首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ro 15-4513 (ethyl-8-azido-5,6-dihydro-5-methyl-6-oxo-4H- imidazo[1,5-a][1,4]benzodiazepine-3-carboxylate), a partial inverse agonist of central benzodiazepine receptors, binds to two distinct sites in the cerebellum. The binding to diazepam-sensitive (DZ-S) sites is displaced by different benzodiazepine receptor ligands, whereas the other site is insensitive to benzodiazepine agonists [diazepam-insensitive (DZ-IS)]. The binding of [3H]Ro 15-4513 was studied in pig cerebellar membranes and in receptors solubilized and purified from these. Micromolar concentrations of gamma-aminobutyric acid (GABA) decreased DZ-S binding at both 0 and 37 degrees C, whereas it had no effect on DZ-IS binding at 0 degrees C and was stimulatory at 37 degrees C. The pH profiles of [3H]Ro 15-4513 binding were quite similar in both binding sites in the pH range of 5.5-10.5 but differed at acidic pH values from those reported for flunitrazepam and Ro 15-1788 (flumazenil; ethyl-8-fluoro-5,6-dihydro-5-methyl-6-oxo-4H- imidazol[1,5-a][1,4]benzodiazepine-3-carboxylate) binding in DZ-S sites, suggesting that [3H]Ro 15-4513 does not interact with a histidine residue apparently present in the binding site. Zn2+, Cu2+, Co2+, and Ni2+ enhanced the binding to DZ-S sites, and the first three mentioned also enhanced the binding to DZ-IS sites. [3H]Ro 15-4513 binding activity was solubilized by various detergents. All detergents tested were more efficient in solubilizing DZ-S binding activity. High ionic strength improved especially the solubility of DZ-IS binding activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Ro 15-4513 (ethyl-8-azido-5,6-dihydro-5-methyl-6-oxo-4H-imidazo[1,5-a] [1,4]benzodiazepine-3-carboxylate), a partial inverse agonist of brain benzodiazepine receptors, has been shown to antagonize some actions of ethanol. In addition to conventional benzodiazepine binding sites, Ro 15-4513 binds to a specific cerebellar protein, the binding of which has been shown to be insensitive to diazepam. The binding of [3H]Ro 15-4513 was studied in washed membranes of the cerebellum, hippocampus, and cerebral cortex of two rat lines developed for differences in their sensitivity to ethanol-induced motor impairment. Only minor differences were found in the estimated parameters (KD and Bmax) for the total specific binding between the rat lines. The main difference between the rat lines was, however, observed in the characteristics of the cerebellar binding, all of which was displaced by diazepam in most of the alcohol-sensitive [alcohol-nontolerant (ANT)] rats, in contrast to only approximately 75% displacement in most of the alcohol-insensitive [alcohol-tolerant (AT)] ones. The following cerebellar results were obtained with the major subgroups of both lines, i.e., with the AT rats chosen for the presence of the diazepam-insensitive binding and with the ANT rats chosen for its absence. The KD for the total specific [3H]Ro 15-4513 binding in the ANT animals was about half of that in the AT animals. No line difference was found in the Bmax of the binding in these rats. Photolabeling with [3H]Ro 15-4513 showed that the diazepam-insensitive binding was in a protein with a molecular weight of 55,000.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
To determine whether genetic differences in development of ethanol dependence are related to changes in gamma-aminobutyric acidA (GABAA) receptor function, we measured 36Cl- uptake by brain cortical membrane vesicles from withdrawal seizure prone and withdrawal seizure resistant (WSP/WSR) mice treated chronically with ethanol. Muscimol-stimulated chloride flux was not different between WSP and WSR mice before or after ethanol treatment. Also, augmentation of muscimol action by flunitrazepam or inhibition of muscimol action by the inverse agonists Ro 15-4513 (ethyl-8-azido-5,6-dihydro-5-methyl-6-oxo-4H-imidazo[1,5a]- [1,4]benzodiazepine-3-carboxylate) and methyl-6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate (DMCM) was not different for ethanol-naive WSP and WSR mice. However, chronic ethanol administration enhanced the inhibitory actions of DMCM and Ro 15-4513 on membranes from WSP but not WSR mice. Conversely, chronic ethanol treatment attenuated the action of flunitrazepam on membranes from WSR but not WSP mice, suggesting that the actions of benzodiazepine agonists and inverse agonists are under separate genetic control. These genetic differences in actions of DMCM and Ro 15-4513 indicate that sensitization to benzodiazepine inverse agonists produced by chronic ethanol treatment may be related to development of withdrawal seizures and suggest that differences in the GABA/benzodiazepine receptor complex represent alleles that have segregated during the selection of the WSP/WSR mice.  相似文献   

