首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a survey for unknown bioactive peptides in frog (Rana catesbeiana) brain and intestine, we isolated four novel peptides that exhibit potent stimulant effects on smooth muscle preparation of guinea pig ileum. By microsequencing and synthesis, these peptides were identified as Lys- Pro- Ser- Pro- Asp- Arg- Phe- Tyr- Gly- Leu- Met- NH2 (ranatachykinin A), Tyr- Lys- Ser- Asp- Ser- Phe- Tyr- Gly- Leu- Met- NH2 (ranatachykinin B), His- Asn- Pro- Ala- Ser- Phe- Ile- Gly- Leu- Met- NH2 (ranatachykinin C) and Lys- Pro- Ans- Pro- Glu- Arg- Phe- Tyr- Ala- Pro- Met- NH2 (ranatachykinin D). Ranatachykinin (RTK) A, B and C conserve the C- terminal sequence, Phe- X- Gly- Leu- Met- NH2, which is common to known members of the tachykinin family. On the other hand, RTK-D has a striking feature in its C-terminal sequence, Phe- Tyr- Ala- Pro- Met- NH2, which has never been found in other known tachykinins, and may constitute a new subclass in the tachykinin family.  相似文献   

2.
In this paper, the N-terminus of glycoprotein-41, the HIV-1 fusion peptide, was studied by molecular dynamics simulations in an explicit sodium dodecyl sulfate micelle. The simulation provides a detailed picture of the equilibrium structure and peptide stability as it interacts with the micelle. The equilibrium location of the peptide shows the peptide at the surface of the micelle with hydrophobic residues interacting with the micelle's core. At equilibrium, the peptide adopts an alpha-helical structure from residues 5-16 and a type-1 beta-turn from 17-20 with the other residues exhibiting more flexible conformations. The primary hydrophobic interactions with the micelle are from the leucine and phenylalanine residues (Leu-7, Phe-8, Leu-9, Phe-11, Leu-12) while the alanine and glycine residues (Ala-1, Gly-3, Gly-5, Ala-6, Gly-10, Gly-13, Ala-14, Ala-15, Gly-16, Gly-10, Ala-21) interact favorably with water molecules. The results suggest that Phe-8, part of the highly conserved FLG motif of the fusion peptide, plays a key role in the interaction of the peptide with membranes. Our simulations corroborate experimental investigations of the fusion peptide in SDS micelles, providing a high-resolution picture that explains the experimental findings.  相似文献   

3.
A phage peptide library was used to select peptides interacting with virus-neutralizing monoclonal antibodies (mAb) 2G12 which recognize a discontinuous surface epitope of HIV-1 gp120. With the published X-ray data, gp120 regions involved in the antigenic determinant were predicted. Binding with mAb 2G12 was ascribed to Trh-297, Phe-383, Tyr-384, Arg-419, Ile-420, Thr-415, Leu-416, Pro-417, Lys-421, and Trp-112. Though distant in the gp120 sequence, these residues are close in space and form the 2G12 epitope on the gp120 surface.  相似文献   

4.
Rhodopsin undergoes rearrangements of its transmembrane helices after photon absorption to transfer a light signal to the G-protein transducin. To investigate the mechanism by which rhodopsin adopts the transducin-activating conformation, the local environmental changes in the transmembrane region were probed using the cysteine S-H group, whose stretching frequency is well isolated from the other protein vibrational modes. The S-H stretching modes of cysteine residues introduced into Helix III, which contains several key residues for the helical movements, and of native cysteine residues were measured by Fourier transform infrared spectroscopy. This method was applied to metarhodopsin IIa, a precursor of the transducin-activating state in which the intramolecular interactions are likely to produce a state ready for helical movements. No environmental change was observed near the ionic lock between Arg-135 in Helix III and Glu-247 in Helix VI that maintains the inactive conformation. Rather, the cysteine residues that showed environmental changes were located around the chromophore, Ala-164, His-211, and Phe-261. These findings imply that the hydrogen bond between Helix III and Helix V involving Glu-122 and His-211 and the hydrophobic packing between Helix III and Helix VI involving Gly-121, Leu-125, Phe-261, and Trp-265 are altered before the helical rearrangement leading toward the active conformation.  相似文献   

