首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This report highlights the first successful cryopreservation protocol for shoot tips of Garcinia mangostana L. achieved by using vitrification technique. We investigated the effects of different temperatures and exposure periods to a plant vitrification solution 2 (PVS2), sucrose concentrations and preculture periods, and unloading treatments in steps of the vitrification protocol on the survival of G. mangostana shoot tips after cryopreservation. Exposure to PVS2 for 25 min gave beneficial effects with 10.4 ± 1.8 % survival at 0 °C with average water content of 1.1 ± 0.3 g g?1 dry mass. Survival was 13.7 ± 5.5 % when using preculture medium with full-strength Murashige and Skoog (MS) medium supplemented with 0.6 M sucrose for 2 days. A significant difference was observed in survival of shoot tips when treated with various sucrose concentrations in preculture which strengthens their importance towards enhancing survival of shoot tips after cryopreservation. MS with 0.4 M sucrose and 2 M glycerol applied as an unloading solution increased the survival of shoot tips to 44.1 ± 6.5 %. Experiments on the effect of ascorbic acid were also conducted for each step of vitrification. Our results showed higher survival of 45.8 ± 3.8 % but there were no significant effects compared with the control (without ascorbic acid). Further study on the recovery dark/light period was conducted. Survival of shoot tips significantly increased to 50.0 ± 16.7 % when subjected to 7 days in the dark before transferring to 16 h/8 h light/dark photoperiod. These studies strengthen suggestions that cryopreservation through vitrification is possible for ex situ conservation of germplasm of this tropical recalcitrant species.  相似文献   

2.
An efficient and broad-spectrum protocol for cryopreservation of Vitis spp. shoot tips by droplet-vitrification is reported. Shoot tips (1.0 mm) containing 5–6 leaf primordia (LPs) were precultured for 3 d with a preculture medium containing 0.3 M sucrose, 0.16 μM glutathione, and 0.14 μM ascorbic acid. Precultured shoot tips were treated for 20 min at 24°C with a loading solution composed of 2 M glycerol and 0.4 M sucrose, followed by exposure at 0°C to half-strength plant vitrification solution 2 (PVS2) for 30 min, and then full-strength PVS2 for 50 min. Dehydrated shoot tips were transferred into 2.5-μL PVS2 carried on aluminum foil, prior to a direct immersion in liquid nitrogen. With this method, an average shoot regrowth level of 50.5% was obtained from cryopreserved shoot tips in six V. vinifera genotypes (three wine cultivars, two table cultivars, and one rootstock) and two V. pseudoreticulata genotypes. Vegetative growth of the regenerants recovered from cryopreservation, significantly increased as the number of subculture cycles increased and was greater than the control after the third subculture following cryopreservation. Inter-simple sequence repeats (ISSR) and random amplification of polymorphic DNA (RAPD) analyses did not detect any polymorphic loci in the plants of V. vinifera L. cv. ‘Cabernet Sauvignon’ from cryopreserved shoot tips compared to the original cultures. This droplet-vitrification cryopreservation method provides a technical platform to set up cryobanks of Vitis spp.  相似文献   

3.
Tuberaria major is an endangered endemic species from the Algarve, in the south of Portugal. We investigated two techniques for the cryopreservation of T. major shoot tips, namely vitrification and encapsulation-dehydration. Before the cryopreservation trials, shoot tips were precultured for 1 day on liquid Murashige and Skoog (MS) medium containing 0.3 M sucrose. For the vitrification method, shoots tips were exposed for 0, 30, 60, 90 and 120 min to plant vitrification solution 2 (PVS2). As for the encapsulation-dehydration method, shoot tips were dried inside a laminar air flow cabinet for 0, 1, 2, 3, 4, 5 and 6 h at room temperature. The highest regrowth percentages were approximately 60 and 67 % for vitrification and encapsulation-dehydration, respectively. The best times were 60 min exposure to PVS2 for vitrification and 3 h desiccation for encapsulation-dehydration. Though these are preliminary results, the use of the cryopreservation techniques tested here proved to be an important asset in the conservation of this endangered species and will complement the conservation strategies previously developed.  相似文献   