4.
The equilibrium binding parameters of the benzodiazepine antagonist [3H]Ro 15-1788 (8-fluoro-3-carboethoxy-5,6-dihydro-5-methyl-6-oxo-4H-imidazol-[1,5-a]-1,4 benzodiazepine) were evaluated in brain membranes of the saltwater teleost fish, Mugil cephalus. To test receptor subtype specificity, displacement studies were carried out by competitive binding of [3H]Ro 15-1788 against six benzodiazepine receptor ligands, flunitrazepam [5-(2-fluoro-phenyl)-1,3-dihydro-1-methyl-7-nitro-2H-1,4-benzodiazepin-2-one], alpidem [N,N-dipropyl-6-chloro-2-(4-chlorophenyl)imidazo[1,2-a]pyridine-3-acetamide], zolpidem [N,N-6 trimethyl-2-(4-methyl-phenyl)imidazo[1,2-a]pyridine-3-acetamide hemitartrate], and beta-CCM (methyl beta-carboline-3-carboxylate). Saturation studies showed that [3H]Ro 15-1788 bound saturatably, reversibly and with a high affinity to a single class of binding sites (Kd value of 1.18-1.5 nM and Bmax values of 124-1671 fmol/mg of protein, depending on brain regions). The highest concentration of benzodiazepine recognition sites labeled with [3H]Ro 15-1788 was present in the optic lobe and the olfactory bulb and the lowest concentration was found in the medulla oblongata, cerebellum and spinal cord. The rank order of displacement efficacy of unlabelled ligands observed suggested that central-type benzodiazepine receptors are present in one class of binding sites (Type I-like) in brain membranes of Mugil cephalus. Moreover, the uptake of 36Cl- into M. cephalus brain membrane vesicles was only marginally stimulated by concentrations of GABA that significantly enhanced the 36Cl- uptake into mammalian brain membrane vesicles. The results may indicate a different functional activity of the GABA-coupled chloride ionophore in the fish brain as compared with the mammalian brain.  相似文献   

5.
Photolabeling of the benzodiazepine receptor, which to date has been done with benzodiazepine agonists such as flunitrazepam, can also be achieved with Ro 15-4513, a partial inverse agonist of the benzodiazepine receptor. [3H]Ro 15-4513 specifically and irreversibly labeled a protein with an apparent molecular weight of 51,000 (P51) in cerebellum and at least two proteins with apparent molecular weights of 51,000 (P51) and 55,000 (P55) in hippocampus. Photolabeling was inhibited by 10 microM diazepam but not by 10 microM Ro 5-4864. The BZ1 receptor-selective ligands CL 218872 and beta-carboline-3-carboxylate ethyl ester preferentially inhibited irreversible binding of [3H]Ro 15-4513 to protein P51. Not only these biochemical results but also the distribution and density of [3H]Ro 15-4513 binding sites in rat brain sections were similar to the findings with [3H]flunitrazepam. Thus, the binding sites for agonists and inverse agonists appear to be located on the same proteins. In contrast, whereas [3H]flunitrazepam is known to label only 25% of the benzodiazepine binding sites in brain membranes, all binding sites are photolabeled by [3H]Ro 15-4513. Thus, all benzodiazepine receptor sites are associated with photolabeled proteins with apparent molecular weights of 51,000 and/or 55,000. In cerebellum, an additional protein (MW 57,000) unrelated to the benzodiazepine receptor was labeled by [3H]Ro 15-4513 but not by [3H]flunitrazepam. In brain sections, this component contributed to higher labeling by [3H]Ro 15-4513 in the granular than the molecular layer.  相似文献   