5.
Resonance Raman spectra are reported for FeII and FeIII forms of cytochrome c peroxidase (CCP) mutants prepared by site-directed mutagenesis and cloning in Escherichia coli. These include the bacterial "wild type", CCP(MI), and mutations involving groups on the proximal (Asp-235----Asn, Trp-191----Phe) and distal (Trp-51----Phe, Arg-48----Leu and Lys) side of the heme. These spectra are used to assess the spin and ligation states of the heme, via the porphyrin marker band frequencies, especially v3, near 1500 cm-1, and, for the FeII forms, the status of the Fe-proximal histidine bond via its stretching frequency. The FeII-His frequency is elevated to approximately 240 cm-1 in CCP(MI) and in all of the distal mutants, due to hydrogen-bonding interactions between the proximal His-175 N delta and the carboxylate acceptor group on Asp-235. The FeII-His RR band has two components, at 233 and 246 cm-1, which are suggested to arise from populations having H-bonded and deprotonated imidazole; these can be viewed in terms of a double-well potential involving proton transfer coupled to protein conformation. The populations shift with changing pH, possibly reflecting structure changes associated with protonation of key histidine residues, and are influenced by the Leu-48 and Phe-191 mutations. A low-spin FeII form is seen at high pH for the Lys-48, Leu-48, Phe-191, and Phe-51 mutants; for the last three species, coordination of the distal His-52 is suggested by a approximately 200-cm-1 RR band assignable to Fe(imidazole)2 stretching.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Kunitz domain 1 (KD1) of tissue factor pathway inhibitor-2 inhibits trypsin, plasmin, and factor VIIa (FVIIa)/tissue factor with Ki values of 13, 3, and 1640 nM, respectively. To investigate the molecular specificity of KD1, crystals of the complex of KD1 with bovine beta-trypsin were obtained that diffracted to 1.8 A. The P1 residue Arg-15 (bovine pancreatic trypsin inhibitor numbering) in KD1 interacts with Asp-189 (chymotrypsin numbering) and with the carbonyl oxygens of Gly-219 and Ogamma of Ser-190. Leu-17, Leu-18, Leu-19, and Leu-34 in KD1 make van der Waals contacts with Tyr-39, Phe-41, and Tyr-151 in trypsin, forming a hydrophobic interface. Molecular modeling indicates that this complementary hydrophobic patch is composed of Phe-37, Met-39, and Phe-41 in plasmin, whereas in FVIIa/tissue factor, it is essentially absent. Arg-20, Tyr-46, and Glu-39 in KD1 interact with trypsin through ordered water molecules. In contrast, insertions in the 60-loop in plasmin and FVIIa allow Arg-20 of KD1 to directly interact with Glu-60 in plasmin and Asp-60 in FVIIa. Moreover, Tyr-46 in KD1 electrostatically interacts with Lys-60A and Arg-60D in plasmin and Lys-60A in FVIIa. Glu-39 in KD1 interacts directly with Arg-175 of the basic patch in plasmin, whereas in FVIIa, such interactions are not possible. Thus, the specificity of KD1 for plasmin is attributable to hydrophobic and direct electrostatic interactions. For trypsin, hydrophobic interactions are intact, and electrostatic interactions are weak, whereas for FVIIa, hydrophobic interactions are missing, and electrostatic interactions are partially intact. These findings provide insight into the protease selectivity of KD1.  相似文献   

7.
Crystals of the complex of bovine alpha-thrombin with recombinant hirudin variant 1 have space group C222(1) with cell constants a = 59.11, b = 102.62, and c = 143.26 A. The orientation and position of the thrombin component was determined by molecular replacement and the hirudin molecule was fit in 2 magnitude of Fo - magnitude of Fc electron density maps. The structure was refined by restrained least squares and simulated annealing to R = 0.161 at 2.8-A resolution. The binding of hirudin to thrombin is generally similar to that observed in the crystals of human thrombin-hirudin. Several differences in the interactions of the COOH-terminal polypeptide of hirudin, specifically of residues Asp-55h, Phe-56h, Glu-57h, and Glu-58h, and a few differences in the interactions of the hirudin core, specifically of residues Asp-5h, Ser-19h, and Asn-20h, with thrombin from human thrombin-hirudin suggest that there is some flexibility in the binding of these 2 molecules. Most of the residues in the 9 subsites that bind fibrinopeptide A7-16 to thrombin also interact with the NH2-terminal domain of hirudin. The S1 subsite is a notable exception in that only 1 of its 6 residues, namely Ser-214, interacts with hirudin. The only difference between human and bovine thrombins that appears to influence the binding of hirudin is the replacement of Lys-149E by an acidic glutamate in the bovine enzyme.  相似文献   