4.
In this work, we compared the efficiency of encapsulation-dehydration and droplet-vitrification techniques for cryopreserving grapevine (Vitis vinifera L.) cv. Portan shoot tips. Recovery of cryopreserved samples was achieved with both techniques; however, droplet-vitrification, which was used for the first time with grapevine shoot tips, produced higher regrowth. With encapsulationdehydration, encapsulated shoot tips were precultured in liquid medium with progressively increasing sucrose concentrations over a 2-day period (12 h in medium with 0.25, 0.5, 0.75 and 1.0 M sucrose), then dehydrated to 22.28% moisture content (fresh weight). After liquid nitrogen exposure 37.1% regrowth was achieved using 1 mm-long shoot tips and only 16.0% with 2 mm-long shoot tips. With droplet-vitrification, 50% regrowth was obtained following treatment of shoot tips with a loading solution containing 2 M glycerol + 0.4 M sucrose for 20 min, dehydration with half-strength PVS2 vitrification solution (30% (w/v) glycerol, 15% (w/v) ethylene glycol, 15% dimethylsulfoxide and 0.4 M sucrose in basal medium) at room temperature, then with full strength PVS2 solution at 0°C for 50 min before direct immersion in liquid nitrogen. No regrowth was achieved after cryopreservation when shoot tips were dehydrated with PVS3 vitrification solution (50% (w/v) glycerol and 50% (w/v) sucrose in basal medium).  相似文献   

5.
In vitro-grown shoot tips of Emmenopterys henryi Oliv. were successfully cryopreserved by vitrification. Shoot tips excised from 3-month old plantlets were precultured in a liquid hormone-free Murashige and Skoog (MS) medium supplemented with 0.5 M sucrose for 3 days at 25°C and then treated with a mixture of 2 M glycerol plus 0.4 M sucrose (LS solution) for 40 min at 25°C. Osmo-protected shoot tips were first dehydrated with 60% vitrification solution (PVS2) for 30 min at 0°C and followed by 100% PVS2 for 40 min at 0°C. After changing the solution with fresh 100% PVS2, the shoot tips were directly plunged into liquid nitrogen. After rapid warming in a water-bath at 40°C for 2 min, the shoot tips were washed for 20 min at 25°C with liquid MS medium containing 1.2 M sucrose and then transferred onto solid MS medium supplemented with kinetin 2 mg l−1, α-naphthaleneacetic acid 0.1 mg l−1, 3% (w/v) sucrose and 0.75% (w/v) agar. The shoot tips were kept in the dark for 7 days prior to exposure to the light (12 h photoperiod cycle). Direct shoot elongation was observed in approximately 12 days. The regeneration rate was approximately 75–85%. This method appears to be a promising technique for cryopreserving shoot tips of Emmenopterys henryi Oliv. germplasm.  相似文献   

6.
In vitro grown shoot tips of transgenic papaya lines (Carica papaya L.) were successfully cryopreserved by vitrification. Shoot tips were excised from stock shoots that were preconditioned in vitro for 45–50-day-old and placed on hormone-free MS medium with 0.09 M sucrose. After loading for 60 min with a mixture of 2 M glycerol and 0.4 M sucrose at 25°C, shoot tips were dehydrated with a highly concentrated vitrification solution (PVS2) for 80 min at 0°C and plunged directly into liquid nitrogen. The regeneration rate was approximately 90% after 2 months post-thawing. Successfully vitrified and warmed shoot tips of three non-transgenic varieties and 13 transgenic lines resumed growth within 2 months and developed shoots in the absence of intermediate callus formation. Dehydration with PVS2 was important for the cryopreservation of transgenic papaya lines. This vitrification procedure for cryopreservation appears to be promising as a routine method for cryopreserving shoot tips of transgenic papaya line germplasm.  相似文献   