6.
The properties of muscimol, beta-carboline (BC), and benzodiazepine (BZD) binding to crude synaptic membranes were studied in the spinal cord and cerebellum of rats. In cerebellar membranes, the density of high-affinity [3H]muscimol and [3H]6,7-dimethoxy-4-ethyl-beta-carboline ([3H]BCCM) binding sites is almost identical to that of [3H]flunitrazepam ([3H]FLU) or [3H]flumazenil (Ro 15-1788; ethyl-8-fluoro-5,6-dihydro-5-methyl-6-oxo-4H-imidazo[1,5-a] [1-4]benzodiazepine-3-carboxylate). In contrast to the cerebellum, the number of muscimol and BC binding sites in rat spinal cord is approximately 20-25% of the number of FLU or flumazenil binding sites. Moreover, in spinal cord membranes, BC recognition site ligands displace [3H]-flumazenil bound to those sites, with low affinity and a Hill slope significantly less than 1; the potency of the different BCs in displacing [3H]flumazenil is 20-50-fold lower in the spinal cord than in the cerebellum. [3H]Flumazenil is not displaced from spinal cord membranes by the peripheral BZD ligand Ro 5-4864 (4'-chlorodiazepam), whereas it is displaced with low affinity and a Hill slope of less than 1 (nH = 0.4) by CL 218,872 (3-methyl-6-(3-trifluoromethylphenyl)-1,2,4-triazolol[4,3-b] pyridazine). These data suggest that a large number of BZD binding sites in spinal cord (approximately 80%) are of the central-type, BZD2 subclass, whereas the BZD binding sites in cerebellum are predominantly of the central-type, BZD1 subclass.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
No-carrier-added (NCA) R(+)-7-chloro-8-hydroxy-3-(3′-[18F]fluoropropyl)-1-phenyl-2,3,4,5-tetrahydro-3-benzazepine (2b) (an analog of dopamine D-1 receptor ligand SCH 23390), ethyl 8-fluoro-5,6-dihydro-5-(3′-fluoropropyl)-6-oxo-4H-imidazo[1,5-a][1,4]benzodiazepine-3-carboxylate (4b) and 3′-[18F]fluoropropyl 8-fluoro-5,6-dihydro-5-methyl-6-oxo-4H-imidazo[1,5-a][1,4]benzodiazepine-3-carboxylate (6b) (analogs of the benzodiazepine RO 15-1788) were synthesized by alkylation of the corresponding nor-compound with NCA 1-[18F]fluoro-3-iodopropane in 10–15% yield (EOB) in ~110min and with a mass of 2–3nmol. Compound 2 is less potent (~ 12–14 times) than SCH 23390 in binding to rat striatal membranes in vitro. Compounds 2b, 4b and 6b exhibit no specific anatomical distribution to mouse brain. These results suggest that the substituent at position 3 of SCH 23390, and position 5 and carboxylate group of RO 15-1788 are critical determinants both of affinity and selectivity for receptor binding, and underscores the evaluation necessary when even minor changes (C1 to C3) are made in bioactive compounds.  相似文献   

8.
Ethyl beta-carboline-3-carboxylate has recently been isolated from human urine and it was proposed that derivatives of this compound might be related to an endogenous ligand for benzodiazepine receptors. In the present study we investigated high-affinity binding of [3H]propyl beta-carboline-3-carboxylate ([3H]PrCC) to rat brain membranes. [3H]PrCC binds specifically and with high affinity (half-maximal binding at ca. 1nM) to rat brain membranes. The regional and subcellular distributions of specific [3H]PrCC binding are similar, but not identical, to the distributions of [3H]flunitrazepam or [3H]-diazepam binding. The total numbers of binding sites labelled by [3H]PrCC and [3H]flunitrazepam in rat cerebellum are closely similar, and both ligands bind to cerebellar membranes in a mutually exclusive way. The pharmacological selectivity of [3H]PrCC and [3H]diazepam binding is almost identical. Binding of [3H]PrCC like binding of [3H]diazepam, can be increased in vitro by muscimol, GABA and SQ 20.009. Although subtle differences in binding characteristics were observed, these results indicate that [3H]PrCC and benzodiazepines bind to a common recognition site on benzodiazepine receptors.  相似文献   