8.
The three-dimensional structures of the two peptides, PlnJ and PlnK, that constitutes the two-peptide bacteriocin plantaricin JK have been solved in water/TFE and water/DPC-micellar solutions using nuclear magnetic resonance (NMR) spectroscopy. PlnJ, a 25 residue peptide, has an N-terminal amphiphilic α-helix between Trp-3 and Tyr-15. The 32 residues long PlnK forms a central amphiphilic α-helix between Gly-9 and Leu-24. Measurements of the effect on anti-microbial activity of single glycine replacements in PlnJ and PlnK show that Gly-13 and Gly-17 in both peptides are very sensitive, giving more than a 100-fold reduction in activity when large residues replace glycine. In variants where other glycine residues, Gly-20 in PlnJ and Gly-7, Gly-9, Gly-24 and Gly-25 in PlnK, were replaced, the activity was reduced less than 10-fold. It is proposed that the detrimental effect on activity when exchanging Gly-13 and Gly-17 in PlnJ and PlnK is a result of reduced ability of the two peptides to interact through the GxxxG-motifs constituting Gly-13 and Gly-17.  相似文献   

9.
T L Lentz 《Biochemistry》1991,30(45):10949-10957
Peptides corresponding to portions of curaremimetic neurotoxin loop 2 and to a structurally similar segment of rabies virus glycoprotein were synthetically modified in order to gain information on structure-function relationships of neurotoxin loop 2 interactions with the acetylcholine receptor. Binding of synthetic peptides to the acetylcholine receptor of Torpedo electric organ membranes was assessed by measuring their ability to inhibit the binding of 125I-alpha-bungarotoxin to the receptor. The peptides showing the highest affinity for the receptor were a peptide corresponding to the sequence of loop 2 (residues 25-44) of Ophiophagus hannah (king cobra) toxin b (IC50 = 5.7 x 10(-6) M) and the structurally similar segment (residues 173-203) of CVS rabies virus glycoprotein (IC50 = 2.6 x 10(-6) M). These affinities were comparable to those of d-tubocurarine (IC50 = 3.4 x 10(-6) M) and suberyldicholine (IC50 = 2.5 x 10(-6) M). These results demonstrate the importance of loop 2 in the neurotoxin interaction with the receptor. N- and C-terminal deletions of the loop 2 peptides and substitution of residues invariant or highly conserved among neurotoxins were performed in order to determine the role of individual residues in binding. Residues 25-40 are the most crucial in the interaction with the acetylcholine receptor. Modifications involving Lys-27, Trp-29, Phe-33, Arg-37, and Gly-38 reduced affinity of binding. R37D and F33T modifications reduced the affinity of alpha-bungarotoxin residues 28-40 by an order of magnitude. Arg-37 may correspond to the positively charged quaternary ammonium group and Phe-33 to the hydrophobic acetyl methyl group of acetylcholine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The resonant recognition model (RRM) is a model which treats the protein sequence as a discrete signal. It has been shown previously that certain periodicities (frequencies) in this signal characterise protein biological function. The RRM was employed to determine the characteristic frequencies of the hormone prolactin (PRL), and to identify amino acids ('hot spots') mostly contributing to these frequencies and thus proposed to mostly contribute to the biological function. The predicted 'hot spot' amino acids, Phe-19, Ser-26, Ser-33, Phe-37, Phe-40, Gly-47, Gly-49, Phe-50, Ser-61, Gly-129, Arg-176, Arg-177, Cys-191 and Arg-192 are found in the highly conserved amino-terminal and C-terminus regions of PRL. Our predictions agree with previous experimentally tested residues by site-direct mutagenesis and photoaffinity labelling.  相似文献   