7.
In vitro-grown shoot tips of five tetraploid potato (SolanumtuberosumL.) clones were cryopreserved by vitrification. Excisedshoot tips (0.5–0.7 mm) were pre-cultured on filter paperdiscs over half strength liquid Murashige and Skoog (MS) mediumsupplemented with 8.7 µMGA3and different combinationsof sucrose (0.3, 0.5 and 0.7M) plus mannitol (0, 0.2 and 0.4M)for 2 d under a 16 h photoperiod at 24 °C. The pre-culturedshoot tips were either successively loaded with 20 and 60% PVS2 solutions or directly exposed to concentrated vitrificationsolution before physical vitrification during liquid nitrogentreatment. The vitrified shoot tips were warmed rapidly andtreated with dilution mixture (MS+1.2Msucrose) for 30 min beforeplating on regrowth medium. Addition of mannitol to the pre-culturemedium improved survival of vitrified shoot tips. Direct dehydrationof pre-cultured shoot tips with concentrated PVS 2 was detrimentalto survival of vitrified shoot tips. Shoot tips pre-culturedon medium containing 0.3Msucrose plus 0.2Mmannitol, and loadedwith 20% PVS 2 for 30 min followed by 15 min incubation in 60%PVS 2 and 5 min incubation in 100% PVS 2 at 0 °C resultedin up to 54% survival after vitrification. About 50% of vitrifiedand warmed shoot tips formed shoots directly. Post-thaw culturingof vitrified shoot tips on medium containing an elevated levelof sucrose (0.2M) under diffuse light for the first week enhancedthe survival rate. Continuous culturing of vitrified shoot tipson high-sucrose medium induced multiple shoot formation.Copyright1998 Annals of Botany Company Solanum tuberosumL., potato, cryopreservation, germplasm conservation,in vitroconservation, meristems, shoot tips, tissue culture, vitrification.  相似文献   

8.
Jerusalem artichoke (Helianthus tuberosus L.) cultivars are conserved in genebanks for use in breeding and horticultural research programs. Jerusalem artichoke collections are particularly vulnerable to environmental and biological threats because they are often maintained in the field. These field collections could be securely conserved in genebanks if improved cryopreservation methods were available. This work used four Jersualem artichoke cultivars (‘Shudi’, ‘M6’, ‘Stampede’, and ‘Relikt’) to improve upon an existing procedure. Four steps were optimized and the resulting procedure is as follows: preculture excised shoot tips (2–3 mm) in liquid MS medium supplemented with 0.4 M sucrose for 3 days, osmoprotect shoot tips in loading solution for 30 min, dehydrate with plant vitrification solution 2 for 15 min before rapid cooling in liquid nitrogen, store in liquid nitrogen, rapidly rewarm in MS liquid medium containing 1.2 M sucrose, and recover on MS medium supplemented with 0.1 mg L?1 GA3 for 3–5 days in the dark and then on the same medium for 4–6 weeks in the light (14 h light/10 h dark). After cryopreservation, Jerusalem artichoke cultivar ‘Shudi’ had the highest survival (93%) and regrowth (83%) percentages. Cultivars ‘M6’, ‘Stampede’, and ‘Relikt’ achieved survival and regrowth percentages ranging from 44 to 72%, and 37–53%, respectively. No genetic changes, as assessed by using simple sequence repeat markers, were detected in plants regenerated after LN exposure in Jerusalem artichoke cultivar ‘Shudi’. Differential scanning calorimetry analyses were used to investigate the thermal activities of the tissues during the cryopreservation process and it was determined that loading with 2.0 M sucrose and 0.4 M sucrose dehydrated the shoot tips prior to treatment with PVS2. Histological observations revealed that the optimized droplet vitrification protocol caused minimal cellular damage within the meristem cells of the shoot tips.  相似文献   

