首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As a coarse-gained model, a super-thin elastic rod subjected to interfacial interactions is used to investigate the condensation of DNA in a multivalent salt solution. The interfacial traction between the rod and the solution environment is determined in terms of the Young–Laplace equation. Kirchhoff’s theory of elastic rod is used to analyze the equilibrium configuration of a DNA chain under the action of the interfacial traction. Two models are established to characterize the change of the interfacial traction and elastic modulus of DNA with the ionic concentration of the salt solution, respectively. The influences of the ionic concentration on the equilibrium configuration of DNA are discussed. The results show that the condensation of DNA is mainly determined by competition between the interfacial energy and elastic strain energy of the DNA itself, and the interfacial traction is one of forces that drive DNA condensation. With the change of concentration, the DNA segments will undergo a series of alteration from the original configuration to the condensed configuration, and the spiral-shape appearing in the condensed configuration of DNA is independent of the original configuration.  相似文献   

2.
D Swigon  B D Coleman    I Tobias 《Biophysical journal》1998,74(5):2515-2530
Explicit solutions to the equations of equilibrium in the theory of the elastic rod model for DNA are employed to develop a procedure for finding the configuration that minimizes the elastic energy of a minicircle in a mononucleosome with specified values of the minicircle size N in base pairs, the extent w of wrapping of DNA about the histone core particle, the helical repeat h(0)b of the bound DNA, and the linking number Lk of the minicircle. The procedure permits a determination of the set Y(N, w, h(0)b) of integral values of Lk for which the minimum energy configuration does not involve self-contact, and graphs of writhe versus w are presented for such values of Lk. For the range of N of interest here, 330 < N < 370, the set Y(N, w, h(0)b) is of primary importance: when Lk is not in Y(N, w, h(0)b), the configurations compatible with Lk have elastic energies high enough to preclude the occurrence of an observable concentration of topoisomer Lk in an equilibrium distribution of topoisomers. Equilibrium distributions of Lk, calculated by setting differences in the free energy of the extranucleosomal loop equal to differences in equilibrium elastic energy, are found to be very close to Gaussian when computed under the assumption that w is fixed, but far from Gaussian when it is assumed that w fluctuates between two values. The theoretical results given suggest a method by which one may calculate DNA-histone binding energies from measured equilibrium distributions of Lk.  相似文献   

3.
The equilibrium trajectory of the axis of a rod subject to an externally imposed curved potential energy trough tends to conform to the shape of the curved trough, but also tends to be straight because of elastic resistance to bending. The actual path of the axis is a balance between the two extremes. We consider a potential energy trough centered along a circular arc of radiusR. For a rod of small length compared toR, we show that the axis at equilibrium forms an arc of a circle of radius greater thanR. The value of the radius of the axial path depends on the relative values of the Hooke’s Law bending constant for the rod and the depth and width of the trough. Motivation for the calculation is provided by nucleosomal DNA, which conforms to the surface of a roughtly cylindrical histone core at physiological ionic strength, but is observed to unwind into a partially extended conformation at very low ionic strength. We suggest that the rigidity to bending of short DNA segments becomes sufficiently great at low ionic strength to overcome attractive interactions with the histone surface. Alternately, of course, if during the cell cycle mutually attractive forces between DNA and histone core are weakened at constant ionic strength, the same type of unfolding would be expected to occur as the strength of the DNA-histone contacts drops below the level required to overcome elastic resistance to bending of the DNA rod.  相似文献   

4.
H Tsuru  M Wadati 《Biopolymers》1986,25(11):2083-2096
The equilibrium shapes of supercoiled DNA are investigated by employing an elastic model. First, a set of Euler equations is derived to determine the equilibrium shapes under ring-closure conditions. Two exact solutions that describe circular and figure-8 shapes are obtained. Using these and their topological properties, the configuration change from the circular to the figure-8 form is discussed. Second, more intricate structures of supercoiling DNA are studied by a numerical analysis. Among a class of configurations, the shape that has the minimum elastic energy is explicitly determined. Poisson's ratio, the ratio of the self-avoiding radius to the total length, and the deficit (or excess) of the linking number ΔLk are found to be the important parameters. We conclude that the topology and the elastic theory of looped DNA explain the essential features of the supercoiling phenomena.  相似文献   

5.
C J Benham 《Biopolymers》1979,18(3):609-623
A general model for the large-scale, time-independent structure of duplex DNA is developed based on elastic considerations. The general conditions of elastic equilibrium are given. These equations are solved for the equilibrium shape of stressed duplex DNA, based on the assumption that the double helix behaves mechanically as a symmetric, linearly elastic rod. It is shown that, in general, two orders of superhelicity will arise at equilibrium. Several possible applications of this approach to the supercoiling of closed circular DNA are described.  相似文献   

