首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MALDI MS imaging mass spectrometry can be used to map the distribution of targeted compounds in tissue sections with a spatial resolution currently of about 50 microm, providing important molecular information in many areas of biological research. After matrix application, a raster of a section by the laser beam yields ions from compounds in a tissue mass-to-charge range from 1000 to over 100000. Two-dimensional intensity maps can then be reconstructed to provide specific molecular images of a tissue.  相似文献   

2.
Biotransformation of chemically stable compounds to reactive metabolites which can bind covalently to macromolecules, such as proteins and DNA, is considered as an undesirable feature of drug candidates. As part of an overall assessment of absorption, distribution, metabolism and excretion (ADME) properties, many pharmaceutical companies have put methods in place to screen drug candidates for their tendency to generate reactive metabolites and as well characterize the nature of the reactive metabolites through in vitro and in vivo studies. After identification of the problematic compounds, steps can be taken to minimize the potential of bioactivation through appropriate structural modifications. For these reasons, detection, structural characterization and quantification of reactive metabolites by mass spectrometry have become an important task in the drug discovery process. Triple quadrupole mass spectrometry is traditionally employed for the analysis of reactive metabolites. In the past 3 years, a number of new mass spectrometry methodologies have been developed to improve the sensitivity, selectivity and throughput of the analysis. This review focuses on the recent advances in the detection and characterization of reactive metabolites by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in drug discovery and development, especially through the use of linear ion trap (LTQ), hybrid triple quadrupole-linear ion trap (Q-trap) and the high resolution LTQ-Orbitrap instruments.  相似文献   

3.
The lateral organization of domain structures is an extremely significant aspect of biomembrane research. Chemical imaging by mass spectrometry with its recent advancement in sensitivity and lateral resolution has become a highly promising tool in biological research. In this review, we focus briefly on the instrumentation, working principle and important concepts related to time-of-flight secondary ion mass spectrometry followed by an overview of lipid/protein fragmentation patterns and chemical mapping. The key issues addressed are the applications of time-of-flight secondary ion mass spectrometry in biological membrane research. Additionally, we briefly review our recent investigations based on time-of-flight secondary ion mass spectrometry to unravel the lateral distribution of lipids and surfactant proteins in lung surfactant model systems as an example that highlights the importance of fluidity and ionic conditions on lipid phase behavior and lipid-protein interactions.  相似文献   

4.
An imaging secondary ion mass spectrometry system has been developed that allows the distribution of elements or ions to be superimposed on an image of the plant cell or tissue generated by ion-induced secondary electrons. This system has been evaluated by analysing the aleurone and sub-aleurone cells of mature wheat grain, showing high spatial resolution (100-200 nm) images of O-, PO(2)-, Mg+, Ca+, Na+ and K+ within the phytate granules of the aleurone, with CN- being diagnostic for proteins and C(2)- being diagnostic for starch in the starchy endosperm cells. This system should provide improved localization of elements in a range of other plant systems.  相似文献   

5.
Mass spectrometry (MS) imaging links molecular information and the spatial distribution of analytes within a sample. In contrast to most histochemical techniques, mass spectrometry imaging can differentiate molecular modifications and does not require labeling of targeted compounds. We have recently introduced the first mass spectrometry imaging method that provides highly specific molecular information (high resolution and accuracy in mass) at cellular dimensions (high resolution in space). This method is based on a matrix-assisted laser desorption/ionization (MALDI) imaging source working at atmospheric pressure which is coupled to an orbital trapping mass spectrometer. Here, we present a number of application examples and demonstrate the benefit of ‘mass spectrometry imaging with high resolution in mass and space.’ Phospholipids, peptides and drug compounds were imaged in a number of tissue samples at a spatial resolution of 5–10 μm. Proteins were analyzed after on-tissue tryptic digestion at 50-μm resolution. Additional applications include the analysis of single cells and of human lung carcinoma tissue as well as the first MALDI imaging measurement of tissue at 3 μm pixel size. MS image analysis for all these experiments showed excellent correlation with histological staining evaluation. The high mass resolution (R = 30,000) and mass accuracy (typically 1 ppm) proved to be essential for specific image generation and reliable identification of analytes in tissue samples. The ability to combine the required high-quality mass analysis with spatial resolution in the range of single cells is a unique feature of our method. With that, it has the potential to supplement classical histochemical protocols and to provide new insights about molecular processes on the cellular level.  相似文献   

