首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The exploration of seven physiologically different white rot fungi potential to produce cellulase, xylanase, laccase, and manganese peroxidase (MnP) showed that the enzyme yield and their ratio in enzyme preparations significantly depends on the fungus species, lignocellulosic growth substrate, and cultivation method. The fruit residues were appropriate growth substrates for the production of hydrolytic enzymes and laccase. The highest endoglucanase (111 U ml−1) and xylanase (135 U ml−1) activities were revealed in submerged fermentation (SF) of banana peels by Pycnoporus coccineus. In the same cultivation conditions Cerrena maxima accumulated the highest level of laccase activity (7,620 U l−1). The lignified materials (wheat straw and tree leaves) appeared to be appropriate for the MnP secretion by majority basidiomycetes. With few exceptions, SF favored to hydrolases and laccase production by fungi tested whereas SSF was appropriate for the MnP accumulation. Thus, the Coriolopsis polyzona hydrolases activity increased more than threefold, while laccase yield increased 15-fold when tree leaves were undergone to SF instead SSF. The supplementation of nitrogen to the control medium seemed to have a negative effect on all enzyme production in SSF of wheat straw and tree leaves by Pleurotus ostreatus. In SF peptone and ammonium containing salts significantly increased C. polyzona and Trametes versicolor hydrolases and laccase yields. However, in most cases the supplementation of media with additional nitrogen lowered the fungi specific enzyme activities. Especially strong repression of T. versicolor MnP production was revealed.  相似文献   

2.
Summary The effect of various carbon and nitrogen sources on laccase, manganese-dependent peroxidase (MnP), and peroxidase production by two strains of Pleurotus ostreatus was investigated. The maximal laccase yield of P. ostreatus 98 and P. ostreatus 108 varied depending upon the carbon source from 5 to 62 U l−1 and from 55 to 390 U l−1, respectively. The highest MnP and peroxidase activities were revealed in medium supplemented by xylan. Laccase, MnP, and peroxidase activities of mushrooms decreased with supplementation of defined medium by inorganic nitrogen sources. Peptone followed by casein hydrolysate appeared to be the best nitrogen sources for laccase accumulation by both fungi. However, their positive effects on enzyme accumulation were due to a higher biomass production. The secretion of MnP and peroxidase by P. ostreatus 108 was stimulated with supplementation of casein hydrolysate to the control medium since the specific MnP and peroxidase activities increased 15-fold and 3.5-fold, respectively.  相似文献   

3.
The present study examined the effects of plant growth hormones, incubation period, biotic (Trametes versicolor, Mucor sp., Penicillium notatum, Rhizopus stolonifer, and Fusarium oxysporum) and abiotic (NaCl, MgSO4, FeSO4, ZnSO4, and FeCl3) elicitors on cell growth and α-tocopherol and pigment (red and yellow) productions in Carthamus tinctorius cell cultures. The cell growth and α-tocopherol and pigment contents improved significantly on Murashige and Skoog (MS) liquid medium containing 50.0 μM α-naphthalene acetic acid (NAA) and 2.5 μM 6-Benzyladenine (BA) at 28 days of incubation period. Incorporation of T. versicolor (50 mg l−1) significantly enhanced the production of α-tocopherol (12.7-fold) and red pigment (4.24-fold). Similarly, supplementation of 30 mg l−1 T. versicolor (7.54-fold) and 70 mg l−1 Mucor sp. (7.40-fold) significantly increased the production of yellow pigment. Among abiotic elicitors, NaCl (50–70 mg l−1) and MgSO4 (10–30 mg l−1) significantly improved production of α-tocopherol (1.24-fold) and red pigment (20-fold), whereas yellow pigment content increased considerably by all the abiotic elicitor treatments. Taken together, the present study reports improved productions of α-tocopherol and the pigment as a stress response of safflower cell cultures exposed to these elicitors.  相似文献   

