首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lysophosphatidic acid (LPA) is a lipid growth factor that induces proliferation of fibroblasts by activating the cAMP response element binding protein (CREB). Here, we further investigated whether LPA induces proliferation of P19 cells, a line of pluripotent embryonic carcinoma cells. 5′-Bromo-2-deoxyuridine incorporation and cell viability assays showed that LPA stimulated proliferation of P19 cells. Immunoblot experiments with P19 cells revealed that the mitogen activated protein kinases, including p-ERK, p38, pAKT, glycogen synthase kinase 3β, and CREB were phosphorylated by treatment with 10 μM LPA. LPA-induced phosphorylation of CREB was efficiently blocked by U0126 and H89, inhibitors of the MAP kinases ERK1/2 and mitogen- and stress-activated protein kinase 1, respectively. Involvement of cyclin D1 in LPA-induced P19 cell proliferation was verified by immunoblot analysis in combination with pharmacological inhibitor treatment. Furthermore, LPA up-regulated CRE-harboring cyclin D1 promoter activity, suggesting that CREB and cyclin D1 play significant roles in LPA-induced proliferation of P19 embryonic carcinoma cells.  相似文献   

2.
3.
4.
5.
Prostaglandins (PGs) such as PGE2 enhance proliferation in many cells, apparently through several distinct mechanisms, including transactivation of the epidermal growth factor (EGF) receptor (EGFR) as well as EGFR-independent pathways. In this study we found that in primary cultures of rat hepatocytes PGE2 did not induce phosphorylation of the EGFR, and the EGFR tyrosine kinase blockers gefitinib and AG1478 did not affect PGE2-stimulated phosphorylation of ERK1/2. In contrast, PGE2 elicited EGFR phosphorylation and EGFR tyrosine kinase inhibitor-sensitive ERK phosphorylation in MH1C1 hepatoma cells. These findings suggest that PGE2 elicits EGFR transactivation in MH1C1 cells but not in hepatocytes. Treatment of the hepatocytes with PGE2 at 3 h after plating amplified the stimulatory effect on DNA synthesis of EGF administered at 24 h and advanced and augmented the cyclin D1 expression in response to EGF in hepatocytes. The pretreatment of the hepatocytes with PGE2 resulted in an increase in the magnitude of EGF-stimulated Akt phosphorylation and ERK1/2 phosphorylation and kinase activity, including an extended duration of the responses, particularly of ERK, to EGF in PGE2-treated cells. Pertussis toxin abolished the ability of PGE2 to enhance the Akt and ERK responses to EGF. The results suggest that in hepatocytes, unlike MH1C1 hepatoma cells, PGE2 does not transactivate the EGFR, but instead acts in synergism with EGF by modulating mitogenic mechanisms downstream of the EGFR. These effects seem to be at least in part G(i) protein-mediated and include upregulation of signaling in the PI3K/Akt and the Ras/ERK pathways.  相似文献   

6.
Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis and is associated with high levels of psychological distress. We have shown that beta-adrenergic receptors (β-ARs), which are activated by stress neurotransmitters, regulate PDAC cells via cyclic AMP (cAMP)-dependent signaling in vitro, that social stress promotes PDAC progression in mouse xenografts and that γ-aminobutyric acid (GABA) inhibits these responses in vitro and in vivo. The targeted inhibition of stress-induced regulatory pathways may abolish the potentially negative impact of psychological stress on clinical outcomes. Our current data show that chronic exposure of PDAC cell lines Panc-1 (activating point mutations in K-ras) and BXPC-3 (no mutations in K-ras) in vitro to the stress neurotransmitter epinephrine at the concentration (15 nM) previously measured in the serum of mice exposed to social stress significantly increased proliferation and migration. These responses were inhibited in a concentration-dependent manner by celecoxib. The effects of celecoxib alone and in combination with γ-aminobutyric acid (GABA) on the progression of subcutaneous mouse xenografts from the cell line (BXPC-3) most responsive to epinephrine were then investigated in the presence and absence of social stress. Cancer-stimulating factors (VEGF & prostaglandin E(2) [PGE(2)]) and levels of cAMP were measured by immunoassays in blood and xenograft tissue. Phosphorylation of the signaling proteins ERK, CREB, Src, and AKT was assessed by ELISA assays and Western blotting. Expression of COX-2, 5-lipoxygenase, and p-5-LOX were determined by semi-quantitative Western blotting. Celecoxib alone significantly inhibited xenograft progression and decreased systemic and tumor VEGF, PGE2, and cAMP as well as phosphorylated signaling proteins in stress-exposed and stress-free mice. These responses were significantly enhanced by co-treatment with GABA. The celecoxib-induced downregulation of COX-2 protein and p-5-LOX was also significantly enhanced by GABA under both experimental conditions. Our findings identify the targeted inhibition of stress-induced pathways as a promising area for more effective cancer intervention in pancreatic cancer.  相似文献   

