首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A soil bacterium (designated strain SRS2) able to metabolize the phenylurea herbicide isoproturon, 3-(4-isopropylphenyl)-1,1-dimethylurea (IPU), was isolated from a previously IPU-treated agricultural soil. Based on a partial analysis of the 16S rRNA gene and the cellular fatty acids, the strain was identified as a Sphingomonas sp. within the α-subdivision of the proteobacteria. Strain SRS2 was able to mineralize IPU when provided as a source of carbon, nitrogen, and energy. Supplementing the medium with a mixture of amino acids considerably enhanced IPU mineralization. Mineralization of IPU was accompanied by transient accumulation of the metabolites 3-(4-isopropylphenyl)-1-methylurea, 3-(4-isopropylphenyl)-urea, and 4-isopropyl-aniline identified by high-performance liquid chromatography analysis, thus indicating a metabolic pathway initiated by two successive N-demethylations, followed by cleavage of the urea side chain and finally by mineralization of the phenyl structure. Strain SRS2 also transformed the dimethylurea-substituted herbicides diuron and chlorotoluron, giving rise to as-yet-unidentified products. In addition, no degradation of the methoxy-methylurea-substituted herbicide linuron was observed. This report is the first characterization of a pure bacterial culture able to mineralize IPU.  相似文献   

2.
A soil bacterium (designated strain SRS2) able to metabolize the phenylurea herbicide isoproturon, 3-(4-isopropylphenyl)-1,1-dimethylurea (IPU), was isolated from a previously IPU-treated agricultural soil. Based on a partial analysis of the 16S rRNA gene and the cellular fatty acids, the strain was identified as a Sphingomonas sp. within the alpha-subdivision of the proteobacteria. Strain SRS2 was able to mineralize IPU when provided as a source of carbon, nitrogen, and energy. Supplementing the medium with a mixture of amino acids considerably enhanced IPU mineralization. Mineralization of IPU was accompanied by transient accumulation of the metabolites 3-(4-isopropylphenyl)-1-methylurea, 3-(4-isopropylphenyl)-urea, and 4-isopropyl-aniline identified by high-performance liquid chromatography analysis, thus indicating a metabolic pathway initiated by two successive N-demethylations, followed by cleavage of the urea side chain and finally by mineralization of the phenyl structure. Strain SRS2 also transformed the dimethylurea-substituted herbicides diuron and chlorotoluron, giving rise to as-yet-unidentified products. In addition, no degradation of the methoxy-methylurea-substituted herbicide linuron was observed. This report is the first characterization of a pure bacterial culture able to mineralize IPU.  相似文献   

3.
Substantial spatial variability in the degradation rate of the phenyl-urea herbicide isoproturon (IPU) [3-(4-isopropylphenyl)-1,1-dimethylurea] has been shown to occur within agricultural fields, with implications for the longevity of the compound in the soil, and its movement to ground- and surface water. The microbial mechanisms underlying such spatial variability in degradation rate were investigated at Deep Slade field in Warwickshire, United Kingdom. Most-probable-number analysis showed that rapid degradation of IPU was associated with proliferation of IPU-degrading organisms. Slow degradation of IPU was linked to either a delay in the proliferation of IPU-degrading organisms or apparent cometabolic degradation. Using enrichment techniques, an IPU-degrading bacterial culture (designated strain F35) was isolated from fast-degrading soil, and partial 16S rRNA sequencing placed it within the Sphingomonas group. Denaturing gradient gel electrophoresis (DGGE) of PCR-amplified bacterial community 16S rRNA revealed two bands that increased in intensity in soil during growth-linked metabolism of IPU, and sequencing of the excised bands showed high sequence homology to the Sphingomonas group. However, while F35 was not closely related to either DGGE band, one of the DGGE bands showed 100% partial 16S rRNA sequence homology to an IPU-degrading Sphingomonas sp. (strain SRS2) isolated from Deep Slade field in an earlier study. Experiments with strains SRS2 and F35 in soil and liquid culture showed that the isolates had a narrow pH optimum (7 to 7.5) for metabolism of IPU. The pH requirements of IPU-degrading strains of Sphingomonas spp. could largely account for the spatial variation of IPU degradation rates across the field.  相似文献   