4.
Degradation of the fungicide thiophanate-methyl (TM) by Enterobacter sp. TDS-1 and Bacillus sp. TDS-2 isolated from sandy soil previously treated with TM was studied in mineral salt medium (MSM) and soil. Both strains were able to grow in MSM supplemented with TM (50 mg l−1) as the sole carbon source. Over a 16 days incubation period, 60 and 77% of the initial dose of TM were degraded by strains TDS-1 and TDS-2, respectively, and disappearance of TM was described by first-order kinetics. Medium supplementation with glucose markedly stimulated bacterial growth; while the final rate of TM degradation was reduced by 21 and 27% for strains TDS-1 and TDS-2, respectively as compared to medium with TM only. Moreover, this additional carbon source changed the TM degradation kinetics, which proceeded according to a zero-order model. This effect was linked to substrate competition and/or a strong decrease of medium pH. Isolates degraded TM (100 mg kg−1) in soil with rate constants of 0.186 and 0.210 day−1, following first-order rate kinetics, and the time in which the initial TM concentration was reduced by 50% (DT50) in soils inoculated with strains TDS-1 and TDS-2 were 6.3 and 5.1 days, respectively. Analysis of TM degradation products in soil showed that the tested strains may have the potential to transform carbendazim (MBC) to 2-aminobenzimidazole (2-AB), and may be useful for a bioremediation of MBC-polluted soils.  相似文献   

5.
6.
Bacteria capable of degrading the pesticide, cadusafos, were isolated from agricultural soil using an enrichment method. In this way, five distinct cadusafos-degrading strains of Pseudomonas putidia were isolated, and were characterized using morphological and biochemical analysis, as well as 16S rRNA sequencing. Strain PC1 exhibited the greatest cadusafos degradation rate and was consequently selected for further investigation. Degradation of cadusafos by strain PC1 was rapid at 20 and 37°C, but was greatly reduced (~1.5-fold) by the presence of carbon sources. Strain PC1 was able to effectively degrade cadusafos in sterilized soil using low inoculum levels. The maximum degradation rate of cadusafos (V max ) was calculated as 1.1 mg l−1 day−1, and its saturation constant (K s ) was determined as 2.5 mg l−1. Bacteria such as strain PC1, that use cadusafos as a carbon source, could be employed for the bioremediation of sites contaminated with pesticides.  相似文献   

7.
Saussurea involucrata is a valuable traditional Chinese medicinal herb. This is the first report of a successful genetic transformation protocol for S. involucrata using Agrobacterium tumefaciens. Leaf explants were incubated with A. tumefaciens strain EHA105 harboring the binary vector pCAMBIA 1301, which contains the hpt gene as a selectable marker for hygromycin resistance and an intron-containing β-glucuronidase gene as a reporter gene. Following co-cultivation, about 23.7% of the explants produced hygromycin-resistant calli on MS basal medium (Murashige and Skoog in Physiol Plant 15: 473–497, 1962) supplemented with 1 mg l−1 benzyladenine (BA), 0.1 mg l−1 α-naphthaleneacetic acid (NAA), 0.1 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D), 20 mg l−1 hygromycin, and 500 mg l−1 cefotaxime. Shoots were regenerated following transfer of the resistant calli to shoot induction medium containing 1.5 mg l−1 BA, 0.1 mg l−1 NAA, 0.25 mg l−1 gibberellic acid (GA3), 20 mg l−1 hygromycin, and 250 mg l−1 cefotaxime, and about 67.5% of the resistant calli differentiated into shoots. Finally, 80% of the hygromycin-resistant shoots rooted on MS media supplemented with 0.2 mg l−1 NAA, 20 mg l−1 hygromycin, and 250 mg l−1 cefotaxime. The transgenic nature of the transformants was demonstrated by detection of β-glucuronidase activity in the primary transformants and by Southern blot hybridization analysis. About 16% of the total inoculated leaf explants produced transgenic plants after approximately 5 months. Using this optimized transformation system, a rice ortholog of the Arabidopsis FLOWERING LOCUS T gene, Hd3a, was transferred into S. involucrata. Introduction of this gene caused an early-flowering phenotype in S. involucrata.  相似文献   

