首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
3.
4.
5.
The heme-regulated phosphodiesterase (PDE) from Escherichia coli (Ec DOS) is a tetrameric protein composed of an N-terminal sensor domain (amino acids 1-201) containing two PAS domains (PAS-A, amino acids 21-84, and PAS-B, amino acids 144-201) and a C-terminal catalytic domain (amino acids 336-799). Heme is bound to the PAS-A domain, and the redox state of the heme iron regulates PDE activity. In our experiments, a H77A mutation and deletion of the PAS-B domain resulted in the loss of heme binding affinity to PAS-A. However, both mutant proteins were still tetrameric and more active than the full-length wild-type enzyme (140% activity compared with full-length wild type), suggesting that heme binding is not essential for catalysis. An N-terminal truncated mutant (DeltaN147, amino acids 148-807) containing no PAS-A domain or heme displayed 160% activity compared with full-length wild-type protein, confirming that the heme-bound PAS-A domain is not required for catalytic activity. An analysis of C-terminal truncated mutants led to mapping of the regions responsible for tetramer formation and revealed PDE activity in tetrameric proteins only. Mutations at a putative metal-ion binding site (His-590, His-594) totally abolished PDE activity, suggesting that binding of Mg2+ to the site is essential for catalysis. Interestingly, the addition of the isolated PAS-A domain in the Fe2+ form to the full-length wild-type protein markedly enhanced PDE activity (>5-fold). This activation is probably because of structural changes in the catalytic site as a result of interactions between the isolated PAS-A domain and that of the holoenzyme.  相似文献   

6.
Heme-regulated eukaryotic initiation factor 2alpha kinase (HRI) regulates the synthesis of hemoglobin in reticulocytes in response to heme availability. HRI contains a tightly bound heme at the N-terminal domain. Earlier reports show that nitric oxide (NO) regulates HRI catalysis. However, the mechanism of this process remains unclear. In the present study, we utilize in vitro kinase assays, optical absorption, electron spin resonance (ESR), and resonance Raman spectra of purified full-length HRI for the first time to elucidate the regulation mechanism of NO. HRI was activated via heme upon NO binding, and the Fe(II)-HRI(NO) complex displayed 5-fold greater eukaryotic initiation factor 2alpha kinase activity than the Fe(III)-HRI complex. The Fe(III)-HRI complex exhibited a Soret peak at 418 nm and a rhombic ESR signal with g values of 2.49, 2.28, and 1.87, suggesting coordination with Cys as an axial ligand. Interestingly, optical absorption, ESR, and resonance Raman spectra of the Fe(II)-NO complex were characteristic of five-coordinate NO-heme. Spectral findings on the coordination structure of full-length HRI were distinct from those obtained for the isolated N-terminal heme-binding domain. Specifically, six-coordinate NO-Fe(II)-His was observed but not Cys-Fe(III) coordination. It is suggested that significant conformational change(s) in the protein induced by NO binding to the heme lead to HRI activation. We discuss the role of NO and heme in catalysis by HRI, focusing on heme-based sensor proteins.  相似文献   

7.
Sato E  Sagami I  Uchida T  Sato A  Kitagawa T  Igarashi J  Shimizu T 《Biochemistry》2004,43(44):14189-14198
SOUL is specifically expressed in the retina and pineal gland and displays more than 40% sequence homology with p22HBP, a heme protein ubiquitously expressed in numerous tissues. SOUL was purified as a dimer in the absence of heme from the Escherichia coli expression system but displayed a hexameric structure upon heme binding. Heme-bound SOUL displayed optical absorption and resonance Raman spectra typical of 6-coordinate low-spin heme protein, with one heme per monomeric unit for both the Fe(III) and Fe(II) complexes. Spectral data additionally suggest that one of the axial ligands of the Fe(III) heme complex is His. Mutation of His42 (the only His of SOUL) to Ala resulted in loss of heme binding, confirming that this residue is an axial ligand of SOUL. The K(d) value of heme for SOUL was estimated as 4.8 x 10(-9) M from the association and dissociation rate constants, suggesting high binding affinity. On the other hand, p22HBP was obtained as a monomer containing one heme per subunit, with a K(d) value of 2.1 x 10(-11) M. Spectra of heme-bound p22HBP were different from those of SOUL but similar to those of heme-bound bovine serum albumin in which heme bound to a hydrophobic cavity with no specific axial ligand coordination. Therefore, the heme-binding properties and coordination structure of SOUL are distinct from those of p22HBP, despite high sequence homology. The physiological role of the new heme-binding protein, SOUL, is further discussed in this report.  相似文献   