9.
The distribution and the pharmacological properties of the binding of the benzodiazepine receptor antagonist [3H]-Ro 15–1788 (8-fluoro-3-carboethoxy-5,6-dihydro-5-methyl-6-oxo-4H imidazol [1,5-a] 1,4 benzodiazepine) were compared in some brain membranes of the saltwater teleost fish, Mullus surmuletus: only a single population of [3H]-Ro 15–1788 binding sites was detected. The binding was saturable and reversible with a high affinity, revealing a significant population of binding sites (Kd value of 2.1 ± 0.2 nM and Bmax value of 1400-900 fmol mg−1 of protein, depending on fish length). The highest concentration of benzodiazepine recognition sites labelled with [3H]-Ro 15–1788 was present in the optic lobe and the olfactory bulb and the lowest concentration was found in the medulla oblongata, cerebellum and spinal cord. In order to explore behavioural selectivity as a consequence of multiple receptor subtypes, six benzodiazepine receptor ligands, flunitrazepam (5-(2-fluoro-phenyl)-1,3,dihydro-1-methyl-7-nitro-2H-1,4-benzodiazepine-2-one), alpidem, (N,N-dipropyl-6-chloro-2-(4-chlorophenyl) imidazo [1,2-a] pyridine-3-acetamide) zolpidem {N,N,6, trimethyl-2-(4-methyl-phenyl) imidazo [1,2-a] pyridine-3-acetamide hemitartrate}, methyl β carboline-3-carboxylate (βCCM), Ro 15–1788 and Ro 5–4864 (4′-chlorodiazepam), were tested in vitro by binding of [3H]-Ro 15–1788 to membrane preparations from various brain areas of Mullus surmuletus. Displacement studies showed a similar rank order of efficacy of various unlabelled ligands. In all regions of the brain and in the spinal cord, GABA potentiate [3H]-flunitrazepam binding in a similar order, suggesting that the BDZ recognition sites are part of the GABAA receptor structure. These results suggest that central-type benzodiazepine receptors are present in one class of benzodiazepine binding sites in the saltwater teleost fish brain of Mullus surmuletus (type I-like). Here we report initial evidence of homogeneity of subtypes of central benzodiazepine receptors in the spinal cord of the saltwater teleost fish, Mullus surmuletus.  相似文献   

10.
Experiments were performed to characterize diazepam-insensitive [3H]Ro 15-4513 binding sites in discrete regions of rodent brain and cultured rat cerebellar granule cells. Scatchard analysis of [3H]Ro 15-4513 binding in the presence of 10 M diazepam revealed that diazepam-insensitive binding sites in the rat brain were most abundant in the cerebellum, followed by the hippocampus, cerebral cortex and olfactory bulb. Diazepam-insensitive sites represented approximately 80% of the total [3H]Ro 15-4513 binding sites in the membranes of cultured rat cerebellar granule cells. The Bmax values for total [3H]Ro 15-4513 and [35S]TBPS are almost identical, and 5–6 times larger than that for [3H]diazepam in this preparation. Although some annelated [1,5-a]benzodiazepine analogues such as Ro 15-4513, Ro 16-6028, flumazenil and Ro 15-3505, and an imidazothienodiazepine, Ro 19-4603, showed high affinity for cortical and cerebellar diazepam-insensitive sites, all the annelated benzodiazepine compounds tested showed higher affinity for cerebellar diazepaminsensitive sites than cortical ones. In contrast, a pyrazoloquinoline compound, CGS 8216, and -carboline analogues such as -carboline-3-carboxylate ethyl ester (-CCE) and -carboline-3-carboxylate methyl ester (-CCM) exhibited higher affinity for cortical than cerebellar sites. These results suggest that diazepam-insensitive sites are heterogeneous in brain areas with respect to ligand specificity.  相似文献   