8.
The cell cultures of Cayratia trifolia (Vitaceae) a tropical lianas, were maintained in Murashige and Skoog’s medium containing 0.25 mg l−1 naphthalene acetic acid, 0.2 mg l−1 kinetin and 250 mg l−1 casein hydrolysate. Cell suspension cultures of C. trifolia accumulate stilbenes (piceid, resveratrol, viniferin, ampelopsin) which on addition of 0.1–0.5 mg l−1 morphactin in the medium containing naphthalene acetic acid and kinetin declined. Morphactin or 2 isopentenyl adenine alone at 0.1 mg l−1 concentration enhanced stilbenes which on combination markedly enhanced the yield to ~5 mg l−1 at 15th day.  相似文献   

9.
Young leaf explants of Ocimum sanctum L. incubated on solidified Murashige and Skoog (MS) medium supplemented with 2 mg l−1 1-naphthaleneacetic acid (NAA) and 0.2 mg l−1 kinetin (Kn) developed rhizogenic callus. When these were subcultured onto MS medium supplemented with 1.5 mg l−1 2, 4-dichlorophenoxyacetic acid (2, 4-D) and 0.5 mg l−1 NAA, friable rhizogenic callus was observed. Upon transfer of this friable callus onto liquid MS medium containing 4 mg l−1 NAA and 1.3 mg l−1 6-benzyladnine (BA) under continuous agitation at 90 rpm and 16 h photoperiod, roots with an optimum dry weight of 1,460 mg l−1 were obtained. An ethyl acetate extract of these roots exhibited 1, 1–diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity.  相似文献   

10.
The cell cultures of Pueraria tuberosa, a perennial leguminous lianas, were maintained in modified MS medium (KNO3 475 mg l−1, thiamine 1 mg l−1, biotin 1 mg l−1, calcium pantothenate 1 mg l−1) containing 0.1 mg l−1 2,4,5-trichloroacetic acid and 0.1 mg l−1 kinetin. Isoflavonoids (puerarin, genistin, daidzein, genistein) accumulation in cell suspension cultures was increased by 14-fold to ~12 mg l−1 after 48 h of adding 100 μM ethrel. Ethrel inhibitors (silver nitrate and silver thiosulfate) completely inhibited this effect in the presence of ethrel and isoflavonoids were not detected in the spent medium. The increase was dose dependent and can be explored to trigger high yield of isoflavonoids production.  相似文献   

11.
Zoysia tenuifolia Willd. ex Trin. is one of the most popularly cultivated turfgrass. This is the first report of successful plant regeneration and genetic transformation protocols for Z. tenuifolia using Agrobacterium tumefaciens. Initial calli was induced from stem nodes incubated on a Murashige and Skoog (1962) (MS) medium supplemented with 2 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 1 mg l−1 6-benzyladenine (BA), with a frequency of 53%. Compact calli were selected and subcultured monthly on the fresh medium. Sixty-nine percent of the calli could be induced to regenerate plantlets when the calli incubated on a MS medium supplemented with 0.2 mg l−1 BA under darkness. For genetic transformation, calli were incubated with A. tumefaciens strain EHA105 harboring the binary vector pCAMBIA 1301 which contains the hpt gene as a selectable marker for hygromycin resistance and an intron-containing β-glucuronidase gene (gus-int) as a reporter gene. Following co-cultivation, about 12% of the callus explants produced hygromycin resistant calli on MS medium supplemented with 2 mg l−1 2,4-D, 1 mg l−1 BA, 50 mg l−1 hygromycin, 500 mg l−1 cefotaxime after 8 weeks. Shoots were regenerated following transfer of the resistant calli to shoot induction medium containing 0.2 mg l−1 BA, 50 mg l−1 hygromycin, and 250 mg l−1 cefotaxime, and about 46% of the resistant calli differentiated into shoots. Finally, all the resistant shoots were rooted on 1/2 MS media supplemented with 50 mg l−1 hygromycin, 250 mg l−1 cefotaxime. The transgenic nature of the transformants was demonstrated by the detection of β-glucuronidase activity in the primary transformants and by PCR and Southern hybridization analysis. About 5% of the total inoculated callus explants produced transgenic plants after approximately 5 months. The procedure described will be useful for both, the introduction of desired genes into Z. tenuifolia and the molecular analysis of gene function.  相似文献   