8.
9.
A direct sensor of O(2), the Dos protein, has been found in Escherichia coli. Previously, the only biological sensors known to respond to O(2) by direct and reversible binding were the FixL proteins of Rhizobia. A heme-binding region in Dos is 60% homologous to the O(2)-sensing PAS domain of the FixL protein, but the remainder of Dos does not resemble FixL. Specifically, the C-terminal domain of Dos, presumed to be a regulatory partner that couples to its heme-binding domain, is not a histidine kinase but more closely resembles a phosphodiesterase. The absorption spectra of Dos indicate that both axial positions of the heme iron are coordinated to side chains of the protein. Nevertheless, O(2) and CO bind to Dos with K(d) values of 13 and 10 microM, respectively, indicating a strong discrimination against CO binding. Association rate constants for binding of O(2) (3 mM(-)(1) s(-)(1)), CO (1 mM(-)(1) s(-)(1)) and even NO (2 mM(-)(1) s(-)(1)) are extraordinarily low and very similar. Displacement of an endogenous ligand, probably Met 95, from the heme iron in Dos triggers a conformational change that alters the activity of the enzymatic domain. This sensing mechanism differs from that of FixL but resembles that of the CO sensor CooA of Rhodospirillum rubrum. Overall the results provide evidence for a heme-binding subgroup of PAS-domain proteins whose working range, signaling mechanisms, and regulatory partners can vary considerably.  相似文献   

10.
11.
The EcDos protein belongs to a group of heme-based sensors that detect their ligands with a heme-binding PAS domain. Among these various heme-PAS proteins, EcDos is unique in having its heme iron coordinated at both axial positions to residues of the protein. To achieve its high affinities for ligands, one of the axial heme-iron residues in EcDos must be readily displaceable. Here we present evidence from mutagenesis, ligand-binding measurements, and magnetic circular dichroism, resonance Raman, and electron paramagnetic resonance spectroscopies about the nature of the displaceable residue in the heme-PAS domain of EcDos, i.e., EcDosH. The magnetic circular dichroism spectra in the near-infrared region establish histidine-methionine coordination in met-EcDos. To determine whether in deoxy-EcDos coordination of the sixth axial position is also to methionine, methionine 95 was substituted with isoleucine. This substitution caused the ferrous heme iron to change from an exclusively hexacoordinate low-spin form (EcDosH) to an exclusively pentacoordinate high-spin form (M95I EcDosH). This was accompanied by a modest acceleration of the dissociation rates of ligands but a dramatic increase (60-1300-fold) in the association rate constants for binding of O(2), CO, and NO. As a result, the affinity for O(2) was enhanced 10-fold in M95I EcDosH, but the partition constant M = [K(d)(O(2))/K(d)(CO)] between CO and O(2) was raised to about 30 from the extraordinarily low EcDosH value of 1. Thus a major consequence of the increased O(2) affinity of this sensor was the loss of its unusually strong ligand discrimination.  相似文献   

12.
The most common physiological strategy for detecting the gases oxygen, carbon monoxide, and nitric oxide is signal transduction by heme-based sensors, a broad class of modular proteins in which a heme-binding domain governs the activity of a neighboring transmitter domain. Different structures are possible for the heme-binding domains in these sensors, but, so far, the Per-ARNT-Sim motif, or PAS domain, is the one most commonly encountered. Heme-binding PAS (heme-PAS) domains can accomplish ligand-dependent switching of a variety of partner domains, including histidine kinase, phosphodiesterase, and basic helix-loop-helix (bHLH) DNA-binding modules. Proteins with heme-PAS domains occur in all kingdoms of life and are quite diverse in their physiological roles. Examples include the neuronal bHLH-PAS carbon monoxide sensor NPAS2 that is implicated in the mammalian circadian clock, the acetobacterial oxygen sensor AxPDEA1 that directs cellulose production, and the rhizobial oxygen sensor FixL, which governs nitrogen fixation. What factors determine the range of detection of these sensors? How do they transduce their signal? This review examines the recent advances in answering these questions.  相似文献   