11.
Li C  Li JJ  Montgomery MG  Wood SP  Bugg TD 《Biochemistry》2006,45(41):12470-12479
The alpha/beta-hydrolase superfamily, comprised mainly of esterase and lipase enzymes, contains a family of bacterial C-C hydrolases, including MhpC and BphD which catalyze the hydrolytic C-C cleavage of meta-ring fission intermediates on the Escherichia coli phenylpropionic acid pathway and Burkholderia xenovorans LB400 biphenyl degradation pathway, respectively. Five active site amino acid residues (Arg-188, Asn-109, Phe-173, Cys-261, and Trp-264) were identified from sequence alignments that are conserved in C-C hydrolases, but not in enzymes of different function. Replacement of Arg-188 in MhpC with Gln and Lys led to 200- and 40-fold decreases, respectively, in k(cat); the same replacements for Arg-190 of BphD led to 400- and 700-fold decreases, respectively, in k(cat). Pre-steady-state kinetic analysis of the R188Q MhpC mutant revealed that the first step of the reaction, keto-enol tautomerization, had become rate-limiting, indicating that Arg-188 has a catalytic role in ketonization of the dienol substrate, which we propose is via substrate destabilization. Mutation of nearby residues Phe-173 and Trp-264 to Gly gave 4-10-fold reductions in k(cat) but 10-20-fold increases in K(m), indicating that these residues are primarily involved in substrate binding. The X-ray structure of a succinate-H263A MhpC complex shows concerted movements in the positions of both Phe-173 and Trp-264 that line the approach to Arg-188. Mutation of Asn-109 to Ala and His yielded 200- and 350-fold reductions, respectively, in k(cat) and pre-steady-state kinetic behavior similar to that of a previous S110A mutant, indicating a role for Asn-109 is positioning the active site loop containing Ser-110. The catalytic role of Arg-188 is rationalized by a hydrogen bond network close to the C-1 carboxylate of the substrate, which positions the substrate and promotes substrate ketonization, probably via destabilization of the bound substrate.  相似文献   

12.
The interaction of thrombin with protein C triggers a key down-regulatory process of the coagulation cascade. Using a panel of 77 Ala mutants, we have mapped the epitope of thrombin recognizing protein C in the absence or presence of the cofactor thrombomodulin. Residues around the Na(+) site (Thr-172, Lys-224, Tyr-225, and Gly-226), the aryl binding site (Tyr-60a), the primary specificity pocket (Asp-189), and the oxyanion hole (Gly-193) hold most of the favorable contributions to protein C recognition by thrombin, whereas a patch of residues in the 30-loop (Arg-35 and Pro-37) and 60-loop (Phe-60h) regions produces unfavorable contributions to binding. The shape of the epitope changes drastically in the presence of thrombomodulin. The unfavorable contributions to binding disappear and the number of residues promoting the thrombin-protein C interaction is reduced to Tyr-60a and Asp-189. Kinetic studies of protein C activation as a function of temperature reveal that thrombomodulin increases >1,000-fold the rate of diffusion of protein C into the thrombin active site and lowers the activation barrier for this process by 4 kcal/mol. We propose that the mechanism of thrombomodulin action is to kinetically facilitate the productive encounter of thrombin and protein C and to allosterically change the conformation of the activation peptide of protein C for optimal presentation to the thrombin active site.  相似文献   

13.
Two monoclonal antibodies, beta 208 and beta 210, against the beta subunit of the F(1) ATPase from Escherichia coli reacted with an intact beta subunit and also a peptide corresponding to a portion of beta between residues 1 and 145. Mutations at Ala-1, Val-15, Glu-16, Phe-17, Leu-29, Gly-65, or Leu-66, and His-110 or Arg-111 for beta 210 and beta 208, respectively, caused decreased antibody binding to beta, suggesting that these residues form the epitopes and are thought to lie close together on the surface of the beta subunit. The topological locations of the corresponding residues in the atomic structure of the bovine beta subunit agree well with these expectations, except for Ala-1 and Leu-29. beta 210 binds to two beta strands including the epitope residues that are 50 residues apart, indicating that this antibody recognizes the tertiary structure of the N-terminal end region. Mutations in the epitope residues of beta 210 do not affect the F(1) ATPase activity, suggesting that surfaces of the two beta strands in the amino-terminal end region are not functionally essential. To analyze the functional importance around His-110 recognized by beta 208 we introduced site specific mutations at residues His-110 and Ile-109. Ile-109 to Ala or Arg, and His-110 to Ala or Asp caused defective assembly of F(1). However, the His-110 to Arg mutation had no effect on molecular assembly, suggesting that Ile-109 and His-110, especially the positive charge of His-110 are essential for the assembly of F(1). The His-110 to Arg mutation caused a large decrease in F(1)-ATPase activity, suggesting that a subtle change in the topological arrangement of the positive charge of His-110 located on the surface of beta plays an important role in the catalytic mechanism of the F(1)-ATPase.  相似文献   