4.
The Sphingomonas genus hosts many interesting pollutant-degrading strains. Sphingomonas sp. EPA505 is the best studied polycyclic aromatic hydrocarbon (PAH)-degrading Sphingomonas strain. Based on 16S rRNA gene sequence analysis, Sphingomonas sp. strain EPA505 forms a separate branch in the Sphingomonas phylogenetic tree grouping exclusively PAH-degrading isolates. For specific PCR detection and monitoring of Sphingomonas sp. EPA505 and related strains in PAH-contaminated soils, a new 16S rRNA gene-based primer set was designed. The new primer set was shown to be highly selective for Sphingomonas sp. strain EPA505 as it only amplified DNA from strain EPA505 and not from other tested Sphingomonas strains or soil bacteria not belonging to the Sphingomonas genus. Using DNA extracts of a variety of inoculated PAH-contaminated soils, the primer pair was able to detect EPA505 in concentrations as low as 102 cells per gram of soil. Applying the new primer set, 16S rRNA gene fragments which were 99–100% similar to the corresponding gene of strain EPA505 were amplified from four of five PAH-contaminated soils. On the other hand, no PCR products were obtained from any of five tested uncontaminated soils. The preferential presence of EPA505 related Sphingomonas strains in PAH-contaminated soils with very different contamination profiles and different origin suggests an important role of this type of Sphingomonas in the natural Sphingomonas community colonizing PAH-contaminated sites.  相似文献   

5.
Metabolism of the phenylurea herbicide isoproturon by Sphingomonas sp. strain SRS2 was significantly enhanced when the strain was grown in coculture with a soil bacterium (designated strain SRS1). Both members of this consortium were isolated from a highly enriched isoproturon-degrading culture derived from an agricultural soil previously treated regularly with the herbicide. Based on analysis of the 16S rRNA gene, strain SRS1 was assigned to the β-subdivision of the proteobacteria and probably represents a new genus. Strain SRS1 was unable to degrade either isoproturon or its known metabolites 3-(4-isopropylphenyl)-1-methylurea, 3-(4-isopropylphenyl)-urea, or 4-isopropyl-aniline. Pure culture studies indicate that Sphingomonas sp. SRS2 is auxotrophic and requires components supplied by association with other soil bacteria. A specific mixture of amino acids appeared to meet these requirements, and it was shown that methionine was essential for Sphingomonas sp. SRS2. This suggests that strain SRS1 supplies amino acids to Sphingomonas sp. SRS2, thereby leading to rapid metabolism of 14C-labeled isoproturon to 14CO2 and corresponding growth of strain SRS2. Proliferation of strain SRS1 suggests that isoproturon metabolism by Sphingomonas sp. SRS2 provides unknown metabolites or cell debris that supports growth of strain SRS1. The role of strain SRS1 in the consortium was not ubiquitous among soil bacteria; however, the indigenous soil microflora and some strains from culture collections also stimulate isoproturon metabolism by Sphingomonas sp. strain SRS2 to a similar extent.  相似文献   

6.
A pentachlorophenol (PCP) degrading bacterium was isolated and characterized from sludge of pulp and paper mill. This isolate used PCP as its sole source of carbon and energy and was capable of degrading this compound, as indicated by stoichiometric release of chloride and biomass formation. Based on morphology, biochemical tests, and 16S rRNA gene sequence analysis this strain was identified as Kocuria sp. CL2. High Performance Liquid Chromatography (HPLC) analysis revealed that this strain was able to degrade PCP up to a concentration of 600 mg/l. This is first time we are reporting the degradation of PCP by the Kocuria species. This isolate was also able to remove 58.64% of PCP from the sludge within two weeks. This study showed that the removal efficiency of PCP by CL2 was found to be very effective and can be used in degradation of PCP containing pulp paper mill waste in the environment.  相似文献   

