首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Production of alkaline protease by Rhizopus species is an unusual phenomenon. However, a locally isolated species of Rhizopus oryzae was found to secrete alkaline serine protease of industrial importance. The kinetic parameter V (reaction velocity) of the purified fractionated enzyme was evaluated under different environmental conditions and substrate to enzyme ratios. The Michaelis constant (Km) and maximum reaction velocity (Vmax) were also estimated.  相似文献   

2.
Purification of alkaline protease of Rhizopus oryzae by foam fractionation   总被引:1,自引:0,他引:1  
Studies on the cost effective purification method is very much essential for the industrially important enzyme like protease. As foam fractionation is an important technique in downstream processing of the biologicals, purification of the crude proteolytic enzyme produced by Rhizopus oryzae has been attempted using converging-diverging foam fractionator. The effects of different parameters studied on the purification efficiency by foam fractionation were pH of the broth, air flow rate, initial liquid height. The results obtained were found quite encouraging at pH 10 with 1 LPM of air flow rate at low initial liquid height.  相似文献   

3.
A newly isolated Rhizopus oryzae was found to exhibit some unusual phenomenon of secreting alkaline protease which was purified and characterized. The molecular weight was determined to be 28,600 dalton in gel electrophoresis. The enzyme is stable in the pH range from 3 to 11 and most active at pH 8. The temperature optimum of this thermostable biocatalyst is at 60 °C. The enzyme is sensitive to metal chelators, most of the metal ions (excepting a few monovalent cations) and inhibitor like PMSF. This indicates that the protease of isolated Rhizopus oryzae falls under alkaline serine group.  相似文献   

4.
The production of alkaline protease of Aspergillus oryzae U1521 was examined in liquid culture. In a culture of defatted soybean only, it gave satisfactory enzyme yields at 584,000 U/g defatted soybean. When various carbohydrates were supplemented, enzyme production was significantly increased. An increase in production by lactose was the most marked. Enrichment with casitone or casein increased productivity, but not cornsteep solid. Media formulation (g/L) of defatted soybean 10, lactose 5, casitone 1, and KH(2)PO(4) 5 enhanced alkaline protease production by A. oryzae U1521 to a maximum of 1,410,000 U/g defatted soybean. Scaling-up experiments indicated the flask-scale results could be reproduced at 40 g of substrate in 5-L fermenter. The enzyme activity was maximum between pH 8-9 and at a temperature of 45 degrees C.  相似文献   

5.
The alkaline protease gene from Aspergillus oryzae was cloned, and then it was successfully expressed in the heterologous Pichia pastoris GS115 with native signal peptide or α-factor secretion signal peptide. The yield of the recombinant alkaline protease with native signal peptide was about 1.5-fold higher than that with α-factor secretion signal peptide, and the maximum yield of the recombinant alkaline protease was 513 mg/L, which was higher than other researches. The recombinant alkaline protease was purified by ammonium sulfate precipitation, ion exchange chromatography and gel filtration chromatography. The purified recombinant alkaline protease showed on SDS–PAGE as a single band with an apparent molecular weight of 34 kDa. The recombinant alkaline protease was identical to native alkaline protease from A. oryzae with regard to molecular weight, optimum temperature for activity, optimum pH for activity, stability to pH, and similar sensitivity to various metal ions and protease inhibitors. The native enzyme retained 61.18% of its original activity after being incubated at 50 °C for 10 min, however, the recombinant enzyme retained 56.22% of its original activity with same disposal. The work demonstrates that alkaline protease gene from A. oryzae can be expressed largely in P. pastoris without affecting its enzyme properties and the recombinant alkaline protease could be widely used in various industrial applications.  相似文献   

6.
Extracellular proteinases of Aspergillus oryzae.   总被引:3,自引:2,他引:1       下载免费PDF全文
A K Kundu  S Das  S Manna    N Pal 《Applied microbiology》1968,16(11):1799-1801
  相似文献   