11.
The effects of guanyl nucleotides on the binding of [3H]flunitrazepam to rat hippocampal synaptic membranes were studied. In equilibrium binding studies, gamma-amino-n-butyric acid (GABA) increased and GTP decreased the binding affinity of [3H]flunitrazepam; GTP also caused a decrease in binding capacity. The effect, however, is variable. In studies of the dissociation kinetics of [3H]flunitrazepam using diazepam and the antagonist Ro 15-1788 as the displacers, there was evidence of two dissociation rate constants. GTP increased both the fast- and slow-dissociation rate constants and increased the ratio of the slow-dissociation binding state. The effect of GTP was mimicked by its nonhydrolyzable analogue 5'-guanylylimidodiphosphate but not by ATP and occurred when diazepam, but not when Ro 15-1788, was used as the displacer. GABA antagonized the effect of GTP on the dissociation of [3H]flunitrazepam. The nature of the benzodiazepine receptor, its actions, and the possible role of cyclic AMP as a second messenger are discussed.  相似文献   

12.
T H Chiu  O F Yu  H C Rosenberg 《Life sciences》1989,45(11):1021-1028
Irreversible incorporation of [3H]flunitrazepam and [3H]Ro15-4513 into GABA/benzodiazepine receptor subunits was studied by UV irradiation using ligand-bound membrane pellets from rat cerebral cortical and cerebellar synaptic membranes. Specific incorporation for [3H]flunitrazepam was greater in the pellet than in the suspension. The incorporation was identical for [3H]Ro15-4513 in both pellet and suspension. With the ligand-bound pellets, 50% of the available binding sites were photolabeled by both ligands in cortex and cerebellum. SDS polyacrylamide gel electrophoresis and fluorography of [3H]flunitrazepam photo-labeled receptor revealed the same number of major sites in both brain regions. In contrast, [3H]Ro15-4513 appears to label fewer sites in cortex and cerebellum. Photoaffinity labeling with [3H]flunitrazepam in ligand-bound membrane pellet provides a more selective and reliable method for studying the subunit structure of GABA/benzodiazepine receptor complex.  相似文献   

13.
The binding of [3H]diazepam to cell homogenates of embryonic rat brain neurons grown in culture was examined. Under the conditions used to prepare and maintain these neurons, only a single, saturable, high-affinity binding site was observed. The binding of [3H]diazepam was potently inhibited by the CNS-specific benzodiazepine clonazepam (Ki = 0.56 +/- 0.08 nM) but was not affected by the peripheral-type receptor ligand Ro5-4864. The KD for [3H]diazepam bound specifically to cell homogenates was 2.64 +/- 0.24 nM, and the Bmax was 952 +/- 43 fmol/mg of protein. [3H]Diazepam binding to cell membranes washed three times was stimulated dose-dependently by gamma-aminobutyric acid (GABA), reaching 112 +/- 7.5% above control values at 10(-4) M. The rank order for potency of drug binding to the benzodiazepine receptor site in cultured neurons was clonazepam greater than diazepam greater than beta-carboline-3-carboxylate ethyl ester greater than Ro15-1788 greater than CL218,872 much greater than Ro5-4864. The binding characteristics of this site are very similar to those of the Type II benzodiazepine receptors present in rat brain. These data demonstrate that part, if not all, of the benzodiazepine-GABA-chloride ionophore receptor complex is being expressed by cultured embryonic rat brain neurons in the absence of accompanying glial cells and suggest that these cultures may serve as a model system for the study of Type II benzodiazepine receptor function.  相似文献   