6.
On the proteomic level, all tissues, tissue constituents, or even single cells are heterogeneous, but the biological relevance of this cannot be adequately investigated with any currently available technique. The analysis of proteins of small tissue areas by any proteomic approach is limited by the number of required cells. Increasing the number of cells only serves to lower the spatial resolution of expressed proteins. To enhance sensitivity and spatial resolution we developed Proteohistography. Laser microdissection was used to mark special areas of interest on tissue sections attached to glass slides. These areas were positioned under microscopic control directly on an affinity chromatographic ProteinChip Array so that cells were lysed and their released proteins bound on a spatially defined point. The ProteinChip System, surface enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF-MS), allows the laser to be steered to up to 215 distinct positions across the surface of the spot, enabling a high spatial resolution of measured protein profiles for the analyzed tissue area. Protein profiles of the single positions were visually plotted over the used tissue section to visualize distribution proteohistologically. Results show that the spatial distribution of detectable proteins could be used as a Proteohistogram for a given tissue area. Consequently, this procedure can provide additional information to both a matrix-assisted laser desorption/ionization (MALDI)-based approach and immunohistochemistry, as it is more sensitive, highly quantitative, and no specific antibody is needed. Hence, proteomic heterogeneity can be visualized even if proteins are not known or identified.  相似文献   

7.
Secondary ion mass spectrometry (SIMS) microscopy, a mass spectrometry method designed in the 1960s, offers new analytical capabilities, high sensitivity (ppm to ppb region), high specificity and improved lateral resolution, thus facilitating insight into many physiological and biomedical questions. Apart from the sample preparation and the physical characteristics of the detection, the biological model must also be considered. SIMS analysis of diffusible ions and molecules requires strict cryogenic procedures which always begin by a flash-freeze fixation. Cellular integrity can be checked by mapping the major element distributions since intra and extracellular ions are redistributed only in damaged cells. Cryofixing may be followed either by a freeze-fracture methodology or by cryoembedding and dry-cutting. Chemical sample preparation is only used for ions or molecules bound to fixed cell structures. The use of scanning procedures ameliorates the lateral resolution and chromosome imaging has been reported with probe size of below 50nm. Absolute quantification can be derived for embedded specimen by using internal references included in tissue equivalent resins. The sensitivity is limited by the ionization yield of the tag element and may be further impaired when working at high mass resolution (≥5000) to eliminate interfering cluster ions. SIMS drug mapping is usually performed after in vitro administration of a molecule to cell culture systems. Drug detection is accomplished indirectly by detecting a tag isotope naturally present or introduced by labelling, mainly with halogens,15N and14C. Molecular imaging with TOF-SIMS is an appealing alternative especially for heavier compounds. We stress some biological problems through a critical review of published SIMS drug studies. SIMS proved useful in assessing the targeting specificity of nuclear medicine pharmaceutics, even after in vivo administration. The first microscopic evidence of a thionamide induced follicular blockade of the iodine organification process is presented in a human sample.  相似文献   

8.
Carcinoma tissue consists of not only tumor cells but also fibroblasts, endothelial cells or vascular structures, and inflammatory cells forming the supportive tumor stroma. Therefore, the spatial distribution of proteins that promote growth and proliferation in these complex functional units is of high interest. Matrix-assisted laser desorption/ionization imaging mass spectrometry is a newly developed technique that generates spatially resolved profiles of protein signals directly from thin tissue sections. Surface-enhanced laser desorption/ionization mass spectrometry (MS)combined with tissue microdissection allows analysis of defined parts of the tissue with a higher sensitivity and a broader mass range. Nevertheless, both MS-based techniques have a limited spatial resolution. IHC is a technique that allows a resolution down to the subcellular level. However, the detection and measurement of a specific protein expression level is possible only by semiquantitative methods. Moreover, prior knowledge about the identity of the proteins of interest is necessary. In this study, we combined all three techniques to gain highest spatial resolution, sensitivity, and quantitative information. We used frozen tissue from head and neck tumors and chose two exemplary proteins (HNP1–3 and S100A8) to highlight the advantages and disadvantages of each technique. It could be shown that the combination of these three techniques results in congruent but also synergetic data. (J Histochem Cytochem 58:929–937, 2010)  相似文献   