7.
The prostaglandin E(2) (PGE(2)) G protein-coupled receptor (GPCR), EP2, plays important roles in mouse skin tumor development (Chun, K. S., Lao, H. C., Trempus, C. S., Okada, M., and Langenbach, R. (2009) Carcinogenesis 30, 1620-1627). Because keratinocyte proliferation is essential for skin tumor development, EP2-mediated signaling pathways that contribute to keratinocyte proliferation were investigated. A single topical application of the EP2 agonist, butaprost, dose-dependently increased keratinocyte replication via activation of epidermal growth factor receptor (EGFR) and PKA signaling. Because GPCR-mediated activation of EGFR can involve the formation of a GPCR-β-arrestin-Src signaling complex, the possibility of a β-arrestin1-Src complex contributing to EP2-mediated signaling in keratinocytes was investigated. Butaprost induced β-arrestin1-Src complex formation and increased both Src and EGFR activation. A role for β-arrestin1 in EP2-mediated Src and EGFR activation was demonstrated by the observation that β-arrestin1 deficiency significantly reduced Src and EGFR activation. In agreement with a β-arrestin1-Src complex contributing to EGFR activation, Src and EGFR inhibition (PP2 and AG1478, respectively) indicated that Src was upstream of EGFR. Butaprost also induced the activation of Akt, ERK1/2, and STAT3, and both β-arrestin1 deficiency and EGFR inhibition (AG1478 or gefitinib) decreased their activation. In addition to β-arrestin1-dependent EGFR activation, butaprost increased PKA activation, as measured by phospho-GSK3β (p-GSK3β) and p-cAMP-response element-binding protein formation. PKA inhibition (H89 or R(P)-adenosine-3',5'-cyclic monophosphorothioate (R(P)-cAMPS)) decreased butaprost-induced cAMP-response element-binding protein and ERK activation but did not affect EGFR activation, whereas β-arrestin1 deficiency decreased EGFR activation but did not affect butaprost-induced PKA activation, thus indicating that they were independent EP2-mediated pathways. Therefore, the results indicate that EP2 contributed to mouse keratinocyte proliferation by G protein-independent, β-arrestin1-dependent activation of EGFR and G protein-dependent activation of PKA.  相似文献   

8.
Cytosolic phospholipase A(2)α (cPLA(2)α) up-regulation has been reported in human colorectal cancer cells, thus we aimed to elucidate its role in the proliferation of the human colorectal cancer cell line, HT-29. EGF caused a rapid activation of cPLA(2)α which coincided with a significant increase in cell proliferation. The inhibition of cPLA(2)α activity by pyrrophenone or by antisense oligonucleotide against cPLA(2)α (AS) or inhibition of prostaglandin E(2) (PGE(2)) production by indomethacin resulted with inhibition of cell proliferation, that was restored by addition of PGE(2). The secreted PGE(2) activated both protein kinase A (PKA) and PKB/Akt pathways via the EP2 and EP4 receptors. Either, the PKA inhibitor (H-89) or the PKB/Akt inhibitor (Ly294002) caused a partial inhibition of cell proliferation which was restored by PGE(2). But, inhibited proliferation in the presence of both inhibitors could not be restored by addition of PGE(2). AS or H-89, but not Ly294002, inhibited CREB activation, suggesting that CREB activation is mediated by PKA. AS or Ly294002, but not H-89, decreased PKB/Akt activation as well as the nuclear localization of β-catenin and cyclin D1 and increased the plasma membrane localization of β-catenin with E-cadherin, suggesting that these processes are regulated by the PKB pathway. Similarly, Caco-2 cells exhibited cPLA(2)α dependent proliferation via activation of both PKA and PKB/Akt pathways. In conclusion, our findings suggest that the regulation of HT-29 proliferation is mediated by cPLA(2)α-dependent PGE(2) production. PGE(2)via EP induces CREB phosphorylation by the PKA pathway and regulates β-catenin and cyclin D1 cellular localization by PKB/Akt pathway.  相似文献   