6.
The condensation of free DNA into toroidal structures in the presence of multivalent ions and polypeptides is well known. Recent single molecule experiments have shown that condensation into toroids occurs even when the DNA molecule is subjected to tensile forces. Here we show that the combined tension and torsion of DNA in the presence of condensing agents dramatically modifies this picture by introducing supercoiled DNA as a competing structure in addition to toroids. We combine a fluctuating elastic rod model of DNA with phenomenological models for DNA interaction in the presence of condensing agents to compute the minimum energy configuration for given tension and end-rotations. We show that for each tension there is a critical number of end-rotations above which the supercoiled solution is preferred and below which toroids are the preferred state. Our results closely match recent extension rotation experiments on DNA in the presence of spermine and other condensing agents. Motivated by this, we construct a phase diagram for the preferred DNA states as a function of tension and applied end-rotations and identify a region where new experiments or simulations are needed to determine the preferred state.  相似文献   

7.
We present Monte Carlo simulations of the equilibrium configurations of short closed circular DNA that obeys a combined elastic, hard-sphere, and electrostatic energy potential. We employ a B-spline representation to model chain configuration and simulate the effects of salt on chain folding by varying the Debye screening parameter. We obtain global equilibrium configurations of closed circular DNA, with several imposed linking number differences, at two salt concentrations (specifically at the extremes of no added salt and the high salt regime), and for different chain lengths. Minimization of the composite elastic/long-range potential energy under the constraints of ring closure and fixed chain length is found to produce structures that are consistent with the configurations of short supercoiled DNA observed experimentally. The structures generated under the constraints of an electrostatic potential are less compact than those subjected only to an elastic term and a hard-sphere constraint. For a fixed linking number difference greater than a critical value, the interwound structures obtained under the condition of high salt are more compact than those obtained under the condition of no added salt. In the case of no added salt, the electrostatic energy plays a dominant role over the elastic energy in dictating the shape of the closed circular DNA. The DNA supercoil opens up with increasing chain length at low salt concentration. A branched three-leaf rose structure with a fixed linking number difference is higher in energy than the interwound form at both salt concentrations employed here.  相似文献   

8.
The stability of the structure of double-stranded DNA in the salt-free solution is discussed on the basis of the polyelectrolyte theory. Assuming that DNA is an infinitely long rod, and the formation of double strands is divided into combining process and folding process, the free energy changes required in these processes are calculated by the use of the exact solutions of two-dimensional Poisson-Boltzmann equation for the one rod and the two rod systems.

By strong depression of electrostatic interaction due to counter-ion condensation phenomena, the free energy change is remarkably decreased so that the double-stranded structure of DNA can be stabilized by energy of hydrogen bonds between base pairs. The increase of the activity coefficient of a counterion upon heat denaturation of DNA is also explained.

  相似文献   

9.
Modeling chain folding in protein-constrained circular DNA.   总被引:1,自引:1,他引:0       下载免费PDF全文
An efficient method for sampling equilibrium configurations of DNA chains binding one or more DNA-bending proteins is presented. The technique is applied to obtain the tertiary structures of minimal bending energy for a selection of dinucleosomal minichromosomes that differ in degree of protein-DNA interaction, protein spacing along the DNA chain contour, and ring size. The protein-bound portions of the DNA chains are represented by tight, left-handed supercoils of fixed geometry. The protein-free regions are modeled individually as elastic rods. For each random spatial arrangement of the two nucleosomes assumed during a stochastic search for the global minimum, the paths of the flexible connecting DNA segments are determined through a numerical solution of the equations of equilibrium for torsionally relaxed elastic rods. The minimal energy forms reveal how protein binding and spacing and plasmid size differentially affect folding and offer new insights into experimental minichromosome systems.  相似文献   

10.
The equilibrium trajectory of the axis of a rod subject to an externally imposed curved potential energy trough tends to conform to the shape of the curved trough, but also tends to be straight because of elastic resistance to bending. The actual path of the axis is a balance between the two extremes. We consider a potential energy trough centered along a circular arc of radius R. For a rod of small length compared to R, we show that the axis at equilibrium forms an arc of a circle of radius greater than R. The value of the radius of the axial path depends on the relative values of the Hooke's Law bending constant for the rod and the depth and width of the trough. Motivation for the calculation is provided by nucleosomal DNA, which conforms to the surface of a roughly cylindrical histone core at physiological ionic strength, but is observed to unwind into a partially extended conformation at very low ionic strength. We suggest that the rigidity to bending of short DNA segments becomes sufficiently great at low ionic strength to overcome attractive interactions with the histone surface. Alternately, of course, if during the cell cycle mutually attractive forces between DNA and histone core are weakened at constant ionic strength, the same type of unfolding would be expected to occur as the strength of the DNA-histone contacts drops below the level required to overcome elastic resistance to bending of the DNA rod.  相似文献   

