elucidate the potential roles of HM74A in mediating the therapeutic effects and/or side effects of niacin, we sought to explore the signaling events upon HM74A activation. Here we demonstrated that HM74A synergistically enhanced UTP- and bradykinin-mediated AA release in a pertussis toxin-sensitive manner in A431 cells. Activation of HM74A also led to Ca(2+)-mobilization and enhanced bradykinin-promoted Ca(2+)-mobilization through Gi protein. While HM74A increased ERK1/2 activation by the bradykinin receptor, it had no effects on UTP-promoted ERK1/2 activation.Furthermore, UTP- and bradykinin-mediated AA release was significantly decreased in the presence of both MAPK kinase inhibitor PD 098059 and PKC inhibitor GF 109203X. However, the synergistic effects of HM74A were not dramatically affected by co-treatment with both inhibitors, indicating the cross-talk occurred at the receptor level. Finally, stimulation of A431 cells transiently transfected with PPRE-luciferase with AA significantly induced luciferase activity, mimicking the effects of PPARgamma agonist rosiglitazone, suggesting that alteration of AA signaling pathway can regulate gene expression via endogenous PPARs.  相似文献   

8.
In this study, we present the identification and characterization of hamster and guinea pig nicotinic acid receptors. The hamster receptor shares approximately 80-90% identity with the nucleotide and amino acid sequences of human, mouse, and rat receptors. The guinea pig receptor shares 76-80% identity with the nucleotide and amino acid sequences of these other species. [(3)H]nicotinic acid binding affinity at guinea pig and hamster receptors is similar to that in human (dissociation constant = 121 nM for guinea pig, 72 nM for hamster, and 74 nM for human), as are potencies of nicotinic acid analogs in competition binding studies. Inhibition of forskolin-stimulated cAMP production by nicotinic acid and related analogs is also similar to the activity in the human receptor. Analysis of mRNA tissue distribution for the hamster and guinea pig nicotinic acid receptors shows expression across a number of tissues, with higher expression in adipose, lung, skeletal muscle, spleen, testis, and ovary.  相似文献   

9.
Nicotinic acetylcholine receptors are pentameric proteins that belong to the Cys-loop receptor superfamily. Their essential mechanism of functioning is to couple neurotransmitter binding, which occurs at the extracellular domain, to the opening of the membrane-spanning cation channel. The function of these receptors can be modulated by structurally different compounds called noncompetitive antagonists. Noncompetitive antagonists may act at least by two different mechanisms: a steric and/or an allosteric mechanism. The simplest idea representing a steric mechanism is that the antagonist molecule physically blocks the ion channel. On the other hand, there exist distinct allosteric mechanisms. For example, noncompetitive antagonists may bind to the receptor and stabilize a nonconducting conformational state (e.g., resting or desensitized state), and/or increase the receptor desensitization rate. Barbiturates, dissociative anesthetics, antidepressants, and neurosteroids have been shown to inhibit nicotinic receptors by allosteric mechanisms and/or by open- and closed-channel blockade. Receptor modulation has proved to be highly complex for most noncompetitive antagonists. Noncompetitive antagonists may act by more than one mechanism and at distinct sites in the same receptor subtype. The binding site location for one particular molecule depends on the conformational state of the receptor. The mechanisms of action and binding affinities of noncompetitive antagonists differ among nicotinic receptor subtypes. Knowledge of the structure of the nicotinic acetylcholine receptor, the location of its noncompetitive antagonist binding sites, and the mechanisms of inhibition will aid the design of new and more efficacious drugs for treatment of neurological diseases.  相似文献   

10.
This study establishes that presynaptic nicotinic receptors modulate dopamine release in the mouse striatum. Nicotinic agonists elicit a dose-dependent increase in the release of [3H]dopamine from synaptosomes prepared from mouse striatum. At low concentrations, this release is Ca2+ dependent, whereas at higher concentrations Ca(2+)-independent, mecamylamine-insensitive release was also observed. The Ca(2+)-dependent nicotine-evoked release was not blocked by alpha-bungarotoxin but was effectively blocked by neuronal bungarotoxin as well as several other nicotinic receptor antagonists. The relationship between potency for stimulation of release for agonists and potency for inhibition of release for antagonists was compared to the affinity of these compounds for the [3H]nicotine binding site. The overall correlation between release and binding potency was not high, but the drugs may be classified into separate groups, each of which has a high correlation with binding. This finding suggests either that more than one nicotinic receptor regulates dopamine release or that not all agonists interact with the same receptor in an identical fashion.  相似文献   