9.
Summary Cryopreservation of African violet via encapsulation-dehydration, vitrification, and encapsulation-vitrification of shoot tips was evaluated. Encapsulation-dehydration, pretreatment of shoot tips with 0.3 M sucrose for 2 d followed by air dehydration for 2 and 4 h resulted in complete survival and 75% regrowth, respectively. Dehydration of encapsulated shoot tips with silica gel for 1 h resulted in 80% survival but only 30% regrowth. Higher viability of shoot tips was obtained when using a step-wise dehydration of the material rather than direct exposure to 100% plant vitrification solution (PVS2). Complete survival and 90% regrowth were achieved with a four-step dehydration with PVS2 at 25°C for 20 min prior to freezing. The use of 2M glycerol plus 0.4M sucrose or 10% dimethyl sulfoxide (DMSO) plus 0.5M sucrose as a cryoprotectant resulted in 55% survival of shoots. The greatest survival (80–100%) and regrowth (80%) was obtained when shoot tips were cryoprotected with 10% DMSO plus 0.5M sucrose or 5% DMSO plus 0.75M sucrose followed by dehydration with 100% PVS2. Shoot tips cryoprotected with 2M glycerol plus 0.4M sucrose for 20 min exhibited complete survival (100%) and the highest regrowth (55%). In encapsulation-vitrification, dehydration of encapsulated and cryoprotected shoot tips with 100% PVS2 at 25°C for 5 min resulted in 85% survival and 80% regrowth.  相似文献   

10.
 Sugar beet shoot tips from cold-acclimated plants were successfully cryopreserved using a vitrification technique. Dissected shoot tips were precultured for 1 day at 5  °C on solidified DGJ0 medium with 0.3 M sucrose. After loading for 20 min with a mixture of 2 M glycerol and 0.4 M sucrose (20  °C), shoot tips were dehydrated with PVS2 (0  °C) for 20 min prior to immersion in liquid nitrogen. Both cold acclimation and loading enhanced the dehydration tolerance of shoot tips to PVS2. After thawing, shoot tips were deloaded for 15 min in liquid DGJ0 medium with 1.2 M sucrose (20  °C). The optimal exposure time to both loading solution and PVS2 depended on the in vitro morphology of the clone. With tetraploid clones a higher sucrose concentration during cold acclimation and preculture further enhanced survival after cryopreservation. Survival rates ranged between 60% and 100% depending on the clone. Since only 10–50% of the surviving shoot tips developed into non-hyperhydric shoots, regrowth was optimized. Received: 13 September 1999 / Revision received: 2 March 2000 / Accepted: 16 March 2000  相似文献   

11.
We report a straightforward and widely applicable cryopreservation method for Lilium shoot tips. This method uses adventitious shoots that were induced from leaf segments cultured for 4 weeks on a shoot regeneration medium containing 1 mg/l α-naphthaleneacetic acid and 0.5 mg/l thidiazuron. Shoot tips (1.5–2 mm in length) including 2–3 leaf primordia were precultured on Murashige and Skoog (MS; 1962) medium with 0.5 M sucrose for 1 day and then treated with a loading solution containing 0.4 M sucrose and 2 M glycerol for 20 min, followed by a Plant Vitrification Solution 2 (PVS2) treatment for 4 h at 0 °C. Dehydrated shoot tips were transferred onto 2.5 µl PVS2 droplets on aluminum foil strips, prior to a direct immersion into liquid nitrogen for 1 h. Frozen shoot tips were re-warmed in MS medium containing 1.2 M sucrose for 20 min at room temperature, followed by post-thaw culture for shoot regrowth. Shoot regrowth levels ranged from 42.5 % for L. longiflorum × Oriental ‘Triumphator’ to 87.5 % for L. Oriental hybrid ‘Siberia’, with a mean shoot regrowth level of 67.1 % across the six diverse Lilium genotypes tested. Histological observations found that the survival patterns were similar in cryopreserved shoot tips of ‘Triumphator’ and ‘Siberia’. Assessments using inter-simple sequence repeat markers found no differences in regenerants recovered from the control stock cultures and from cryopreserved shoot tips in ‘Triumphator’ and ‘Siberia’. This Lilium droplet-vitrification cryopreservation method is efficient, simple and widely applicable for the long-term conservation of lily genetic resources.  相似文献   