11.
12.
Analysis of adhesion of large vesicles to surfaces.   总被引:2,自引:1,他引:1       下载免费PDF全文
An experimental procedure that can be used to measure the interfacial free energy density for the adhesion of membranes of large vesicles to other surfaces is outlined and analyzed. The approach can be used for both large phospholipid bilayer vesicles and red blood cells when the membrane force resultants are dominated by isotropic tension. The large vesicle or red cell is aspirated by a micropipet with sufficient suction pressure to form a spherical segment outside the pipet. The vesicle is then brought into close proximity of the surface to be tested and, the suction pressure reduced to permit adhesion, and the new equilibrium configuration is established. The mechanical analysis of the equilibrium shape provides the interfacial free energy density for the surface affinity. With this approach, the measurable range of membrane surface affinity is 10(-4)-3 erg/cm2 for large phospholipid bilayer vesicles and 10(-2)-10 erg/cm2 for red blood cells.  相似文献   

13.
Supercoiling of a closed circular DNA rod may result from an application of terminal twist to the DNA rod by cutting the rod, rotating one of the cut faces as the other being fixed and then sealing the cut. According to White's formula, DNA supercoiling is probably accompanied by a writhe of the DNA axis. Deduced from the elastic rod model for DNA structure, an intrinsically straight closed circular DNA rod does not writhe as subject to a terminal twist, until the number of rotation exceeds a rod-dependent threshold. By contrast, a closed circular DNA rod with intrinsic curvature writhes instantly as subject to a terminal twist. This noteworthy character in fact belongs to many intrinsically curved DNA rods. By solving the dynamic equations, the linearization of the Euler–Lagrange equations governing intrinsically curved DNA rods, this paper shows that almost every clamped-end intrinsically curved DNA rod writhes instantly when subject to a terminal twist (clamped-end DNA rods include closed circular DNA rods and topological domains of open DNA rods). In terms of physical quantities, the exceptions are identified with points in ℝ6 whose projections onto ℝ5 (through ignoring the total energy density of a rod) form a subset of a quadratic hypersurface. This paper also suggests that the terminal twist induced writhe is due to the elasticity and the clamped-end boundary conditions of the DNA rods. To my sister for her 50th birthday.  相似文献   

14.
In this study, we report what we believe to be the first multiscale simulation of the dynamic relaxation of DNA supercoils by human topoisomerase IB (topo IB). We leverage our previous molecular dynamics calculations of the free energy landscape describing the interaction between a short DNA fragment and topo IB. Herein, this landscape is used to prescribe boundary conditions for a computational, elastodynamic continuum rod model of a long length of supercoiled DNA. The rod model, which accounts for the nonlinear bending, twisting, and electrostatic interaction of the (negatively charged) DNA backbone, is extended to include the hydrodynamic drag induced by the surrounding physiological buffer. Simulations for a 200-bp-long DNA supercoil in complex with topo IB reveal a relaxation timescale of ∼0.1–1.0 μs. The relaxation follows a sequence of cascading reductions in the supercoil linking number (Lk), twist (Tw), and writhe (Wr) that follow companion cascading reductions in the supercoil elastic and electrostatic energies. The novel (to our knowledge) multiscale modeling method may enable simulations of the entire experimental setup that measures DNA supercoiling and relaxation via single molecule magnetic trapping.  相似文献   

15.
Vilfan ID  Conwell CC  Sarkar T  Hud NV 《Biochemistry》2006,45(26):8174-8183
It is well known that multivalent cations cause free DNA in solution to condense into nanometer-scale particles with toroidal and rod-like morphologies. However, it has not been shown to what degree kinetic factors (e.g., condensate nucleation) versus thermodynamic factors (e.g., DNA bending energy) determine experimentally observed relative populations of toroids and rods. It is also not clear how multimolecular DNA toroids and rods interconvert in solution. We have conducted a series of condensation studies in which DNA condensate morphology statistics were measured as a function of time and DNA structure. Here, we show that in a typical in vitro DNA condensation reaction, the relative rod population 2 min after the initiation of condensation is substantially greater than that measured after morphological equilibrium is reached (ca. 20 min). This higher population of rods at earlier time points is consistent with theoretical studies that have suggested a favorable kinetic pathway for rod nucleation. By using static DNA loops to alter the kinetics and thermodynamics of condensation, we further demonstrate that reported increases in rod populations associated with decreasing DNA length are primarily due to a change in the thermodynamics of DNA condensation, rather than a change in the kinetics of condensate nucleation or growth. The results presented also reveal that the redistribution of DNA from rods to toroids is mediated through the exchange of DNA strands with solution.  相似文献   