13.
The heme-regulated eukaryotic initiation factor-2alpha (eIF2alpha) kinase (HRI) regulates the initiation of protein synthesis in reticulocytes. The binding of NO to the N-terminal heme-binding domain (NTD) of HRI positively modulates its kinase activity. By utilizing UV-visible absorption, resonance Raman, EPR and CD spectroscopies, two histidine residues have been identified that are crucial for the binding of heme to the NTD. The UV-visible absorption and resonance Raman spectra of all the histidine to alanine mutants constructed were similar to those of the unmutated NTD. However, the change in the CD spectra of the NTD construct containing mutation of His78 to Ala (H78A) indicated loss of the specific binding of heme. The EPR spectrum for the ferric H78A mutant was also substantially perturbed. Thus, His78 is one of the axial ligands for the NTD of HRI. Significant changes in the EPR spectrum of the H123A mutant were also observed, and heme readily dissociated from both the H123A and the H78A NTD mutants, suggesting that His123 was also an axial heme ligand. However, the CD spectrum for the Soret region of the H123A mutant indicated that this mutant still bound heme specifically. Thus, while both His78 and His123 are crucial for stable heme binding, the effects of their mutations on the structure of the NTD differed. His78 appears to play the primary role in the specific binding of heme to the NTD, acting analogously to the "proximal histidine" ligand of globins, while His123 appears to act as the "distal" heme ligand.  相似文献   

14.
The heme-PAS is a specialized domain with which a broad class of signal-transducing heme proteins detect physiological heme ligands. Such domains exhibit a wide range of ligand binding parameters, yet they are all expected to feature an alpha-beta heme binding fold and a predominantly hydrophobic heme distal pocket without a distal histidine. We have compared, for the first time, the resonance Raman spectra of several heme-PASs: the heme-binding domains of Bradyrhizobium japonicum FixL, Escherichia coli Dos, Acetobacter xylinum PDEA1, and Methanobacterium thermoautotrophicum Dos. In all cases, the nu(Fe)-(CO) and nu(C-O) values of the carbonmonoxy forms were consistent with coordination of the heme iron to histidine on the proximal side and binding of the CO without electrostatic interaction with the heme distal pocket. EcDos was unusual in having predominantly hexacoordinate heme iron in the deoxy and met forms. Despite an evident lack of CO interaction with the EcDos heme pocket, relatively low Fe-O(2) (562 cm(-1)) and N-O (1576 cm(-1)) stretching frequencies indicated that strong polar interactions with that heme distal pocket are possible for highly bent ligands such as O(2) or NO. None of the newly studied NO adducts exhibited evidence of the Fe-His rupture and pentacoordination previously noted for Sinorhizobium meliloti FixL. A low Fe-His stretching frequency, formerly interpreted as a strained Fe-His bond, and the slow association of O(2) with S. meliloti FixL failed to correlate with the newly studied proteins having low association rate or low equilibrium association constants for binding of O(2). We conclude that although heme-PASs share some features, they represent distinct signal transduction mechanisms.  相似文献   

15.
Heme-regulated eIF2alpha kinase (HRI) is an important enzyme that modulates protein synthesis during cellular emergency/stress conditions, such as heme deficiency in red cells. It is essential to identify the heme axial ligand(s) and/or binding sites to establish the heme regulation mechanism of HRI. Previous reports suggest that a His residue in the N-terminal region and a Cys residue in the C-terminal region trans to the His are axial ligands of the heme. Moreover, mutational analyses indicate that a residue located in the kinase insertion (KI) domain between Kinase I and Kinase II domains in the C-terminal region is an axial ligand. In the present study, we isolate the KI domain of mouse HRI and employ site-directed mutagenesis to identify the heme axial ligand. The optical absorption spectrum of the Fe(III) hemin-bound wild-type KI displays a broad Soret band at around 373nm, while that of the Fe(II) heme-bound protein contains a band at 422nm. Spectral titration studies conducted for both the Fe(III) hemin and Fe(II) heme complexes with KI support a 1:1 stoichiometry of heme iron to protein. Resonance Raman spectra of Fe(III) hemin-bound KI suggest that thiol is the axial ligand in a 5-coordinate high-spin heme complex as a major form. Electron spin resonance (ESR) spectra of Fe(III) hemin-bound KI indicate that the axial ligands are OH(-) and Cys. Since Cys385 is the only cysteine in KI, the residue was mutated to Ser, and its spectral characteristics were analyzed. The Soret band position, heme spectral titration behavior and ESR parameters of the Cys385Ser mutant were markedly different from those of wild-type KI. Based on these spectroscopic findings, we conclude that Cys385 is an axial ligand of isolated KI.  相似文献   