7.
8.
9.
10.
Only few enzymes from haloalkaliphiles are biochemically characterized for their kinetic behaviour and stability. In view of this realization, an alkaline protease from Bacillus sp. AH-6, displaying salt-dependent resistance against chemical denaturation by Urea and Guanidium hydrochloride was investigated for denaturation and in vitro protein folding. The crude enzyme was highly resistant against urea (8 M) denaturation up to 72 h; however, on purification, it turned sensitive and got denatured within 2 h. Interestingly, the purified enzyme regained the resistance in the presence of NaCl. Effective refolding of the purified enzyme was achieved with glycerol; however, other approaches such as lower protein concentrations, rapid dilution and slow removal of the denaturant did not further add to refolding. The results are important from the viewpoint that only few enzymes from haloalkaliphilic bacteria are characterized. Since the resistance against chemical denaturation is a rare phenomenon, the findings would enrich the knowledge on protein stability and denaturation. Besides, such biocatalysts would definitely have novel applications under harsh chemical environments.  相似文献   

11.
The main proteinase of the filamentous fungus Colletotrichum gloeosporioides causing anthracnoses and serious problems for production and storage of agricultural products has molecular mass of 57 kD and was purified more than 200-fold to homogeneity with the yield of 5%. Maximal activity of the proteinase is at pH 9.0-10.0, and the enzyme is stable at pH 6.0-11.5 (residual activity not less than 70%). The studied enzyme completely kept its activity to 55 degrees C, with a temperature optimum of 45 degrees C. The purified C. gloeosporioides proteinase is stable at alkaline pH values, but rapidly loses its activity at pH values lower than 5.0. Addition of bovine serum albumin stabilizes the enzyme under acidic conditions. Data on inhibitor analysis and substrate specificity of the enzyme allow its classification as a serine proteinase of subtilisin family. It is demonstrated that the extracellular proteinase of C. gloeosporioides specifically effects plant cell wall proteins. It is proposed that the studied proteinase--via hydrolysis of cell wall--provides for penetration of the fungus into the tissues of the host plant.  相似文献   

12.
The acid protease (EC 2.4.23.6) that is produced extracellularly when Aspergillus oryzae is grown on liquid media has been isolated and characterized. The enzyme was purified by precipitation with tannic acid, chromatography on Duolite A-2, and gel filtration on Sephadex G-100. The last step yielded four active components, with varying molecular weights ranging from 42,000 to 60,000. Two of them, designated E1 and E1a, with molecular weights of 60,000 and 55,000, respectively, were heterogeneous on isoelectric focusing, both giving at least three enzyme species with different isoelectric points, whereas the other two, E1b and E2, with molecular weights of 49,000 and 42,000, respectively, were essentially homogeneous. These four enzymes activated bovine pancreatic trypsinogen and had the same pH optima in the acid pH range. They had essentially the same amino acid composition and immunologically cross-reacted with each other. These catalytic, chemical, and immunological properties are similar to those of acid protease A1 and A2 from A. oryzae grown on solid bran media. Unlike acid protease from solid bran culture, which contains both carbohydrate-containing and the carbohydrate-free species, all of the four enzymes, E1, E1a, E1b, and E2, contained carbohydrate, ranging from 18.9 to 43% and comprising three hexoses, glucose, galactose, and mannose. The carbohydrate portions were polysaccharide in nature and heterogeneous with respect to both molecular weight and sugar composition, and at least a part of the carbohydrate was present in the form of homopolysaccharides such as galactan and mannan. These findings indicate that polysaccharide chains with different molecular weights and with different chemical compositions are apparently responsible for the microheterogeneity of acid protease.  相似文献   

13.
14.
The extracellular proteinases of Aspergillus oryzae EI 212 were separated into two active fractions by (NH4)2SO4 and ethanol fractionation followed by diethylaminoethyl-Sephadex A-50 and hydroxyapatite chromatography. The molecular weight was estimated by gel filtration to be about 70,000 and 35,000 for proteinases I and II, respectively. Optimum pH for casein and hemoglobin hydrolysis was 6.5 at 60 C for proteinase I and 10.0 at 45 C for proteinase II, and for gelatin hydrolysis it was 6.5 at 45 C for both enzymes. The enzymes were stable over the pH range 6 to 8 at 30 C for 60 min. The enzyme activity for both the proteinases was accelerated by Cu2+ and inhibited by Fe2+, Fe3+, Hg2+, and Ag+. Halogenators (e.g., N-chlorosuccinimide) and diisopropyl fluorophosphate inhibited proteinase II. Sulfhydryl reagents such as p-chloromercuribenzoate and iodoacetate inhibited proteinase I. Sulfhydryl compounds accelerated the action of both enzymes.  相似文献   