16.
Craig J. Benham 《Biopolymers》1983,22(11):2477-2495
This paper analyzes the elastic equilibrium conformations of duplex DNA constrained by the constancy of its molecular linking number, Lk. The DNA is regarded as having the mechanical properties of a homogeneous, linearly elastic substance with symmetric cross section. Integral representations of the writhing number Wr and of Lk are developed, in terms of which the equilibria are given as solutions to an isoperimetric problem. It is shown that the Euler angles defining equilibrium conformations must obey equations identical to those governing unconstrained equilibria. A scaling law is developed stating that molecules supercoiled the same amount ΔLk will have geometrically similar elastic equilibria regardless of their length. Thus, comparisons among molecules of properties related to their large-scale tertiary structure should be referred to differences in ΔLk rather than to their superhelix densities. Specific conditions on the elastic equilibrium conformations are developed that are necessary for ring closure. The equilibrium superhelical conformations accessible to closed-ring molecules are shown to approximate toroidal helices. Questions relating to the stability and nonuniqueness of equilibria are treated briefly. A comparison is made between these toroidal conformations and interwound configurations, which are shown to be stable, although they are not equilibria in the present sense. It is suggested that entropic factors are responsible for favouring the toroidal conformation in solution.  相似文献   

17.
We describe how the stability properties of DNA minicircles can be directly read from plots of various biologically intuitive quantities along families of equilibrium configurations. Our conclusions follow from extensions of the mathematical theory of distinguished bifurcation diagrams that are applied within the specific context of an elastic rod model of minicircles. Families of equilibria arise as a twisting angle alpha is varied. This angle is intimately related to the continuously varying linking number Lk for nicked DNA configurations that is defined as the sum of Twist and Writhe. We present several examples of such distinguished bifurcation diagrams involving plots of the energy E, linking number Lk, and a twist moment m3, along families of cyclized equilibria of both intrinsically straight and intrinsically curved DNA fragments.  相似文献   

18.
Gerald S. Manning 《Biopolymers》1981,20(6):1261-1270
A variety of solution conditions are known to induce collapse of linear DNA into a compact configuration without dramatic change of local structure. When visualized, these compact forms frequently have a toroidal appearance. We ask whether the molecular basis of the toroidal shape can be a stable curvature of isolated rodlike DNA segments. Application of the classical Euler-Lagrange theory for the buckling of elastic rods provides us with an affirmative answer. Specifically, we see that, in principle, sufficient addition of inert polymer to DNA solutions can induce buckling of DNA segments. However, no attempt is made to quantitate the Euler-Lagrange condition for sufficiency in terms of added polymer concentration. We find also that complete neutralization of the phosphate charge is more than sufficient to induce buckling of DNA segments of length comparable to a Kuhn segment. The quantitative argument involves comparison of buckling forces provided by polyelectrolyte theory with the Euler-Lagrange criterion. Knowledge of the ionic-strength dependence of DNA bending stiffness (persistence length) is not required.  相似文献   

19.
Within the context of DNA rings, we analyze the relationship between intrinsic shape and the existence of multiple stable equilibria, either nicked or cyclized with the same link. A simple test, based on a perturbation expansion of symmetry breaking within a continuum elastic rod model, provides good predictions of the occurrence of such multiple equilibria. The reliability of these predictions is verified by direct computation of nicked and cyclized equilibria for several thousand DNA minicircles with lengths of 200 and 900 bp. Furthermore, our computations of equilibria for nicked rings predict properties of the equilibrium distribution of link, as calculated by much more computationally intensive Monte Carlo simulations.  相似文献   

20.
Type IIA topoisomerases modify DNA topology by passing one segment of duplex DNA (transfer or T–segment) through a transient double-strand break in a second segment of DNA (gate or G–segment) in an ATP-dependent reaction. Type IIA topoisomerases decatenate, unknot and relax supercoiled DNA to levels below equilibrium, resulting in global topology simplification. The mechanism underlying this non-equilibrium topology simplification remains speculative. The bend angle model postulates that non-equilibrium topology simplification scales with the bend angle imposed on the G–segment DNA by the binding of a type IIA topoisomerase. To test this bend angle model, we used atomic force microscopy and single-molecule Förster resonance energy transfer to measure the extent of bending imposed on DNA by three type IIA topoisomerases that span the range of topology simplification activity. We found that Escherichia coli topoisomerase IV, yeast topoisomerase II and human topoisomerase IIα each bend DNA to a similar degree. These data suggest that DNA bending is not the sole determinant of non-equilibrium topology simplification. Rather, they suggest a fundamental and conserved role for DNA bending in the enzymatic cycle of type IIA topoisomerases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号