9.
10.
The thrombin/proteinase-activated receptors (PARs) have been shown to regulate smooth muscle cell proliferation, migration, and vascular maturation. Thrombin up-regulates expression of several proteins including cyclooxygenase (COX)-2 in vascular smooth muscle cells (VSMCs) and contributes to vascular diseases. However, the mechanisms underlying thrombin-regulated COX-2 expression in VSMCs remain unclear. Western blotting, RT-PCR, and EIA kit analyses showed that thrombin induced the expression of COX-2 mRNA and protein and PGE(2) release in a time-dependent manner, which was attenuated by inhibitors of PKC (GF109203X and rottlerin), c-Src (PP1), EGF receptor (EGFR; AG1478) and MEK1/2 (U0126), or transfection with dominant negative mutants of PKC-delta, c-Src or extracellular regulated kinase (ERK) and ERK1 short hairpin RNA interference (shRNA). These results suggest that transactivation of EGFR participates in COX-2 expression induced by thrombin in VSMCs. Accordingly, thrombin stimulated phosphorylation of ERK1/2 which was attenuated by GF109203X, rottlerin, PP1, GM6001, CRM197, AG1478, or U0126, respectively. Furthermore, this up-regulation of COX-2 mRNA and protein was blocked by selective inhibitors of AP-1 and NF-kappaB, curcumin and helenalin, respectively. Moreover, thrombin-stimulated activation of NF-kappaB, AP-1, and COX-2 promoter activity was blocked by the inhibitors of c-Src, PKC, EGFR, MEK1/2, AP-1 and NF-kappaB, suggesting that thrombin induces COX-2 promoter activity mediated through PKC(delta)/c-Src-dependent EGFR transactivation, MEK-ERK1/2, AP-1, and NF-kappaB. These results demonstrate that in VSMCs, activation of ERK1/2, AP-1 and NF-kappaB pathways was essential for thrombin-induced COX-2 gene expression. Understanding the regulation of COX-2 expression and PGE(2) release by thrombin/PARs system on VSMCs may provide potential therapeutic targets of vascular inflammatory disorders including arteriosclerosis.  相似文献   

11.
Macrophage colony stimulating factor (M-CSF) or CSF-1 controls the development of the macrophage lineage through its receptor tyrosine kinase, c-Fms. cAMP has been shown to influence proliferation and differentiation in many cell types, including macrophages. In addition, modulation of cellular ERK activity often occurs when cAMP levels are raised. We have shown previously that agents that increase cellular cAMP inhibited CSF-1-dependent proliferation in murine bone marrow-derived macrophages (BMM) which was associated with an enhanced extracellular signal-regulated kinase (ERK) activity. We report here that increasing cAMP levels, by addition of either 8-bromo cAMP (8BrcAMP) or prostaglandin E(1) (PGE1), can induce macrophage differentiation in M1 myeloid cells engineered to express the CSF-1 receptor (M1/WT cells) and can potentiate CSF-1-induced differentiation in the same cells. The enhanced CSF-1-dependent differentiation induced by raising cAMP levels correlated with enhanced ERK activity. Thus, elevated cAMP can promote either CSF-1-induced differentiation or inhibit CSF-1-induced proliferation depending on the cellular context. The mitogen-activated protein kinase/extracellular signal-related protein kinase kinase (MEK) inhibitor, PD98059, inhibited both the cAMP- and the CSF-1R-dependent macrophage differentiation of M1/WT cells suggesting that ERK activity might be important for differentiation in the M1/WT cells. Surprisingly, addition of 8BrcAMP or PGE1 to either CSF-1-treated M1/WT or BMM cells suppressed the CSF-1R-dependent tyrosine phosphorylation of cellular substrates, including that of the CSF-1R itself. It appears that there are at least two CSF-1-dependent pathway(s), one MEK/ERK dependent pathway and another controlling the bulk of the tyrosine phosphorylation, and that cAMP can modulate signalling through both of these pathways.  相似文献   

12.
13.
14.
15.
We have analyzed the role of the thyroid hormone receptors (TRs) in epidermal homeostasis. Reduced keratinocyte proliferation is found in interfollicular epidermis of mice lacking the thyroid hormone binding isoforms TRα1 and TRβ (KO mice). Similar results were obtained in hypothyroid animals, showing the important role of the liganded TRs in epidermal proliferation. In addition, KO and hypothyroid animals display decreased hyperplasia in response to 12-O-tetradecanolyphorbol-13-acetate. Both receptor isoforms play overlapping functional roles in the skin because mice lacking individually TRα1 or TRβ also present a proliferative defect but not as marked as that found in double KO mice. Defective proliferation in KO mice is associated with reduction of cyclin D1 expression and up-regulation of the cyclin-dependent kinase inhibitors p19 and p27. Paradoxically, ERK and AKT activity and expression of downstream targets, such as AP-1 components, are increased in KO mice. Increased p65/NF-κB and STAT3 phosphorylation and, as a consequence, augmented expression of chemokines and proinflammatory cytokines is also found in these animals. These results show that thyroid hormones and their receptors are important mediators of skin proliferation and demonstrate that TRs act as endogenous inhibitors of skin inflammation, most likely due to interference with AP-1, NF-κB, and STAT3 activation.  相似文献   