14.
Specific, high-affinity receptors for numerous drugs have recently been localized to mitochondrial membrane proteins. This review discusses the association of the mitochondrial receptor for benzodiazepines (mBzR) with the voltage-dependent anion channel (VDAC), indicating a possible auxiliary role for VDAC as a putative drug binding protein. The proposed subunit composition of the purified mBzR complex isolated from rat kidney mitochondria includes VDAC, which functions as a recognition site for benzodiazepines (e.g., flunitrazepam), the adenine nucleotide carrier (ADC), and an 18 kDa outer membrane protein identified by covalent labelling with the mBzR antagonists isoquinoline carboxamides (e.g., PK 14105).Abbreviations and chemical names: Ro5-4864: 7-chloro-1,3-dihydro-1-methyl-5-(p-chlorophenyl)-2H-1,4-benzodiazepin-2-one; Ro15-1788: ethyl 8-fluoro-5,6-dihydro-5-methyl-6-oxo-4H-imidazo[1,5-]-[1,4]benzodiazepine-3-carboxylate; AHN-086: (1-(2-isothiocyanatoethyl-7-chloro-1,3-dihydro-5-(4-chlorophenyl)-2H-1,4-benzodiazepin-2-one hydrochloride;) PK11195: 1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-isoquinoline-3-carboxamide; PK14105: 1-(2-fluoro-5-nitrophenyl)-3-isoquinoline-carboxylic acid.  相似文献   

15.
Abstract: The alcohol-sensitive (ANT) rat line, developed for high behavioral sensitivity to ethanol, also exhibits enhanced sensitivity to benzodiazepines, such as diazepam. The rat line carries a point mutation in the cerebellum-specific γ-aminobutyric acid type A (GABAA) receptor subunit α6, making their diazepam-insensitive (DIS) receptors sensitive to diazepam. We now report that phenotypes of individual ANT and alcohol-insensitive rats, classified on diazepam sensitivity of cerebellar [3H]Ro 15-4513 binding, correlated well with homozygous wild-type, homozygous mutant, and heterozygous genotypes, although some heterozygotes were biased toward the parental phenotypes. GABA down-modulated DIS [3H]Ro 15-4513 binding in mutant homozygotes but tended to up-modulate it in heterozygotes and wild-type homozygotes. Slopes for GABA inhibition of cerebellar t-butylbicyclophosphoro[35S]thionate binding were larger in mutant than in wild-type homozygotes, with heterozygotes being intermediate. Diazepam displacement of [3H]Ro 15-4513 binding in heterozygotes revealed three components, with their affinities indistinguishable from those in combined wild-type and mutant homozygotes. This lack of interaction in DIS binding between wild-type and mutant α6 subunits was substantiated by experiments on recombinant receptors. The data suggest that the α6 subunit-containing GABAA receptors in the heterozygotes are formed from individual mutant and wild-type subunits with their relative expression differing from animal to animal.  相似文献   

16.
T Gherezghiher  H Lal 《Life sciences》1982,31(26):2955-2960
The specificity of ethyl 8-fluro-5,6-dihydro-5-methyl-6-oxo-4H-imidazo (1,5-a) (1,4) benzodiazepine-3-carboxylate (RO 15-1788) in reversing the effectiveness of diazepam and des-methylclobazam, but not of pentobarbital, in antagonizing discriminative stimuli produced by pentylenetetrazol is described. Male hooded rats were trained to discriminate pentylenetetrazol-induced interoceptive discriminative-stimuli (IDS) in a two-lever choice paradigm on an FR10 schedule of food reinforcement. These IDS pharmacologically model verbal report of anxiogenic activity in humans. Diazepam (1,4 benzodiazepine), des-methylclobazam (1,5 benzo-diazepine), and pentobarbital antagonized pentylenetetrazol-IDS. RO 15-1788 neither generalized to nor antagonized pentylenetetrazol-IDS. It also did not cause convulsions in pentylenetetrazol sensitized rats at doses up to 40 mg/kg. It did, however, antagonize the action of diazepam (10 mg/kg) as well as that of des-methylclobazam (160 mg/kg) but not that of pentobarbital. These data suggest that RO 15-1788 is not an anxiomimetic, anxiolytic or a convulsant drug, but it is a specific and effective antagonist of anxiolytic action of benzodiazepines.  相似文献   