11.
Nicotinic acid is a commonly used anti-dyslipidemic agent that increases plasma levels of HDL-cholesterol and decrease triglycerides (TG), and VLDL- and LDL-cholesterol. The most well-studied effect of nicotinic acid is its ability to lower plasma free fatty acids, which has been observed in humans and many animal models. However, its ability to raise HDL in humans has not been replicated in animal models, which precludes studying the mechanism of HDL elevation. Here we studied lipid-modulating effects of nicotinic acid in mice carrying genomic DNA fragments that drive expression of various human genes in the mouse liver. Treatment with nicotinic acid reduced serum levels of HDL cholesterol in wild-type and human apolipoprotein B100 (apoB100)-transgenic mice. In contrast, nicotinic acid treatment of mice that express human cholesteryl ester transfer protein (CETP), with or without concomitant apoB100 expression, resulted in a significant increase of HDL cholesterol and reduction of TG, VLDL- and LDL-cholesterol. These data demonstrate a critical role of CETP in nicotinic acid-mediated HDL elevation, and suggest that mice carrying the human CETP gene may be useful animal models for studying the HDL-elevating effect of nicotinic acid.  相似文献   

12.
13.
Niacin therapy in atherosclerosis   总被引:2,自引:0,他引:2  
  相似文献   

14.
Every cone snail produces a mixture of different conotoxins and secretes them to immobilize their prey and predators. α3/5 Conotoxins, isolated from fish-hunting cone snails, target muscle nicotinic acetylcholine receptors. The structure and function of α3/5 conotoxin from the piscivorous Conus achatinus have not been studied. We synthesized two pentadecamer peptides, Ac 1.1 a and Ac 1.1 b, with appropriate disulfide bonding, based on cDNA sequences of α3/5 conotoxins from C. achatinus. Ac 1.1 a and Ac 1.1 b differ by only one amino acid residue. They have similar potency on blocking recombinant mouse muscle acetylcholine receptor expressed in Xenopus laevis oocytes, with IC_(50) values of 36 nM and 26 nM, respectively. For Ac 1.1b, deletion of the first three N-terminal amino acids did not change its activity, indicating that the Nterminus is not involved in the interaction with its receptor. Furthermore, our experiments indicate that both toxins strongly prefer the α1-δ subunit interface instead of the α1-γ binding site on the mouse muscle nicotinic acetylcholine receptor. These peptides provide additional tools for the study of the structure and function of nicotinic receptor.  相似文献   

15.
Nicotinic acetylcholine receptor of the electric ray Torpedo is the most comprehensively characterized neurotransmitter receptor. It consists of five subunits (alpha2beta gammadelta) amino acid sequences of which were determined by cDNA cloning and sequencing. The shape and size of the receptor were determined by electron cryomicroscopy. It has two agonist/competitive antagonist binding sites which are located between subunits near the membrane surface. The receptor ion channel is formed by five transmembrane helices (M2) of all five subunits. The position of the binding site for noncompetitive ion channel blockers was found by photoaffinity labelling and site-directed mutagenesis. The intrinsic feature of the receptor structure is the position of the agonist/competitive antagonist binding sites in close vicinity to the ion channel spanning the bilayer membrane. This peculiarity may substantially enhance allosteric transitions transforming the ligand binding into the channel opening and physiological response. Muscle nicotinic acetylcholine receptors from birds and mammals are also pentaoligomers consisting of four different subunits (alpha2beta gammadelta or alpha2beta epsilondelta) with high homology to the Torpedo receptor. Apparently, the pentaoligomeric structure is the main feature of all nicotinic, both muscle and neuronal, receptors. However, the neuronal receptors are formed only by two subunit types (alpha and beta) or are even pentahomomers (alpha7 neuronal receptors). All nicotinic receptors are ligand-gated ion channel, the properties of the channels being essentially determined by amino acid residues forming M2 transmembrane fragments.  相似文献   