9.
For the first time, endogenous amounts of Leu-enkephalin are measured in brain tissue with a technique preserving integrity of the entire molecular structure of the neuropeptide. Field-desorption mass spectrometry enables measurement of picomole amounts of endogenous, chemically underivatized Leu-enkephalin in canine caudate nuclei and hypothalami. The optimal sensitivity and resolution of high-performance liquid chromatography is coupled with maximal molecular specificity of field-desorption mass spectrometry to measure enkephalins in caudate nuclei and hypothalami from dog brains. This novel combination of two recent instrumental methodologies provides a firm molecular basis for calibrating the radioimmunoassay measurement of endogenous levels of biologically active brain neuropeptides.  相似文献   

10.
Beryllium absorption sites in the kidney and liver of rats have been located and imaged at approximately 70 nm lateral resolution with a scanning ion microprobe utilizing secondary ion mass spectrometry. Embedded sections and lyophilized cryosections of these organs were prepared after in vivo administration of beryllium in soluble form. Beryllium distribution images were correlated with the histological microstructure revealed by CN- images. In the kidney, beryllium concentrates selectively within the nuclei of proximal tubule cells and occasionally within modified podocytes or mesangial cells in the glomerulus. In the liver, beryllium is seen to localize within severely altered lysosomal structures as well as within hepatocyte nuclei. These observations are relevant to understanding aspects of the toxic and carcinogenic properties of absorbed beryllium compounds.  相似文献   

11.
Biological imaging techniques are the most efficient way to locally measure the variation of different parameters on tissue sections. These analyses are gaining increasing interest since 20 years and allow observing extremely complex biological phenomena at lower and lower time and resolution scale. Nevertheless, most of them only target very few compounds of interest, which are chosen a priori, due to their low resolution power and sensitivity. New chemical imaging technique has to be introduced in order to overcome these limitations, leading to more informative and sensitive analyses for biologists and physicians.Two major mass spectrometry methods can be efficiently used to generate the distribution of biological compounds over a tissue section. Matrix-Assisted Laser Desorption/Ionisation-Mass Spectrometry (MALDI-MS) needs the co-crystallization of the sample with a matrix before to be irradiated by a laser, whereas the analyte is directly desorbed by a primary ion bombardment for Secondary Ion Mass Spectrometry (SIMS) experiments. In both cases, energy used for desorption/ionization is locally deposited -some tens of microns for the laser and some hundreds of nanometers for the ion beam- meaning that small areas over the surface sample can be separately analyzed. Step by step analysis allows spectrum acquisitions over the tissue sections and the data are treated by modern informatics software in order to create ion density maps, i.e., the intensity plot of one specific ion versus the (x,y) position.Main advantages of SIMS and MALDI compared to other chemical imaging techniques lie in the simultaneous acquisition of a large number of biological compounds in mixture with an excellent sensitivity obtained by Time-of-Flight (ToF) mass analyzer. Moreover, data treatment is done a posteriori, due to the fact that no compound is selectively marked, and let us access to the localization of different lipid classes in only one complete acquisition.  相似文献   