12.
 Shoot tips from in vitro-grown, cold-hardened stock plants of white poplar (Populus alba L.) were successfully cryopreserved at –196  °C by one-step vitrification. After preculturing at 5  °C for 2 days on hormone-free MS medium containing different sucrose concentrations, and loading for 20 min with 2 m glycerol and 0.4 m sucrose, shoot tips were treated with the PVS2 vitrification solution and plunged directly into liquid nitrogen. Best survival rate (90%) was obtained when shoot tips were precultured on 0.09 m sucrose, hormone-free MS medium, vitrified by exposure to PVS2 solution for 60 min at 0  °C and, following cryopreservation, rewarmed at 40  °C and washed in 1.2 m sucrose solution for 20 min. Regrowth was improved by plating shoot tips on a gelled MS medium containing 1.5 μm N6-benzyladenine plus 0.5 μm gibberellic acid, while shoot rooting was achieved on MS medium containing 3 μm indole-3-butyric acid. Following this procedure, almost 60% rooted shoots were obtained from cryopreserved shoot tips. Received: 1 February 1999 / Revision received: 3 May 1999 · Accepted: 21 May 1999  相似文献   

13.
Arachis glabrata Benth (perennial peanut) is a rhizomatous legume with high forage value and great potential for soil conservation as well as it displays valuable plant genetic resources for the cultivated edible peanut improvement. In this study, we developed for the first time successful protocols for micropropagation and cryopreservation of A. glabrata. First fully expanded leaflets from greenhouse-growing plants were efficiently established in vitro (93%) and displayed high frequency of bud induction (58%) on MS medium with 6 mg L?1 1-fenil-3-(1,2,3-tiadiazol-5-il)urea [TDZ]. Whole plant regeneration was achieved via direct organogenesis by transferring the induced buds to MS media. Immature unexpanded leaves from micropropagated plants were effectively cryopreserved by using the droplet-vitrification technique. Maximum survival (~ 70%) and further regeneration (60–67%) were obtained by preconditioning immature leaves on semisolid MS with 0.3 M sucrose (1 d), exposing to loading solution consisting of 0.4 M sucrose plus 2 M glycerol (30 min) followed by glycerol-sucrose plant vitrification solution PVS3 (150 min in ice), and direct plunging into liquid nitrogen in droplets of PVS3 deposited on cryoplates. Tissues were rewarmed by plunging the aluminum foils directly in liquid MS enriched with 1.2 M sucrose (15 min) at room temperature. Growth recovery and plant regeneration were efficiently achieved via shoot organogenesis, and somatic embryogenesis by culturing cryostored explants on MS added with 6 mg L?1 TDZ. Genetic stability of plants derived from cryopreserved leaves was confirmed by random amplified polymorphic DNA markers. The protocols established in this study have great potential for rapid multiplication and conservation of selected A. glabrata genotypes.  相似文献   

14.
This study was carried out on Kober 5BB (Vitis Berlandieri × V. riparia) grape rootstock shoot tips during the preparatory steps preceding the direct immersion in liquid nitrogen, in order to overcome until now unsuccessful cryopreservation with this species. The exposure of shoot tips to 0.3–0.4 M sucrose leads to a high cell solute concentration. The treatment with plant vitrification solution (PVS2) alone, i.e., not followed by storage in liquid nitrogen, markedly affected shoot tip survival. After a 30 min exposure, regrowth percentage of shoot tips decreased from 94 % (control) to 57 %, and dropped to 15 % when the treatment was prolonged up to 60 min. After a 90 min exposure, no regrowth occurred. In addition, plantlets regenerated from shoot tips which underwent 60 min or more exposure to PVS2 showed signs of malformation. Microscope observations of shoot tips treated with 0.3 or 0.4 M sucrose and 30 min PVS2 showed the presence of cells starting to plasmolyze, localized in the area surrounding the apical meristem. A limited presence of starch grains in meristem and bract cells was also noted. However, the most conspicuous consequence of prolonged PVS2 treatment was convex plasmolysis. The phenomenon was dependent on the time of PVS2 exposure. Indeed, after a 30 min treatment, plasmolysis was minimal or absent, but it increased with longer exposure to PVS2 at 4 °C.  相似文献   