16.
Nicotinic cholinergic receptor binding sites labeled by [3H]acetylcholine were measured in the cerebral cortices, thalami, striata, and hypothalami of rats lesioned by intraventricular injection of either 6-hydroxydopamine or 5, 7-dihydroxytryptamine. In addition, [3H]acetylcholine binding sites were measured in the cerebral cortices of rats lesioned by injection of ibotenic acid into the nucleus basalis magnocellularis. [3H]Acetylcholine binding was significantly decreased in the striata and hypothalami of both 6-hydroxydopamine- and 5,7-dihydroxytryptamine-lesioned rats. There was no change in binding in the cortex or thalamus by either lesion. Ibotenic acid lesions of the nucleus basalis magnocellularis, which projects cholinergic axons to the cortex, did not alter [3H]acetylcholine binding. These results provide evidence for a presynaptic location of nicotinic cholinergic binding sites on catecholamine and serotonin axons in the striatum and hypothalamus.  相似文献   

17.
18.
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a messenger that regulates calcium release from intracellular acidic stores. Recent studies have identified two-pore channels (TPCs) as endolysosomal channels that are regulated by NAADP; however, the nature of the NAADP receptor binding site is unknown. To further study NAADP binding sites, we have synthesized and characterized [(32)P-5-azido]nicotinic acid adenine dinucleotide phosphate ([(32)P-5N(3)]NAADP) as a photoaffinity probe. Photolysis of sea urchin egg homogenates preincubated with [(32)P-5N(3)]NAADP resulted in specific labeling of 45-, 40-, and 30-kDa proteins, which was prevented by inclusion of nanomolar concentrations of unlabeled NAADP or 5N(3)-NAADP, but not by micromolar concentrations of structurally related nucleotides such as NAD, nicotinic acid adenine dinucleotide, nicotinamide mononucleotide, nicotinic acid, or nicotinamide. [(32)P-5N(3)]NAADP binding was saturable and displayed high affinity (K(d) ~10 nM) in both binding and photolabeling experiments. [(32)P-5N(3)]NAADP photolabeling was irreversible in a high K(+) buffer, a hallmark feature of NAADP binding in the egg system. The proteins photolabeled by [(32)P-5N(3)]NAADP have molecular masses smaller than the sea urchin TPCs, and antibodies to TPCs do not detect any immunoreactivity that comigrates with either the 45-kDa or the 40-kDa photolabeled proteins. Interestingly, antibodies to TPC1 and TPC3 were able to immunoprecipitate a small fraction of the 45- and 40-kDa photolabeled proteins, suggesting that these proteins associate with TPCs. These data suggest that high affinity NAADP binding sites are distinct from TPCs.  相似文献   

19.
Physiological anti-inflammatory mechanisms can potentially be exploited for the treatment of inflammatory disorders. Here we report that the neurotransmitter acetylcholine inhibits HMGB1 release from human macrophages by signaling through a nicotinic acetylcholine receptor. Nicotine, a selective cholinergic agonist, is more efficient than acetylcholine and inhibits HMGB1 release induced by either endotoxin or tumor necrosis factor-alpha (TNF-alpha). Nicotinic stimulation prevents activation of the NF-kappaB pathway and inhibits HMGB1 secretion through a specific 'nicotinic anti-inflammatory pathway' that requires the alpha7 nicotinic acetylcholine receptor (alpha7nAChR). In vivo, treatment with nicotine attenuates serum HMGB1 levels and improves survival in experimental models of sepsis, even when treatment is started after the onset of the disease. These results reveal acetylcholine as the first known physiological inhibitor of HMGB1 release from human macrophages and suggest that selective nicotinic agonists for the alpha7nAChR might have therapeutic potential for the treatment of sepsis.  相似文献   

20.
Nicotinic acetylcholine receptors are ligand‐gated ion channels expressed in many insect structures, such as mushroom bodies, in which they play a central role. We have recently demonstrated using electrophysiological recordings that different native nicotinic receptors are expressed in cockroach mushroom bodies Kenyon cells. In the present study, we demonstrated that eight genes coding for cockroach nicotinic acetylcholine receptor subunits are expressed in the mushroom bodies. Quantitative real‐time polymerase chain reaction (PCR) experiments demonstrated that β1 subunit was the most expressed in the mushroom bodies. Moreover, antisense oligonucleotides performed against β1 subunit revealed that inhibition of β1 expression strongly decreases nicotine‐induced currents amplitudes. Moreover, co‐application with 0.5 μM α‐bungarotoxin completely inhibited nicotine currents whereas 10 μM d‐tubocurarine had a partial effect demonstrating that β1‐containing neuronal nicotinic acetylcholine receptor subtypes could be sensitive to the nicotinic acetylcholine receptor antagonist α‐bungarotoxin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号