12.
In vitro regeneration and morphogenesis studies in common bean   总被引:1,自引:0,他引:1  
An efficient protocol for high frequency in vitro regeneration of multiple shoots and somatic embryos from the embryonic axis of common bean (Phaseolus vulgaris) was developed. Ten common bean cultivars representing a wide range of diversity among current commercial market classes were used for in vitro regeneration evaluation in our study. These cultivars were tested on 63 different media formulations consisting of combinations of cytokinins, namely benzyladenine (BA) and thidiazuron (TDZ) at concentration levels of 0.0, 1.0, 2.5, 5.0 and 10.0 mg l−1 and auxin, namely naphthalene acetic acid (NAA) and indole-3-acetic acid (IAA) at concentration levels of 0.0, 0.05, 0.1 and 1.0 mg l−1. P. vulgaris cv. Olathe pinto bean performed the best producing over 20 multiple shoots per explant while cv. Condor black bean was the poorest with nine multiple shoots per explant. The optimum media for regeneration of multiple shoots was 4.4 mg l−1 Murashige and Skoog (MS) containing 2.5 mg l−1 BA and 0.1 mg l−1 IAA supplemented with 30 mg l−1 silver nitrate. Adventitious shoots and somatic embryos were regenerated on 4.4 mg l−1 MS medium containing 1 mg l−1 TDZ and 0.05 mg l−1 NAA supplemented with 30 mg l−1 silver nitrate or activated charcoal. Efficient and effective rooting of plantlets was achieved by dipping the cut end base of in vitro regenerated shoots in 1.0 mg l−1 indole-3-butyric acid (IBA) solution and culturing on media containing 4.4 mg l−1 MS supplemented by 0.1 mg l−1 IAA, NAA or IBA.  相似文献   

13.
The effects of seed maturity, media type, carbon source, and organic nutrient additives on seed germination, protocorm development, and plant growth of Paphiopedilum villosum var. densissimum Z. J. Liu et S. C. Chen were investigated. Micropropagation frequency was enhanced through the use of 200-day-old seed, Knudson C (KC) medium, and the presence of both glucose and coconut milk in the medium. The effects of various plant growth regulators on the frequency of shoot organogenesis in four Paphiopedilum species were also investigated. Explants of P. villosum var. densissimum and P. insigne (Lindl.) Stein incubated in the presence of 5 mg l−1 6-benzyladenine (BA) with 0.5 mg l−1 α-naphthalene acetic acid (NAA) and 0.2 mg l−1 BA with 0.1 mg l−1 NAA, respectively, showed a twofold increase in the frequency of shoot organogenesis. For explants of P. bellatulum (Rchb. f.) Stein and P. armeniacum S. C. Chen et F. Y. Liu, the combination of 5.5 mg l−1 BA with 0.5 mg l−1 NAA and 4 mg l−1 BA with 0.1 mg l−1 NAA, respectively, resulted in the highest frequencies of shoot organogenesis.  相似文献   