16.
17.
Although protein kinase C (PKC) has been implicated in cell cycle progression, cell proliferation, and tumor promotion, the precise roles of specific isoforms in these processes is not clear. Therefore, we constructed and analyzed a series of expression vectors that encode hemagglutinin-tagged wild type (WT), constitutively active mutants (Delta NPS and CAT), and dominant negative mutants of PKCs alpha, beta 1, beta 2, gamma, delta, epsilon, eta, zeta, and iota. Cyclin D1 promoter reporter assays done in serum-starved NIH3T3 cells indicated that the constitutively active mutants of PKC-alpha and PKC-epsilon were the most potent activators of this reporter, whereas the constitutively active mutant of PKC-delta inhibited its activity. Transient transfection studies with a series of 5'-deleted cyclin D1 promoter constructs showed that the proximal 964-base region, which contains AP-1, SP1, and CRE enhancer elements, is required for activation of the cyclin D1 promoter by PKC-alpha. Deletion of the AP-1 enhancer element located at position -954 upstream from the initiation site abolished PKC-alpha-dependent activation of cyclin D1 expression. Deletion of the SP1 or CRE enhancer elements did not have any effect. A dominant negative mutant of c-Jun inhibited activation of the cyclin D1 promoter in a concentration-dependent manner, providing further evidence that AP-1 activity is required for activation of the cyclin D1 promoter by PKC-alpha and PKC-epsilon. The constitutively active mutants of PKC-alpha and PKC-epsilon also activated c-fos, c-jun, and cyclin E promoter activity. Furthermore, NIH3T3 cells that stably express the constitutively active mutants of PKC-alpha or PKC-epsilon displayed increased expression of endogenous cyclins D1 and E and faster growth rates. These results provide evidence that the activation of PKC-alpha or PKC-epsilon in mouse fibroblasts can play an important role in enhancing cell cycle progression and cell proliferation.  相似文献   

18.
Mancozeb, ethylene(bis)dithiocarbamate fungicides, has been well documented in the literature as a multipotent carcinogen, but the underlying mechanism remains unrevealed. Thus, mancozeb has been selected in this study with the objective to decipher the molecular mechanism that culminates in carcinogenesis. We employed two-dimensional gel electrophoresis and mass spectrometry to generate a comparative proteome profile of control and mancozeb (200?mg/kg body weight) exposed mouse skin. Although many differentially expressed proteins were found, among them, two significantly upregulated proteins, namely, S100A6 (Calcyclin) and S100A9 (Calgranulin-B), are known markers of keratinocyte differentiation and proliferation, which suggested their role in mancozeb-induced neoplastic alterations. Therefore, we verified these alterations in the human system by using HaCaT cells as an in vitro model for human skin keratinocyte carcinogenesis. Upregulation of these two proteins upon mancozeb (0.5?μg/mL) exposure in HaCaT cells indicated its neoplastic potential in human skin also. This potential was confirmed by increase in number of colonies in colony formation and anchorage-independent growth assays. Modulation of S100A6/S100A9 targets, elevated phosphorylation of extracellular signal regulated kinase (ERK1/2), Elk1, nuclear factor- kappa B and cell division cycle 25 C phosphatase, and cyclin D1 and cyclooxygenase-2 upregulation was seen. In addition, PD98059 (ERK1/2 inhibitor) reduced cell proliferation induced by mancozeb, confirming the involvement of ERK1/2 signaling. Conclusively, we herein present the first report asserting that the mechanism involving S100A6 and S100A9 regulated ERK1/2 signaling underlies the mancozeb-induced neoplastic potential in human skin.  相似文献   

19.
Lysophospholipids regulate a wide array of biological processes including cell survival and proliferation. In our previous studies, we found that in addition to SRE, CRE is required for maximal c-fos promoter activation triggered by lysophosphatidic acid (LPA). c-fos is an early indicator of various cells into the cell cycle after mitogenic stimulation. However, role of CREB activation in LPA-stimulated proliferation has not been elucidated yet. Here, we investigate how LPA induces proliferation in Rat-2 fibroblast cell via CREB activation. We found that total cell number and BrdU-positive cells were increased by LPA. Moreover, levels of c-fos mRNA and cyclin D1 protein were increased via LPA-induced CREB phosphorylation. Furthermore, LPA-induced Rat-2 cell proliferation was decreased markedly by ERK inhibitor (U0126) and partially by MSK inhibitor (H89). Taken together, these results suggest that CREB activation could partially up-regulate accumulation of cyclin D1 protein level and proliferation of LPA-stimulated Rat-2 fibroblast cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号