16.
Heme-regulated eIF2alpha kinase [heme-regulated inhibitor (HRI)] plays a critical role in the regulation of protein synthesis by heme iron. The kinase active site is located in the C-terminal domain, whereas the N-terminal domain is suggested to regulate catalysis in response to heme binding. Here, we found that the rate of dissociation for Fe(III)-protoporphyrin IX was much higher for full-length HRI (1.5 x 10(-)(3) s(-)(1)) than for myoglobin (8.4 x 10(-)(7) s(-)(1)) or the alpha-subunit of hemoglobin (7.1 x 10(-)(6) s(-)(1)), demonstrating the heme-sensing character of HRI. Because the role of the N-terminal domain in the structure and catalysis of HRI has not been clear, we generated N-terminal truncated mutants of HRI and examined their oligomeric state, heme binding, axial ligands, substrate interactions, and inhibition by heme derivatives. Multiangle light scattering indicated that the full-length enzyme is a hexamer, whereas truncated mutants (truncations of residues 1-127 and 1-145) are mainly trimers. In addition, we found that one molecule of heme is bound to the full-length and truncated mutant proteins. Optical absorption and electron spin resonance spectra suggested that Cys and water/OH(-) are the heme axial ligands in the N-terminal domain-truncated mutant complex. We also found that HRI has a moderate affinity for heme, allowing it to sense the heme concentration in the cell. Study of the kinetics showed that the HRI kinase reaction follows classical Michaelis-Menten kinetics with respect to ATP but sigmoidal kinetics and positive cooperativity between subunits with respect to the protein substrate (eIF2alpha). Removal of the N-terminal domain decreased this cooperativity between subunits and affected the other kinetic parameters including inhibition by Fe(III)-protoporphyrin IX, Fe(II)-protoporphyrin IX, and protoporphyrin IX. Finally, we found that HRI is inhibited by bilirubin at physiological/pathological levels (IC(50) = 20 microM). The roles of the N-terminal domain and the binding of heme in the structural and functional properties of HRI are discussed.  相似文献   

17.
Ec DOS is a heme-based gas sensor enzyme that catalyzes conversion from cyclic-di-GMP to linear-di-GMP in response to gas molecules, such as oxygen, CO and NO. Ec DOS contains an N-terminal heme-binding PAS domain and C-terminal phosphodiesterase domain. Based on crystal structures of the isolated heme-binding domain, it is suggested that the FG loop is involved in intra-molecular signal transduction to the catalytic domain. We generated nine full-length proteins mutated at ionic and non-ionic polar residues between positions 83 and 96 corresponding to the F-helix and FG loop, and examined the heme binding properties, autoxidation rates, and catalytic activities of mutant proteins. N84A and R85A mutant proteins displayed lower heme binding affinities, consistent with the finding that Asn84 interacts with propionate of protoporphyrin IX, and Arg85 with Asp40 on the heme proximal side. Autoxidation rates (0.058-0.54 min−1) of R91A, S96A and K89A/R91A/E93A mutant proteins were significantly higher than that (0.0053 min−1) of wild-type protein, suggesting that these residues in the FG loop form heme distal architecture conferring stability to the Fe(II)-O2 complex. Catalytic activities of N84A and R85A mutant proteins with low heme affinity were significantly higher than those of wild-type protein in the absence of gas molecules. Accordingly, we propose that loss of heme binding enhances basal catalysis without the gas molecule, consistent with previous reports on heme inhibition of Ec DOS catalysis.  相似文献   