14.
Oligonucleotide-directed mutagenesis of ctxB was used to produce mutants of cholera toxin B subunit (CT-B) altered at residues Cys-9, Gly-33, Lys-34, Arg-35, Cys-86 and Trp-88. Mutants were identified phenotypically by radial passive immune haemolysis assays and genotypically by colony hybridization with specific oligonucleotide probes. Mutant CT-B polypeptides were characterized for immunoreactivity, binding to ganglioside GM1, ability to associate with the A subunit, ability to form holotoxin, and biological activity. Amino acid substitutions that caused decreased binding of mutant CT-B to ganglioside GM1 and abolished toxicity included negatively charged or large hydrophobic residues for Gly-33 and negatively or positively charged residues for Trp-88. Substitution of lysine or arginine for Gly-33 did not affect immunoreactivity or GM1-binding activity of CT-B but abolished or reduced toxicity of the mutant holotoxins, respectively. Substitutions of Glu or Asp for Arg-35 interfered with formation of holotoxin, but none of the observed substitutions for Lys-34 or Arg-35 affected binding of CT-B to GM1. The Cys-9, Cys-86 and Trp-88 residues were important for establishing or maintaining the native conformation of CT-B or protecting the CT-B polypeptide from rapid degradation in vivo.  相似文献   

15.
alpha-Human atrial natriuretic peptide (hANP) is secreted by the heart and acts on the kidney to promote a strong diuresis and natriuresis. In vivo it has been shown to be catabolized partly by the kidney. Crude microvillar membranes of human kidney degrade 125I-ANP at several internal bonds generating metabolites among which the C-terminal fragments were identified. Formation of the C-terminal tripeptide was blocked by phosphoramidon, indicating the involvement of endopeptidase-24.11 in this cleavage. Subsequent cleavages by aminopeptidase(s) yielded the C-terminal dipeptide and free tyrosine. Using purified endopeptidase 24.11, we identified seven sites of hydrolysis in unlabelled alpha-hANP: the bonds Arg-4-Ser-5, Cys-7-Phe-8, Arg-11-Met-12, Arg-14-Ile-15, Gly-16-Ala-17, Gly-20-Leu-21 and Ser-25-Phe-26. However, the bonds Gly-16-Ala-17 and Arg-4-Ser-5 did not fulfil the known specificity requirements of the enzyme. Cleavage at the Gly-16-Ala-17 bond was previously observed by Stephenson & Kenny [(1987) Biochem. J. 243, 183-187], but this is the first report of an Arg-Ser bond cleavage by this enzyme. Initial attack of alpha-hANP by endopeptidase-24.11 took place at a bond within the disulphide-linked loop and produced a peptide having the same amino acid composition as intact ANP. The bond cleaved in this metabolite was determined as the Cys-7-Phe-8 bond. Determination of all the bonds cleaved in alpha-hANP by endopeptidase-24.11 should prove useful for the design of more stable analogues, which could have therapeutic uses in hypertension.  相似文献   