7.
A soil bacterium SW4, capable of degrading the sulfonylurea herbicide ethametsulfuron-methyl (ESM), was isolated from the bottom soil of a herbicide factory. Based on physiological characteristics, biochemical tests and phylogenetic analysis of the 16S rRNA gene sequence, the strain was identified as a Pseudomonas sp. The total degradation of ESM in the medium containing glucose was up to 84.6% after 6 days of inoculation with SW4 strain. The inoculation of strain SW4 to soil treated with ESM resulted in a higher degradation rate than in noninoculated soil regardless of the soil sterilized or nonsterilized. Five metabolites of ESM degradation were analyzed by liquid chromatography/mass spectrometry. Based on the identified products, strain SW4 seemed to degrade ESM after two separate and different pathways: one leads to the cleavage of the sulfonylurea bridge, whereas the other to the dealkylation and opening of the triazine ring of ESM.  相似文献   

8.
The carbazole degrading bacterium JS1 was isolated from carbazole polluted soil and identified as Sphingomonas sp. bacterium based on its 16S rDNA gene. The car gene cluster located in the genome of JS1 was isolated by PCR and its presence verified by Southern hybridization. Sequence analysis of the car gene cluster showed that the arrangement of elements in JS1 was different from that of Pseudomons sp. CA10 and Nocardioides aromaticivorans IC177, but car gene cluster and neighboring regions were nearly identical to that of Sphingomonas sp. KA1 and Sphingomonas sp.GTIN11. Each element of the car gene cluster was expressed in E. coli upon IPTG induction. The amount of CaBb protein expressed was higher than CarBa and the ratio of these two proteins was 1:1.5. CarC expression level was detected using anti-CarC antibody. The result showed that carbazole degrading proteins were induced by the substrate carbazole. The quantity of CarC at 0.5 mg/ml carbazole was five times more than that at 0.1 mg/ml. Meiying Yang and Wenming Li have the equal contribution for this work.  相似文献   

9.
Abietane terpenoid-degrading organisms include Sphingomonas spp which inhabit natural environments and biological treatment systems. An isolate from the high Arctic indicates that these organisms occur far from trees which synthesize abietanes and suggests that some of these organisms can occupy a niche in hydrocarbon-degrading soil communities. Abietane-degrading Sphingomonas spp provide additional evidence that the phylogeny of this genus is independent of the catabolic capabilities of its members. Studies of Sphingomonas sp DhA-33 demonstrate that biological treatment systems for pulp mill effluents have the potential to mineralize abietane resin acids. On the other hand, these studies indicate that some chlorinated dehydroabietic acids are quite recalcitrant. Strain DhA-33 grows relatively well on some chlorinated dehydroabietic acids but transforms others to stable metabolites. Using strain DhA-33, a novel method was developed to measure the metabolic activity of an individual population within a complex microbial community. Oligonucleotide hybridization probes were used to assay the 16S rRNA:rDNA ratio of DhA-33 as it grew in an activated sludge community. However, this method proved not to be sufficiently sensitive to measure naturally occurring resin acid-degrading populations. We propose that the same approach can be modified to use more sensitive assays. Received 01 May 1999/ Accepted in revised form 19 July 1999  相似文献   

10.
Cupriavidus necator (formerly Ralstonia eutropha) JMP134, harbouring the catabolic plasmid pJP4, is the best-studied 2,4-dichlorophenoxyacetic acid (2,4-D) herbicide degrading bacterium. A study of the survival and catabolic performance of strain JMP134 in agricultural soil microcosms exposed to high levels of 2,4-D was carried out. When C. necator JMP134 was introduced into soil microcosms, the rate of 2,4-D removal increased only slightly. This correlated with the poor survival of the strain, as judged by 16S rRNA gene terminal restriction fragment length polymorphism (T-RFLP) profiles, and the semi-quantitative detection of the pJP4-borne tfdA gene sequence, encoding the first step in 2,4-D degradation. After 3 days of incubation in irradiated soil microcosms, the survival of strain JMP134 dramatically improved and the herbicide was completely removed. The introduction of strain JMP134 into native soil microcosms did not produce detectable changes in the structure of the bacterial community, as judged by 16S rRNA gene T-RFLP profiles, but provoked a transient increase of signals putatively corresponding to protozoa, as indicated by 18S rRNA gene T-RFLP profiling. Accordingly, a ciliate able to feed on C.␣necator JMP134 could be isolated after soil enrichment. In␣native soil microcosms, C. necator JMP134 survived better than Escherichia coli DH5α (pJP4) and similarly to Pseudomonas putida KT2442 (pJP4), indicating that species specific factors control the survival of strains harbouring pJP4. The addition of cycloheximide to soil microcosms strongly improved survival of these three strains, indicating that the eukaryotic microbiota has a strong negative effect in bioaugmentation with catabolic bacteria.  相似文献   