15.
Summary The objective of this study was to establish a cryopreservation protocol for sour orange (Citrus aurantium L.). Cryopreservation was carried out via encapsulation-dehydration, vitrification, and encapsulation-vitrification on shoot tips excised from in vitro cultures. Results indicated that a maximum of 83% survival and 47% regrowth of encapsulated-dehydrated and cryopreserved shoot tips was obtained with 0.5M sucrose in the preculture medium and further dehydration for 6 h to attain 18% moisture content. Dehydration of encapsulated shoot tips with silica gel for 2h resulted in 93% survival but only 37% regrowth of cryopreserved shoot tips. After preculturing with 0.5M sucrose, 80% of the vitrified cryopreserved shoots survived when 2M sucrose plus 10% dimethyl sulfoxide (DMSO) was used as a cryoprotectant for 20 min at 25°C. Survival and regrowth of vitrified cryopreserved shoot tips were 67% and 43%, respectively, when 0.4M sucrose plus 2M glycerol was used as a loading solution followed by application of 100% plant vitrification solution (PVS2) for 20 min. Increased duration of exposure to the loading solution up to 60 min increased survival (83%) and regrowth (47%) of cryopreserved shoot tips. With encapsulation-vitrification, dehydration with 100% PVS2 for 2 or 3 h at 0°C resulted in 50 or 57% survival and 30 or 40% regrowth, respectively, of cryopreserved shoot tips.  相似文献   

16.
In vitro-grown shoot tips of apples (Malus domestica Borkh. cv. Fuji) were successfully cryopreserved by vitrification. Three-week-old in vitro apple plantlets were cold-hardened at 5°C for 3 weeks. Excised shoot tips from hardened plantlets were precultured on a solidified Murashige & Skoog agar medium (MS) supplemented with 0.7 M sucrose for 1 day at 5°C. Following preculture shoot tips were transferred to a 2 ml plastic cryotube and a highly concentrated cryoprotective solution (designated PVS2) was then added at 25°C. The PVS2 contains (W/V) 30% glycerol, 15% ethylene glycol and 15% dimethylsulfoxide in medium containing 0.4 M sucrose. After dehydration at 25°C for 80 min, the shoot tips were directly plunged into liquid nitrogen. After rapid warming, the shoot tips were expelled into 2 ml of MS medium containing 1.2 M sucrose and then plated on agar MS medium. Direct shoot elongation was observed in approximately 3 weeks. The average rate of shoot formation was about 80%. This vitrification method was successfully applied to five apple species or cultivars and eight pear cultivars. This method appears to be a promising technique for cryopreserving shoot tips from in vitro-grown plantlets of fruit trees.Abbreviations DMSO dimethylsulfoxide - EG ethylene glycol - PVS2 vitrification solution - LN liquid nitrogen - BA 6-benzylaminopurine - NAA -naphthaleneacetic acid - SE standard error - ABA abscisic acid  相似文献   

17.
Shoot tips obtained from in vitro Rosa plants (three cultivars) were successfully cryopreserved by a combined droplet vitrification method and subsequently shoots regenerated. The excised shoot tips (1–4 mm long) were incubated in a liquid MS medium supplemented with 2.5 mg l−1 thiamine, 0.2 mg l−1 biotin, 0.2 mg l−1 pyridoxine, 0.25 mg l−1 6-benzylaminopurine (BAP), 0.5 mg l−1 gibberellic acid (GA3) and 0.08 M sucrose, for 24 h. Following that incubation shoot tips were pre-cultured in this MS medium containing 0.1 till 1.0 M sucrose for 24 and 48 h, respectively. Pre-cultured shoot tips were dehydrated with concentrated PVS2 cryoprotective solution for 10–30 min at room temperature, prior to a direct plunge in liquid nitrogen. After rapid rewarming in the above mentioned liquid medium shoot tips were plated on a modified MS medium (5 g l−1 agar) supplemented with vitamins and plant growth regulators as mentioned above for regrowth. Cryopreserved shoot tips resumed growth within 10 days and regenerated shoots within 3 weeks. The highest numbers of regrowing shoot tips were 64.44% for cv. Kardinal, 67.73% for cv. Fairy and 57.57% for cv. Maidy.  相似文献   