15.
Production of secondary metabolites was investigated in the thermophilic streptomyceteStreptomyces thermoviolaceus grown at 45°C in a fermenter. Extracellular protein was secreted into the culture medium at the same time as an antibiotic granaticin; both were synthesized during the second slower phase of biphasic growth, which is most apparent at 45°C for this organism. Protease, assayed as azocaseinase, was identified as one component of, and marker for, the excreted protein. The effects of different growth temperatures revealed that the synthesis of extracellular protein, like that of the antibiotic, was maximal in cultures grown between 37° and 45°C, whereas protease activity was greatest in 50°C grown cultures. A method was devised, based on acetone precipitation, for concentrating the protease activity from culture supernatants. Characterization of the concentrated activity using inhibitors suggested the presence of a serine and a metallo-type protease. A peptide substrate specific for the metallo-protease showed that it had a pH optimum for activity of 6.5–7.0. Approximately 50% of the activity was lost after 80 min of incubation at 70°C. Although calcium (5 mM) promoted increased thermotolerance such that around 65% of the activity remained after 100 min at 70°C, it seems that manganese and/or zinc may be more important for enzyme activity.  相似文献   

16.
17.
开发了一种包衣微丸型碱性蛋白酶的制备工艺,结果表明:30 L发酵中罐发酵50 h比酶活可达4.26×104 U/mL,发酵液经絮凝处理、板框压滤、膜浓缩后可制成酶活达300 000 U/mL的酶浓缩液.经流化后制得含酶颗粒,再包裹薄层后,得包衣微丸型碱性蛋白酶.对制备的包衣微丸型碱性蛋白酶的稳定性、去污效果等指标进行了评估.制备的包衣微丸型碱性蛋白酶产品在严苛条件下的稳定性与国外产品( Savinase 8.0T、PuraFast 2000HS)相当,产品暴露在37℃、75%湿度下8周后仍可保持74%的酶活力,产品的去污效果优于国外产品.制备的包衣微丸型碱性蛋白酶颗粒大小均匀,流动性和分散性好,对外界高温、高湿等不良环境具有很强的抵抗能力,适于工业化生产.  相似文献   

18.
The parameters involved in immobilization of alkaline protease on nylon using glutaraldehyde as coupling agent and the characteristics of the immobilized enzyme were investigated. Optimum temperature and pH of both free and immobilized enzyme for the degradation of protein was found. Immobilized enzyme showed better thermal stability than the free enzyme. The reusability and storage stability of the immobilized enzyme was also studied.  相似文献   

19.
20.
Protease producing bacteria were isolated from soil in South Korea. These bacteria were screened in skim milk agar medium using skim milk as the substrate. The highest clear zone producing bacterial strain (BK-P23) was selected for further optimization studies. The strain was identified as Exiguobacterium profundum BK-P23 based on morphological, biochemical and molecular characterizations. The results of the 16S rRNA analysis showed that this strain was highly similar to E. profundum. The strain was able to grow under alkaline conditions at pH 8.5 and a temperature of 30°C. In the preliminary optimization experiments, five different parameters, i.e. carbon source (lactose), nitrogen source (corn steep solid), pH, temperature and incubation period were varied with the goal of optimizing enzyme production in low cost medium using the Box-Behnken design combined with response surface methodology. The optimal conditions were determined to be pH 9.0, a temperature of 30°C, lactose (1.0%) as the carbon source and corn steep solid (1.0%) as the cheap additional nitrogen source. In addition, 24 h of incubation was shown to produce the highest protease yield. Overall, the amount of enzyme produced was significantly higher in the optimized medium when compared with the original medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号