11.
A phenazine-1-carboxylic acid (PCA)–degrading bacterium, strain DP58, was isolated from pimiento rhizosoil. Based on morphology, physiologic tests, 16S rDNA sequence, and phylogenetic characteristics, it was identified as Sphingomonas sp. The PCA-degradation experiments were conducted both in Luria-Bertani and inorganic salt medium at 28°C. The relationship between bacterium growth and PCA degradation suggested that strain DP58 could use PCA as the sole source of carbon and nitrogen and was able to completely degrade PCA in 40 hours. Newly isolated strain DP58 represents the first bacterium that can degrade PCA.  相似文献   

12.
A bacterial consortium capable of degrading nitroaromatic compounds was isolated from pesticide-contaminated soil samples by selective enrichment on 2-nitrotoluene as a sole source of carbon and energy. The three different bacterial isolates obtained from bacterial consortium were identified as Bacillus sp. (A and C), Bacillus flexus (B) and Micrococcus sp. (D) on the basis of their morphological and biochemical characteristics and by phylogenetic analysis based on 16S rRNA gene sequences. The pathway for the degradation of 2-nitrotoluene by Micrococcus sp. strain SMN-1 was elucidated by the isolation and identification of metabolites, growth and enzymatic studies. The organism degraded 2-nitrotoluene through 3-methylcatechol by a meta-cleavage pathway, with release of nitrite.  相似文献   

13.
A novel Gram-negative, catalase- and oxidase-positive, strictly aerobic, non spore-forming, rod-shaped bacterium, designated strain JSM 083058T, was isolated from non-saline forest soil in Hunan Province, China. Growth occurred with 0–8% (w/v) NaCl (optimum, 0.5–3%) at pH 6.0–10.0 (optimum, pH 7.0) and at 5–35°C (optimum, 25–30°C). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain JSM 083058T fell within the cluster comprising species of the genus Sphingomonas, clustering with Sphingomonas aestuarii K4T, with which it shared highest 16S rRNA gene sequence similarity (99.2%). The chemotaxonomic properties of strain JSM 083058T were consistent with those of the genus Sphingomonas. The predominant respiratory quinone was ubiquinone Q-10, and the major cellular fatty acids were summed feature 8 (C18:1ω7c/C18:1ω6c), C16:0, summed feature 3 (C16:1ω7c/C16:1ω6c) and C17:1ω6c. The polar lipids consisted of diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol and sphingoglycolipid. The genomic DNA G+C content of strain JSM 083058T was 65.5 mol%. The combination of phylogenetic analysis, DNA–DNA relatedness, phenotypic characteristics and chemotaxonomic data supported the view that strain JSM 083058T represents a novel species of the genus Sphingomonas, for which the name Sphingomonas hunanensis sp. nov. is proposed. The type strain is JSM 083058T (=CCTCC AA 209011T = DSM 22213T).  相似文献   

14.
Wu J  Li L  Du H  Jiang L  Zhang Q  Wei Z  Wang X  Xiao L  Yang L 《Biodegradation》2011,22(5):897-904
A leuco derivatives of triphenylmethane dyes degrading bacterium, strain CM9, was isolated from an aquafarm field. Based on morphology, physiologic tests, 16S rDNA sequence, and phylogenetic characteristics, it was identified as Sphingomonas sp. This strain was capable of degrading leucomalachite green (LMG), leucocrystal violet and leucobasic fuchsin completely. The relationship between bacterium growth and LMG degradation suggested that strain CM9 could use LMG as the sole source of carbon. The most LMG degradation activity of CM9 crude extract was observed at pH 7.0 and at 30°C. Many metal ions had little inhibition effect on the degradation activity of the crude extract. CM9 also showed strong decolorization of triphenylmethane dyes to their leuco derivatives. GC/MS analysis detected two novel metabolic products, methylbenzene and 4-aminophenol, during the LMG degradation by CM9.  相似文献   