18.
This study was carried out to optimize a modified droplet-vitrification procedure for the cryopreservation of shoot tips from different carnation genotypes. The best procedure was developed by applying orthogonal tests to the experimental data and by further investigation of the effects on the regrowth percentage. It consisted in preculturing shoot tips in liquid Murashige and Skoog (MS) medium with 0.3 M sucrose for 2 days, pretreating them in liquid MS medium with 5 % Dimethyl sulfoxide +5 % glycerol + 0.3 M sucrose for 10 min, osmoprotecting in Loading solution for 20 min at 25 °C, cryoprotecting with Plant vitrification solution No.2 (PVS2) for 60 min at 0 °C, transferring in drops of fresh PVS2 over aluminum strips and finally storing them in Liquid nitrogen. With the application of the optimized protocol, four carnation cultivars (‘Master’, ‘Calibra’, ‘Lamour’ and ‘Ofcar’) achieved regrowth percentage after cryopreservation ranging from 41 to 73 %. Ultrastructural observations investigated by using transmission electron microscopy showed that the cells encountered the stress during cryopreservation and the main damages occurred during the dehydration step. For surviving cells, the most of the damaged cells could be repaired after recovery growth. This modified protocol will aid in the long-term conservation of carnation germplasm and the ultrastructural studies will benefit for understanding the damage and recovery of the cells during cryopreservation.  相似文献   

19.
Caralluma tuberculata (C. tuberculata) is a very important medicinal plant with a range of anti-diabetic and weight reduction properties. This high-valued medicinal plant is nowadays considered as endangered due to its unsustainable elimination from wild habitats. There is lack of research efforts on its propagation to overcome escalating demand. In this research study, an effort has been made to optimize protocol for large-scale mass propagation and production of natural antioxidants. Highest callogenic response (87.2 %) was observed from shoot tip explants on Murashige and Skoog (MS) medium containing 30 g l?1 sucrose and combination of 2, 4-D (2.0 mg l?1) and BA (1.0 mg l?1). During shoot morphogenesis, 50 g l?1 sucrose along with BA (2.0 mg l?1) and GA3 (1.0 mg l?1) enhanced shoot regeneration (91.3 %), mean shoot length (2.6 cm) and shoots per explant (24.5) as compared to control. The combination of IBA and IAA (2.0 mg l?1) was found optimum for root induction (74.98 %), mean root length (4.1 cm) and roots per shoot (6.9) as compared to control. The plantlets were successfully acclimatized in plastic cups and various tissues were investigated for accumulation of antioxidant secondary metabolites including phenolics, flavonoids, stress enzymes and antioxidant activities. The superoxide dismutase enzyme was higher in shoots; protein content was higher in callus cultures; phenolics, DPPH and protease activity were higher in plantlets, while flavonoids, peroxidase, reducing power and total antioxidant activities were higher in wild plants. This simple protocol is very useful for commercial production of consistent plantlets and metabolites of interest.  相似文献   

20.
We report a new cryopreservation method for Lilium Oriental hybrid ‘Siberia’. Adventitious buds were induced from leaf segments cultured for 12 days on adventitious bud induction medium composed of half-strength Murashige and Skoog medium (MS) supplemented with 1 mg L?1 α-naphthalene acetic acid and 0.5 mg L?1 thidiazuron. Small leaf squares (SLSs, 3?×?4 mm), each bearing at least one adventitious bud, were cut from leaf segments, precultured on medium with 0.5 M sucrose for 1 day, and then treated for 20 min with a loading solution containing 0.4 M sucrose and 2 M glycerol, followed by exposure to plant vitrification solution 2 for 7 h at 0 °C. Dehydrated SLSs were directly immersed in liquid nitrogen for 1 h. Cryopreserved SLSs were re-warmed in MS medium containing 1.2 M sucrose for 20 min at room temperature, followed by post-thaw culture for recovery. With this procedure, 85% survival and 72% shoot regrowth were achieved following cryopreservation. The use of SLSs bearing adventitious buds for cryopreservation reported in the present study eliminates the time-consuming and labour-intensive step of shoot tip excision, and has great potential to facilitate cryopreservation in other plant species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号