12.
The intraocular lens contains high levels of both cholesterol and sphingolipids, which are believed to be functionally important for normal lens physiology. The aim of this study was to explore the spatial distribution of sphingolipids in the ocular lens using mass spectrometry imaging (MSI). Matrix-assisted laser desorption/ionization (MALDI) imaging with ultra high resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used to visualize the lipid spatial distribution. Equatorially-cryosectioned, 12 μm thick slices of tissue were thaw-mounted to an indium-tin oxide (ITO) glass slide by soft-landing to an ethanol layer. This procedure maintained the tissue integrity. After the automated MALDI matrix deposition, the entire lens section was examined by MALDI MSI in a 150 μm raster. We obtained spatial- and concentration-dependent distributions of seven lens sphingomyelins (SM) and two ceramide-1-phosphates (CerP), which are important lipid second messengers. Glycosylated sphingolipids or sphingolipid breakdown products were not observed. Owing to ultra high resolution MS, all lipids were identified with high confidence, and distinct distribution patterns for each of them are presented. The distribution patterns of SMs provide an understanding of the physiological functioning of these lipids in clear lenses and offer a novel pathophysiological means for understanding diseases of the lens.  相似文献   

13.
The rhizome of Glycyrrhiza glabra (licorice) was analyzed by high‐resolution mass spectrometry imaging and tandem mass spectrometry imaging. An atmospheric pressure matrix‐assisted laser desorption/ionization imaging ion source was combined with an orbital trapping mass spectrometer in order to obtain high‐resolution imaging in mass and space. Sections of the rhizome were imaged with a spatial resolution of 10 μm in the positive ion mode, and a large number of secondary metabolites were localized and identified based on their accurate mass and MS/MS fragmentation patterns. Major tissue‐specific metabolites, including free flavonoids, flavonoid glycosides and saponins, were successfully detected and visualized in images, showing their distributions at the cellular level. The analytical power of the technique was tested in the imaging of two isobaric licorice saponins with a mass difference of only 0.02 Da. With a mass resolving power of 140 000 and a bin width of 5 ppm in the image processing, the two compounds were well resolved in full‐scan mode, and appeared with different distributions in the tissue sections. The identities of the compounds and their distributions were validated in a subsequent MS/MS imaging experiment, thereby confirming their identities and excluding possible analyte interference. The use of high spatial resolution, high mass resolution and tandem mass spectrometry in imaging experiments provides significant information about the biosynthetic pathway of flavonoids and saponins in legume species, combing the spatially resolved chemical information with morphological details at the microscopic level. Furthermore, the technique offers a scheme capable of high‐throughput profiling of metabolites in plant tissues.  相似文献   

14.
Matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) has become a valuable tool to address a broad range of questions in many areas of biomedical research. One such application allows spectra to be obtained directly from intact tissues, termed "profiling" (low resolution) and "imaging" (high resolution). In light of the fact that MALDI tissue profiling allows over a thousand peptides and proteins to be rapidly detected from a variety of tissues, its application to disease processes is of special interest. For example, protein profiles from tumors may allow accurate prediction of tumor behavior, diagnosis, and prognosis and uncover etiologies underlying idiopathic diseases. MALDI MS, in conjunction with laser capture microdissection, is able to produce protein expression profiles from a relatively small number of cells from specific regions of heterogeneous tissue architectures. Imaging mass spectrometry enables the investigator to assess the spatial distribution of proteins, drugs, and their metabolites in intact tissues. This article provides an overview of several tissue profiling and imaging applications performed by MALDI MS, including sample preparation, matrix selection and application, histological staining prior to MALDI analysis, tissue profiling, imaging, and data analysis. Several applications represent direct translation of this technology to clinically relevant problems.  相似文献   

15.
Chemical modulation imaging over a tissue is gaining momentum in the field of mass spectrometry. Some endogenous or exogenous compounds present in a tissue can be visualized by imaging mass spectrometry after chemical derivatization. This approach gives researchers the possibility to elude chemical interferences in components of the tissues, such as lipids or salts, as well as interferences caused by the matrix. The use of primary and secondary antibodies, the chemical derivatization of peptides and small molecules, and the use of (18)O labeling are various examples reviewed in this article to demonstrate the importance and potential of this emerging aspect of imaging mass spectrometry.  相似文献   