18.
A protein containing a heme-binding PAS (PAS is from the protein names in which imperfect repeat sequences were first recognized: PER, ARNT, and SIM) domain from Escherichia coli has been implied a direct oxygen sensor (Ec DOS) enzyme. In the present study, we isolated cDNA for the Ec DOS full-length protein, expressed it in E. coli, and examined its structure-function relationships for the first time. Ec DOS was found to be tetrameric and was obtained as a 6-coordinate low spin ferric heme complex. Its alpha-helix content was calculated as 53% by CD spectroscopy. The redox potential of the heme was found to be +67 mV versus SHE. Mutation of His-77 of the isolated PAS domain abolished heme binding, whereas mutation of His-83 did not, suggesting that His-77 is one of the heme axial ligands. Ferrous, but not ferric, Ec DOS had phosphodiesterase (PDE) activity of nearly 0.15 min(-1) with cAMP, which was optimal at pH 8.5 in the presence of Mg(2+) and was strongly inhibited by CO, NO, and etazolate, a selective cAMP PDE inhibitor. Absorption spectral changes indicated tight CO and NO bindings to the ferrous heme. Therefore, the present study unequivocally indicates for the first time that Ec DOS exhibits PDE activity with cAMP and that this is regulated by the heme redox state.  相似文献   

19.
Neudesin is a secreted protein with neurotrophic activity in neurons and undifferentiated neural cells. We report here that neudesin is an extracellular heme-binding protein and that its neurotrophic activity is dependent on the binding of heme to its cytochrome b(5)-like heme/steroid-binding domain. At first, we found that at least a portion of the purified recombinant neudesin appeared to bind hemin because the purified neudesin solution was tinged with green and had a sharp absorbance peak at 402 nm. The addition of exogenous hemin extensively increased the amount of hemin-bound neudesin. In contrast, neudesinDeltaHBD, a mutant lacking the heme-binding domain, could not bind hemin. The neurotrophic activity of the recombinant neudesin that bound exogenous hemin (neudesin-hemin) was significantly greater than that of the recombinant neudesin in either primary cultured neurons or Neuro2a cells, suggesting that the activity of neudesin depends on hemin. The neurotrophic activity of neudesin was enhanced by the binding of Fe(III)-protoporphyrin IX, but neither Fe(II)-protoporphyrin IX nor protoporphyrin IX alone. The inhibition of endogenous neudesin by RNA interference significantly decreased cell survival in Neuro2a cells. This indicates that endogenous neudesin possibly contains hemin. The experiment with anti-neudesin antibody suggested that the endogenous neudesin detected in the culture medium of Neuro2a cells was associated with hemin because it was not retained on a heme-affinity column at all. Neudesin is the first extracellular heme-binding protein that shows signal transducing activity by itself. The present findings may shed new light on the function of extracellular heme-binding proteins.  相似文献   

20.
The heme uptake systems by which bacterial pathogens acquire and utilize heme have recently been described. Such systems may utilize heme directly from the host's hemeproteins or via a hemophore that sequesters and transports heme to an outer membrane receptor and subsequently to the translocating proteins by which heme is further transported into the cell. However, little is known of the heme binding and release mechanisms that facilitate the uptake of heme into the pathogenic organism. As a first step toward elucidating the molecular level events that drive heme binding and release, we have undertaken a spectroscopic and mutational study of the first purified periplasmic heme-binding protein (PBP), ShuT from Shigella dysenteriae. On the basis of sequence identity, the ShuT protein is most closely related to the class of PBPs typified by the vitamin B(12) (BtuF) and iron-hydroxamate (FhuD) PBPs and is a monomeric protein having a molecular mass of 28.5 kDa following proteolytic processing of the periplasmic signaling peptide. ShuT binds one b-type heme per monomer with high affinity and bears no significant homology with other known heme proteins. The resonance Raman, MCD, and UV-visible spectra of WT heme-ShuT are consistent with a five-coordinate high spin heme having an anionic O-bound proximal ligand. Site-directed ShuT mutants of the absolutely conserved Tyr residues, Tyr-94 (Y94A) and Tyr-228 (Y228F), which are found in all putative periplasmic heme-binding proteins, were subjected to UV-visible, resonance Raman, and MCD spectroscopic investigations of heme coordination environment and rates of heme release. The results of these experiments confirmed Tyr-94 as the only axial heme ligand and Tyr-228 as making a significant contribution to the stability of heme-loaded ShuT, albeit without directly interacting with the heme iron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号