16.
The cyclooxygenase (COX) reaction of prostaglandin (PG) biosynthesis begins with the highly specific oxygenation of arachidonic acid in the 11R configuration and ends with a 15S oxygenation to form PGG2. To obtain new insights into the mechanisms of stereocontrol of oxygenation, we mutated active site residues of human COX-2 that have potential contacts with C-11 of the reacting substrate. Although the 11R oxygenation was not perturbed, changing Leu-384 (into Phe, Trp), Trp-387 (Phe, Tyr), Phe-518 (Ile, Trp, Tyr), and Gly-526 (Ala, Ser, Thr, Val) impaired or abrogated PGG2 synthesis, and typically 11R-HETE was the main product formed. The Gly-526 and Leu-384 mutants formed, in addition, three novel products identified by LC-MS, NMR, and circular dichroism as 8,9-11,12-diepoxy-13R-(or 15R)-hydro(pero)xy derivatives of arachidonic acid. Mechanistically, we propose these arise from a free radical intermediate in which a C-8 carbon radical displaces the 9,11-endoperoxide O-O bond to yield an 8,9-11,12-diepoxide that is finally oxygenated stereospecifically in the 13R or 15R configuration. Formation of these novel products signals an arrest in the normal course of prostaglandin synthesis just prior to closing of the 5-membered carbon ring, and points to a crucial role for Leu-384 and Gly-526 in the correct positioning of the reacting fatty acid intermediate. Some of the Gly-526 and Leu-384 mutants catalyzed both formation of PGG2 (with the normal 15S configuration) and the 13R- or 15R-oxygenated diepoxides. This result suggests that oxygenation specificity can be determined by the orientation of the reacting fatty acid radical and is not a predetermined outcome based solely on the structure of the cyclooxygenase active site.  相似文献   

17.
Yeast frequenin (Frq1), a small N-myristoylated EF-hand protein, activates phosphatidylinositol 4-kinase Pik1. The NMR structure of Ca2+-bound Frq1 complexed to an N-terminal Pik1 fragment (residues 121-174) was determined. The Frq1 main chain is similar to that in free Frq1 and related proteins in the same branch of the calmodulin superfamily. The myristoyl group and first eight residues of Frq1 are solvent-exposed, and Ca2+ binds the second, third, and fourth EF-hands, which associate to create a groove with two pockets. The Pik1 peptide forms two helices (125-135 and 156-169) connected by a 20-residue loop. Side chains in the Pik1 N-terminal helix (Val-127, Ala-128, Val-131, Leu-132, and Leu-135) interact with solvent-exposed residues in the Frq1 C-terminal pocket (Leu-101, Trp-103, Val-125, Leu-138, Ile-152, and Leu-155); side chains in the Pik1 C-terminal helix (Ala-157, Ala-159, Leu-160, Val-161, Met-165, and Met-167) contact solvent-exposed residues in the Frq1 N-terminal pocket (Trp-30, Phe-34, Phe-48, Ile-51, Tyr-52, Phe-55, Phe-85, and Leu-89). This defined complex confirms that residues in Pik1 pinpointed as necessary for Frq1 binding by site-directed mutagenesis are indeed sufficient for binding. Removal of the Pik1 N-terminal region (residues 8-760) from its catalytic domain (residues 792-1066) abolishes lipid kinase activity, inconsistent with Frq1 binding simply relieving an autoinhibitory constraint. Deletion of the lipid kinase unique motif (residues 35-110) also eliminates Pik1 activity. In the complex, binding of Ca2+-bound Frq1 forces the Pik1 chain into a U-turn. Frq1 may activate Pik1 by facilitating membrane targeting via the exposed N-myristoyl group and by imposing a structural transition that promotes association of the lipid kinase unique motif with the kinase domain.  相似文献   

18.
P Brandt  C Woodward 《Biochemistry》1987,26(11):3156-3167
Hydrogen exchange rates of six beta-sheet peptide amide protons in bovine pancreatic trypsin inhibitor (BPTI) have been measured in free BPTI and in the complexes trypsinogen-BPTI, trypsinogen-Ile-Val-BPTI, bovine trypsin-BPTI, and porcine trypsin-BPTI. Exchange rates in the complexes are slower for Ile-18, Arg-20, Gln-31, Phe-33, Tyr-35, and Phe-45 NH, but the magnitude of the effect is highly variable. The ratio of the exchange rate constant in free BPTI to the exchange rate constant in the complex, k/kcpIx, ranges from 3 to much greater than 10(3). Gln-31, Phe-45, and Phe-33 NH exchange rate constants are the same in each of the complexes. For Ile-18 and Tyr-35, k/kcpIx is much greater than 10(3) for the trypsin complexes but is in the range 14-43 for the trypsinogen complexes. Only the Arg-20 NH exchange rate shows significant differences between trypsinogen-BPTI and trypsinogen-Ile-Val-BPTI and between porcine and bovine trypsin-BPTI.  相似文献   