16.
By combining the capabilities of advanced sample preparation methodologies with the latest generation of secondary ion mass spectrometry instrumentation, we show that chemical information on the distribution of even dilute species in biological samples can be obtained with spatial resolutions of better than 100 nm. Here, we show the distribution of nickel and other elements in leaf tissue of the nickel hyperaccumulator plant Alyssum lesbiacum prepared by high‐pressure freezing and freeze substitution.  相似文献   

17.
Dynamic secondary ion mass spectrometry (SIMS) has been utilised to study the post-mortem distribution of aluminium in air-dried frozen sections from unfixed, unstained human brain in order to minimise contamination of the tissue and avoid redistribution and extraction of endogenous tissue aluminium. Substrates, sputter-coated with silver, were found to be free of focal aluminum surface contamination and thus minimised substrate induced artefacts in the tissue aluminium ion image. SIMS imaging of aluminium secondary ions at a mass resolution that eliminated the major molecular interferences, combined with a photomontage technique provided a unique strategy for studying aluminium distribution in tissue unrivalled by other spatially resolved microanalytical techniques such as laser microprobe mass spectrometry or X-ray microanalysis. Using this strategy, high densities of focal aluminium accumulations have been demonstrated in the cerebral cortex of the majority of chronic renal dialysis patients studied. In contrast, such aluminium accumulations were absent in control patients. SIMS imaging of aluminium appeared to provide much better discrimination between the dialysis patient group and the control group than one of the most widely used techniques for measuring aluminium in bulk samples, graphite furnace atomic absorption spectrometry. Preliminary studies have shown the feasibility of quantifying focal aluminium SIMS images obtained from brain tissue using aluminium-loaded brain homogenates as reference standards.  相似文献   

18.
Langmuir–Blodgett lipid films and plasma membranes of glioma cells were analyzed using timeof-flight secondary ion mass spectrometry (TOF-SIMS). Bi3 + primary ion beam was determined to be most efficient in various experimental setups. TOF-SIMS was shown to be applicable for a quantitative analysis of model lipid structures, as well as plasma membranes of glioma cells U87MG in vitro. A combination of atomic-force microscopy and scanning electron microscopy yielded the depth resolution of ~10–20 nm for cell surface scanning by primary ion beam.  相似文献   

19.
The secondary ion microscope described here allows to obtain the simultaneous registration of chemical and isotopic distribution maps of several elements composing the sample. The instrument has been specially designed to optimize both sensitivity and selectivity; bombardment with primary Cs+ ions to increase the ionization yields of negative secondary ions, efficient collection of secondary ions at the target surface, matching of the secondary ion beam etendue with the acceptance of the mass spectrometer working at high mass resolution, spectrometer with parallel detection capabilities. The probe diameter can be made as low as 30 nm and ion induced electron images registered at the same time as ion images. Presently, four ion micrographs are obtained simultaneously over a field of view up to 20 x 20 micro m2 containing up to 512 x 512 pixels. Examples are shown with an ion probe diameter of 0.1 microm.  相似文献   

20.
New generations of analytical techniques for imaging of metals are pushing hitherto boundaries of spatial resolution and quantitative analysis in biology. Because of this, the application of these imaging techniques described herein to the study of the organization and dynamics of metal cations and metal-containing biomolecules in biological cell and tissue is becoming an important issue in biomedical research. In the current review, three common metal imaging techniques in biomedical research are introduced, including synchrotron X-ray fluorescence (SXRF) microscopy, secondary ion mass spectrometry (SIMS), and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). These are exemplified by a demonstration of the dopamine-Fe complexes, by assessment of boron distribution in a boron neutron capture therapy cell model, by mapping Cu and Zn in human brain cancer and a rat brain tumor model, and by the analysis of metal topography within neuromelanin. These studies have provided solid evidence that demonstrates that the sensitivity, spatial resolution, specificity, and quantification ability of metal imaging techniques is suitable and highly desirable for biomedical research. Moreover, these novel studies on the nanometre scale (e.g., of individual single cells or cell organelles) will lead to a better understanding of metal processes in cells and tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号