17.
18.
The effect of phospholipid methylation on both [3H]diazepam and [3H]GABA ( [3H]gamma-aminobutyric acid) binding to crude synaptic plasma membrane from rat cerebellum has been studied. S-Adenosylmethionine (SAM) stimulates [3H]methyl group incorporation into membrane phospholipids and enhances [3H]diazepam binding by increasing the apparent Bmax. Conversely, inhibition of [3H]methyl group transfer from [3H]SAM to phospholipids by preincubation with SAM at 0 degrees C or with SAH abolishes the increase of binding. After preincubation with SAM, analysis of the GABA binding reveals the presence of binding sites with high affinity, a property absent in control membranes preincubated without SAM. Among the neurotransmitter bindings tested, only those of GABA and benzodiazepine in the cerebellum and beta-adrenergic ligands in the cerebral cortex are enhanced upon stimulation of phospholipid methyltransferase activity. [3H]Dihydromorphine, [3H]dihydro-alpha-ergokryptine and [3H]spiroperidol bindings are not affected by SAM. The present data suggest an involvement of phospholipid methylation in regulation of both [3H]GABA and [3H]-diazepam binding.  相似文献   

19.
Radiation inactivation was used to estimate the molecular weight of the benzodiazepine (BZ), gamma-aminobutyric acid (GABA), and associated chloride ionophore (picrotoxinin/barbiturate) binding sites in frozen membranes prepared from rat forebrain. The target size of the BZ recognition site (as defined by the binding of the agonists [3H]diazepam and [3H]flunitrazepam, the antagonists [3H]Ro 15-1788 and [3H]CGS 8216, and the inverse agonist [3H]ethyl-beta-carboline-3-carboxylate) averaged 51,000 +/- 2,000 daltons. The presence or absence of GABA during irradiation had no effect on the target size of the BZ recognition site. The apparent molecular weight of the GABA binding site labelled with [3H]muscimol was identical to the BZ receptor when determined under identical assay conditions. However the target size of the picrotoxinin/barbiturate binding site labelled with the cage convulsant [35S]t-butylbicyclophosphorothionate was about threefold larger (138,000 daltons). The effects of lyophilization on BZ receptor binding activity and target size analysis were also determined. A decrease in the number of BZ binding sites (Bmax) was observed in the nonirradiated, lyophilized membranes compared with frozen membranes. Lyophilization of membranes prior to irradiation at -135 degrees C or 30 degrees C resulted in a 53 and 151% increase, respectively, in the molecular weight (target size) estimates of the BZ recognition site when compared with frozen membrane preparations. Two enzymes were also added to the membrane preparations for subsequent target size analysis. In lyophilized preparations irradiated at 30 degrees C, the target size for beta-galactosidase was also increased 71% when compared with frozen membrane preparations. In contrast, the target size for glucose-6-phosphate dehydrogenase was not altered by lyophilization.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The effects of reserpine on the in vivo binding of 3H-Ro 15-1788, (Ro 15-1788: ethyl 8-fluoro-5,6-dihydro-5-methyl-6-oxo-4H-imidazo[1,5a] [1,4]benzodiazepine-3-carboxylate) a selective benzodiazepine antagonist, in the mouse brain were investigated. The biodistributions of tracer amounts of 3H-Ro 15-1788 in mice were significantly altered by pretreatment with reserpine (2.5 or 5.0 mg/kg, 24 h before the tracer administration). The time courses of radioactivity in the brain and the blood following i.v. injection of 3H-Ro 15-1788 with carrier Ro 15-1788 were not changed by pretreatment with reserpine, which suggested that the specific binding process might be altered by reserpine. The degree of alteration in the in vivo binding of 3H-Ro 15-1788 seemed to be dependent upon the dose of reserpine and the duration after the treatment of reserpine. The maximum changes in the biodistribution of 3H-Ro 15-1788 were observed at 1 day after injection of reserpine. The body temperature and the brain monoamine contents (dopamine, norepinephrine and 5-hydroxytryptamine) in mice were measured as indicators of pharmacological effects of reserpine, and good relationships to the degree of changes in the biodistribution of 3H-Ro 15-1788 and either the body temperature or brain monoamine contents, were observed. Furthermore, the changes in the biodistribution of 3H-Ro 15-1788 in the reserpinized mice were significantly suppressed by antidepressant imipramine treatment. These results suggest that it would be possible to detect the in vivo drug interaction with brain benzodiazepine receptors in the living human brain using 11C-Ro 15-1788 and positron emission tomography (PET).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号