19.
Long chain curarimimetic toxins from snake venom bind with high affinities to both muscular type nicotinic acetylcholine receptors (AChRs) (K(d) in the pm range) and neuronal alpha 7-AChRs (K(d) in the nm range). To understand the molecular basis of this dual function, we submitted alpha-cobratoxin (alpha-Cbtx), a typical long chain curarimimetic toxin, to an extensive mutational analysis. By exploring 36 toxin mutants, we found that Trp-25, Asp-27, Phe-29, Arg-33, Arg-36, and Phe-65 are involved in binding to both neuronal and Torpedo (Antil, S., Servent, D., and Ménez, A. (1999) J. Biol. Chem. 274, 34851-34858) AChRs and that some of them (Trp-25, Asp-27, and Arg-33) have similar binding energy contributions for the two receptors. In contrast, Ala-28, Lys-35, and Cys-26-Cys-30 selectively bind to the alpha 7-AChR, whereas Lys-23 and Lys-49 bind solely to the Torpedo AChR. Therefore, alpha-Cbtx binds to two AChR subtypes using both common and specific residues. Double mutant cycle analyses suggested that Arg-33 in alpha-Cbtx is close to Tyr-187 and Pro-193 in the alpha 7 receptor. Since Arg-33 of another curarimimetic toxin is close to the homologous alpha Tyr-190 of the muscular receptor (Ackermann, E. J., Ang, E. T. H., Kanter, J. R., Tsigelny, I., and Taylor, P. (1998) J. Biol. Chem. 273, 10958-10964), toxin binding probably occurs in homologous regions of neuronal and muscular AChRs. However, no coupling was seen between alpha-Cbtx Arg-33 and alpha 7 receptor Trp-54, Leu-118, and Asp-163, in contrast to what was observed in a homologous situation involving another toxin and a muscular receptor (Osaka, H., Malany, S., Molles, B. E., Sine, S. M., and Taylor, P. (2000) J. Biol. Chem. 275, 5478-5484). Therefore, although occurring in homologous regions, the detailed modes of toxin binding to alpha 7 and muscular receptors are likely to be different. These data offer a molecular basis for the design of toxins with predetermined specificities for various members of the AChR family.  相似文献   

20.
A gamma-carboxylation recognition site on the propeptide of the vitamin K-dependent blood coagulation proteins directs the carboxylation of glutamic acid residues by binding to the vitamin K-dependent carboxylase. To determine residues that define this site, we evaluated the effect of mutation of certain residues in the prothrombin propeptide on the extent of carboxylation. The prothrombin cDNA modified by site-specific mutagenesis was expressed in Chinese hamster ovary cells using a system that yields functional fully carboxylated prothrombin. The cell supernatants containing recombinant prothrombin were evaluated for the extent of gamma-carboxylation by immunoassay. Conformation-specific anti-prothrombin:Ca(II)-specific antibodies measure native completely carboxylated prothrombin; anti-prothrombin:total antibodies measure all forms of prothrombin, regardless of gamma-carboxyglutamic acid content. Mutation of His-18 to Gly, Val-17 to Ser, Leu-15 to Gly or Asp, or Ala-10 to Asp was associated with a partial (30-65%) inhibition of gamma-carboxylation. Mutation of Ala-14 to Ser or Ser-8 to Val did not inhibit gamma-carboxylation. From this and earlier work, residues whose mutation leads to a significant impairment of carboxylation include His-18, Val-17, Phe-16, Leu-15, and Ala-10. Residues whose mutation does not alter the carboxylation recognition site include Ala-14, Ser-8, Arg-4, and Arg-1. To determine the size of the recognition site, the in vitro carboxylation of propeptide-containing synthetic peptides was compared. A 28-residue peptide, based upon residues -18 to +10 of prothrombin, and a 54-residue peptide, based upon residues -18 to +36 of prothrombin, were carboxylated by partially purified bovine carboxylase with similar Km values of 2-5 microM. These results indicate that the gamma-carboxyglutamic acid-rich region of prothrombin makes a minimal contribution to carboxylase binding. A molecular surface of about five amino acids located within the propeptide appears to define the carboxylation recognition site on the precursor forms of the vitamin K-dependent proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号