15.
Microbial enzymes that can hydrolyze organophosphorus compounds have been isolated, identified and characterized from different microbial species in order to use them in biodegradation of organophosphorus compounds. We isolated a bacterial strain Cons002 from an agricultural soil bacterial consortium, which can hydrolyze methyl-parathion (MP) and other organophosphate pesticides. HPLC analysis showed that strain Cons002 is capable of degrading pesticides MP, parathion and phorate. Pulsed-field gel electrophoresis and 16S rRNA amplification were performed for strain characterization and identification, respectively, showing that the strain Cons002 is related to the genus Enterobacter sp. which has a single chromosome of 4.6 Mb and has no plasmids. Genomic library was constructed from DNA of Enterobacter sp. Cons002. A gene called opdE (Organophosphate Degradation from E nterobacter) consists of 753 bp and encodes a protein of 25 kDa, which was isolated using activity methods. This gene opdE had no similarity to any genes reported to degrade organophosphates. When kanamycin-resistance cassette was placed in the gene opdE, hydrolase activity was suppressed and Enterobacter sp. Cons002 had no growth with MP as a nutrients source.  相似文献   

16.
Catechol 1,2-dioxygenase (C12O) was purified to electrophoretic homogeneity from Acinetobacter sp. DS002. The pure enzyme appears to be a homodimer with a molecular mass of 66 kDa. The apparent Km and Vmax for intradiol cleavage of catechol were 1.58 μM and 2 units per mg of protein respectively. Unlike other C12Os reported in the literature, the catechol 1,2-dioxygenase of Acinetobacter showed neither intradiol nor extradiol cleavage activity when substituted catechols were used as substrates. However, it has shown mild intradiol cleavage activity when benzenetriol was used as substrate. As determined by two dimensional electrophoresis (2DE) followed MALDI-TOF/TOF analyses and gel permeation chromatography, no isoforms of C12O was observed in Acinetobacter sp. DS002. Further, the C12O was seen only in cultures grown in benzoate and it was completely absent in succinate grown cultures. Based on the sequence information obtained from MS/MS data, degenerate primers were designed to amplify catA gene from the genomic DNA of Acinetobacter sp. DS002. The sequence of the PCR amplicon and deduced amino acid sequence showed 97% similarity with a catA gene of Acinetobacter baumannii AYE (YP_001713609).  相似文献   

17.
Substantial spatial variability in the degradation rate of the phenyl-urea herbicide isoproturon (IPU) [3-(4-isopropylphenyl)-1,1-dimethylurea] has been shown to occur within agricultural fields, with implications for the longevity of the compound in the soil, and its movement to ground- and surface water. The microbial mechanisms underlying such spatial variability in degradation rate were investigated at Deep Slade field in Warwickshire, United Kingdom. Most-probable-number analysis showed that rapid degradation of IPU was associated with proliferation of IPU-degrading organisms. Slow degradation of IPU was linked to either a delay in the proliferation of IPU-degrading organisms or apparent cometabolic degradation. Using enrichment techniques, an IPU-degrading bacterial culture (designated strain F35) was isolated from fast-degrading soil, and partial 16S rRNA sequencing placed it within the Sphingomonas group. Denaturing gradient gel electrophoresis (DGGE) of PCR-amplified bacterial community 16S rRNA revealed two bands that increased in intensity in soil during growth-linked metabolism of IPU, and sequencing of the excised bands showed high sequence homology to the Sphingomonas group. However, while F35 was not closely related to either DGGE band, one of the DGGE bands showed 100% partial 16S rRNA sequence homology to an IPU-degrading Sphingomonas sp. (strain SRS2) isolated from Deep Slade field in an earlier study. Experiments with strains SRS2 and F35 in soil and liquid culture showed that the isolates had a narrow pH optimum (7 to 7.5) for metabolism of IPU. The pH requirements of IPU-degrading strains of Sphingomonas spp. could largely account for the spatial variation of IPU degradation rates across the field.  相似文献   