14.
Jatropha curcas L. (Physic nut) is a commercially important non-edible oil seed crop known for its use as an alternate source of biodiesel. In order to investigate the morphogenic potential of immature embryo, explants from four developmental stages were cultured on medium supplemented with combinations of auxins and cytokinins. It was found that the size of embryo is critical for the establishment of callus. Immature embryos (1.1–1.5 cm) obtained from the fruits 6 weeks after pollination showed a good response of morphogenic callus induction (85.7%) and subsequent plant regeneration (70%) with the maximum number of plantlets (4.7/explant) on Murashige and Skoog’s (MS) medium supplemented with IBA (0.5 mg l−1) and BA (1.0 mg l−1). The above medium when supplemented with growth adjuvants such as 100 mg l−1 casein hydrolysate + 200 mg l−1 l-glutamine + 8.0 mg l−1 CuSO4 resulted in an even higher frequency of callus induction (100%). Plant regeneration (90%) with the maximum number of plantlets (10/explant) was achieved on MS medium supplemented with 500 mg l−1 polyvinyl pyrrolidone + 30 mg l−1 citric acid + 1 mg l−1 BA + 0.5 mg l−1 Kn + 0.25 mg l−1 IBA. It was observed that plantlet regeneration could occur either through organogenesis of morphogenic callus or via multiplication of pre-existing meristem in immature embryos. The age of immature embryos and addition of a combination of growth adjuvants to the culture medium appear to be critical for obtaining high regeneration rates. Well-developed shoots rooted on half-strength MS medium supplemented with 0.5 mg l−1 IBA and 342 mg l−1 trehalose. The rooted plants after acclimatization were successfully transferred to the field in different agro-climatic zones in India. This protocol has been successfully evaluated on five elite lines of J. curcas.  相似文献   

15.
Guo M  Lu F  Liu M  Li T  Pu J  Wang N  Liang P  Zhang C 《Biotechnology letters》2008,30(12):2091-2096
A recombinant laccase from Trametes versicolor in Pichia methanolica was produced constitutively in a defined medium. The recombinant laccase was purified using ultrafiltration, anion-exchange chromatography, and gel filtration. The molecular weight of the purified laccase was estimated as 64 kDa by SDS-PAGE. The purified recombinant laccase decolorized more than 90% of Remazol Brilliant Blue R (RBBR) initially at 80 mg l−1 after 16 h at 45°C and pH 5 when 25 U laccase ml−1 was used. The purified recombinant laccase could efficiently decolorize RBBR without additional redox mediators.  相似文献   

16.
Phenol is one of the major toxic pollutants in the wastes generated by a number of industries and needs to be eliminated before their discharge. Although microbial degradation is a preferred method of waste treatment for phenol removal, the general inability of the degrading strains to tolerate higher substrate concentrations has been a bottleneck. Immobilization of the microorganism in suitable matrices has been shown to circumvent this problem to some extent. In this study, cells of Pseudomonas sp. CP4, a laboratory isolate that degrades phenol, cresols, and other aromatics, were immobilized by entrapment in Ca-alginate and agar gel beads, separately and their performance in a fluidized bed bioreactor was compared. In batch runs, with an aeration rate of 1 vol−1 vol−1 min−1, at 30°C and pH 7.0 ± 0.2, agar-encapsulated cells degraded up to 3000 mg l−1 of phenol as compared to 1500 mg l−1 by Ca-alginate-entrapped cells whereas free cells could tolerate only 1000 mg l−1. In a continuous process with Ca-alginate entrapped cells a degradation rate of 200 mg phenol l−1 h−1 was obtained while agar-entrapped cells were far superior and could withstand and degrade up to 4000 mg phenol l−1 in the feed with a maximum degradation rate of 400 mg phenol l−1 h−1. The results indicate a clear possibility of development of an efficient treatment technology for phenol containing waste waters with the agar-entrapped bacterial strain, Pseudomonas sp. CP4.  相似文献   

17.
Pleurotus ostreatus showed atypical laccase production in submerged vs. solid-state fermentation. Cultures grown in submerged fermentation produced laccase at 13,000 U l−1, with a biomass production of 5.6 g l−1 and four laccase isoforms. However, cultures grown in solid-state fermentation had a much lower laccase activity of 2,430 U l−1, biomass production of 4.5 g l−1, and three laccase isoforms. These results show that P. ostreatus performs much better in submerged fermentation than in solid-state fermentation. This is the first report that shows such atypical behavior in the production of extracellular laccases by fungi.  相似文献   