18.
A Gram-negative, non-motile, rod shaped, and orange-pigmented chemoheterotrophic bacterium, strain MS-31T was isolated from the marine sponge Hymeniacidon flavia, collected from near Jeju Island, Korea. The Strain MS-31T was subjected to a polyphasic taxonomic study. The phylogenetic analysis based on the 16S rRNA gene sequences revealed that the novel isolate could be affiliated within the genus Sphingomonas. The strain MS-31T showed 95.6% of 16S rRNA gene sequence similarity with the most closely related species Sphingomonas koreensis JSS26T. The DNA G+C content of the strain MS-31T was 69.4 mol%. The major isoprenoid quinone was ubiqunone 10 and predominant cellular fatty acids were summed feature 7 (comprising C18:1 ω7c, C18:1 Ω9t and/or C18:1 ωl2t, 39.7%), C16:0 (16.3%), C14:0 2OH (15.9%) and summed feature 3 (comprising C16:1 ω7c and/or C15:0 iso 2OH, 11.7%). The polar lipids were sphingoglycolipid, phosphatidyletha-nolamine, phosphatidylglycerol, diphosphatidylglycerol and unidentified glycolipid. Based on the evidence from the polyphasic taxonomic study, the strain should be classified as a new species of the genus Sphingomonas. As a result, the name Sphingomonas jejuensis sp. nov. (type strain MS-31T =KCTC 23321T =NBRC 107775T) is proposed.  相似文献   

19.
A Gram-negative, non-motile, non-spore-forming, small, orange, rod-shaped bacterium was isolated from soil in South Korea and characterized to determine its taxonomic position. Phylogenetic analysis based on 16S rRNA gene sequence examination revealed that strain PB323T belongs to the family Sphingomonadaceae. The highest degree of sequence similarity was found with Sphingomonas kaistensis PB56T (98.9%), followed by Sphingomonas astaxanthinifaciens TDMA-17T (98.3%). Chemotaxonomic characteristics (the G+C content of the genomic DNA 69.0 mol%, Q-10 quinone system, C18:1 ω7c/ω9t/ω12t, C16:1 ω7c/C15:0 iso 2OH, C17:1 ω6c, and C16:0 as the major fatty acids) corroborated assignment of strain PB323T to the genus Sphingomonas. Results of physiological and biochemical tests clearly demonstrate that strain PB323T represents a distinct species and support its affiliation with the genus Sphingomonas. Based on these data, PB323T (=KCTC 12341T =JCM 16603T =KEMB 9004-003T) should be classified as a type strain of a novel species, for which the name Sphingomonas humi sp. nov. is proposed.  相似文献   

20.
A bacterial strain, designated as CTN-11, capable of degrading chlorothalonil (CTN), was isolated from a chlorothalonil-contaminated soil in China. Based on the morphological, biochemical characteristics and comparative analysis of the 16S rRNA genes, strain CTN-11 was identified as Ochrobactrum sp. Strain CTN-11 could degrade 50 mg l−1 CTN to a non-detectable level within 48 h, and efficiently degrade CTN in a relatively broad range of temperatures from 20 to 40°C and initial pH values from 6.0 to 9.0. The new isolate differed from those previously reported CTN co-metabolic degraders by transforming CTN in the absence of other carbon sources. A glutathione S-transferase (GST) coding gene, which showed 88% sequence similarity with that from Ochrobactrum anthropi SH35B, was cloned from strain CTN-11. However, the gene was not functionally expressed in the presence of glutathione, indicating that CTN was not reductively dechlorinated by thiolytic substitution catalyzed by GST in strain CTN-11. The metabolite hydroxyl-trichloroisophthalonitrile (CTN-OH) produced during CTN anaerobic degradation was identified based on tandem MS/MS, confirming that hydrolytic dechlorination was involved in the CTN degradation. The removal of CTN by strain CTN-11 in sterile and non-sterile soils was also studied. In both soil samples, 50 mg kg−1 CTN could be degraded to an undetectable level within 3 days. This study highlights an important potential use of strain CTN-11 for the cleanup of CTN-contaminated sites and presents a hydrolytic dechlorination reaction of CTN by a pure culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号