18.
The green twigs of 1-year-old Eucalyptus microtheca F. Muell seedlings were cultured on modified MS medium, supplemented with α-naphthalene acetic acid (NAA) and kinetin (Kin) hormones at 12 different concentrations. After 4 weeks, the combination of 1 mg l−1 NAA + 1 mg l−1 Kin induced the highest number of axillary shoots. Meanwhile, embryogenic calli were observed in media containing 4 mg l−1 NAA + 0.5 mg l−1 Kin, without any regeneration. The hormone treatments were followed by subculturing the twigs in different levels of thidiazuron (TDZ). The combination of 1 mg l−1 NAA + 1 mg l−1 Kin together with 0.01 mg l−1 TDZ resulted in an increase of direct shoot, while higher amounts of TDZ led to adventitious shoot induction. Somatic embryogenesis was observed in the treatment containing 0.01 mg l−1 TDZ + 4 mg l−1 NAA + 0.5 mg l−1Kin. The peroxidase (POD) band patterns in regenerated plantlets were investigated in order to determine the effect of different levels of TDZ on loci synthesis. A dimer locus, a tetramer locus and two epigenetic bands (a new band for NAA + Kin and the other for TDZ) were observed in the POD profiles. In case of low (0.01 mg l−1 and 0.1 mg l−1) levels of TDZ, one heterozygote allele was disappeared from dimer locus, while at higher TDZ levels, the dimer locus lost its stability and tetramer locus showed a high activity. Thus, POD allele patterns seems to be a feasible marker for different types of regeneration.  相似文献   

19.
Cell cultures of Cayratia trifolia (Vitaceae), a tropical lianas, were maintained in Murashige and Skoog’s medium containing 0.25 mg l−1 NAA, 0.2 mg l−1 kinetin and casein hydrolysate 250 mg l−1. Cell suspension cultures of C. trifolia accumulate stilbenes (piceid, resveratrol, viniferin, ampelopsin), which on elicitation by any of 500 μM salicylic acid, 100 μM methyl jasmonate, 500 μM ethrel and 500 mg l−1 yeast extract, added on the 7th day, were enhanced by 3- to 6-fold (5–11 mg l−1) by the 15th day.  相似文献   

20.
In this study, attempts were made to develop a protocol for regeneration of transgenic plants via Agrobacterium tumefaciens-mediated transformation of leaf segments from ‘Valencia’ sweet orange (Citrus sinensis L. Osbeck) using gfp (green fluorescence protein) as a vital marker. Sensitivity of the leaf segments regeneration to kanamycin was evaluated, which showed that 50 mg l−1 was the best among the tested concentrations. In addition, factors affecting the frequency of transient gfp expression were optimized, including leaf age, Agrobacterium concentration, infection time, and co-cultivation period. Adventitious shoots regenerated on medium containing Murashige and Tucker basal medium plus 0.1 mg l−1 α-naphthaleneacetic acid (NAA), 0.5 mg l−1 6-benzyladenine (BA) and 0.5 mg l−1 kinetin (KT). The leaf segments from 3-month-old in vitro seedlings, Agrobacterium concentration at OD600 of 0.6, 10-min immersion, and co-cultivation for 3 days yielded the highest frequency of transient gfp expression, shoots regeneration response and transformation efficiency. By applying these optimized parameters we recovered independent transformed plants at the transformation efficiency of 23.33% on selection medium (MT salts augmented with 0.5 mg l−1 BA, 0.5 mg l−1 KT, 0.1 mg l−1 NAA, 50 mg l−1 kanamycin and 250 mg l−1 cefotaxime). Expression of gfp in the leaf segments and regenerated shoots was confirmed using fluorescence microscope. Polymerase chain reaction (PCR) analysis using gfp and nptII gene-specific primers further confirmed the integration of the transgene in the independent transgenic plants. The transformation methodology described here may pave the way for generating transgenic plants using leaf segments as explants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号