共查询到20条相似文献,搜索用时 15 毫秒
1.
A critical role for PKC zeta in endothelin-1-induced uterine contractions at the end of pregnancy 总被引:1,自引:0,他引:1
Di Liberto G Dallot E Eude-Le Parco I Cabrol D Ferré F Breuiller-Fouché M 《American journal of physiology. Cell physiology》2003,285(3):C599-C607
We have previously shown that protein kinase C (PKC) and/or PKC are necessary for endothelin-1 (ET-1)-induced human myometrial contraction at the end of pregnancy (Eude I, Paris P, Cabrol D, Ferré F, and Breuiller-Fouché M. Biol Reprod 63: 15671573, 2000). Here, we report that the selective inhibitor of PKC isoform, Rottlerin, does not prevent ET-1-induced contractions, whereas LY-294002, a phosphatidylinositol (PI) 3-kinase inhibitor, affects the contractile response. This study characterized the in vitro contractile response of cultured human pregnant myometrial cells to ET-1 known to induce in vitro contractions of intact uterine smooth muscle strips. Cultured myometrial cells incorporated into collagen lattices have the capacity to reduce the size of these lattices, referred to as lattice contraction. Neither the selective conventional PKC isoform inhibitor, Gö-6976, or rottlerin affected myometrial cell-mediated gel contraction by ET-1, whereas this effect was blocked by LY-294002. We found that treatment of myometrial cell lattices with an inhibitory peptide specific for PKC or with an antisense against PKC resulted in a significant loss of ET-1-induced contraction. Evidence is also presented by using confocal microscopy that ET-1 induced translocation of PKC to a structure coincident with the actin-rich microfilaments of the cytoskeleton. We have shown that PKC has a role in the actin organization in ET-1-stimulated cells. Accordingly, our results suggest that PKC plays a role in myometrial contraction in pregnant women. protein kinase C; uterine smooth muscle; parturition 相似文献
2.
Xiao D Huang X Longo LD Pearce WJ Zhang L 《American journal of physiology. Heart and circulatory physiology》2006,291(1):H413-H420
The adaptation of contractile mechanisms of the uterine artery to pregnancy is not fully understood. The present study examined the effect of pregnancy on the uterine artery baseline Ca2+ sensitivity. In beta-escin-permeabilized arterial preparations, Ca2+ -induced concentration-dependent contractions were significantly decreased in uterine arteries from pregnant animals compared with those of nonpregnant animals. Time-course studies showed that Ca2+ increased phosphorylation of 20-kDa myosin light chain (MLC20), which preceded the tension development in vessels from both pregnant and nonpregnant animals. When compared with vessels from nonpregnant animals, there was a significant increase in the protein level of MLC20 and an accordance increase in the level of Ca2+ -induced phosphorylated MLC20 (MLC20-P) in uterine arteries during pregnancy. Simultaneous measurements of MCL20-P levels and contractions stimulated with Ca2+ in the same tissues demonstrated a significant attenuation in the tension-to-MLC20-P ratio in uterine arteries during pregnancy. Activation of PKC with phorbol 12,13-dibutyrate (PDBu) potentiated Ca2+ -induced contractions in uterine arteries from nonpregnant but not pregnant animals. Accordingly, inhibition of PKC attenuated Ca2+ -induced contractions in uterine arteries from nonpregnant but not pregnant animals. PDBu produced contractions in the presence or absence of Ca2+ in the beta-escin-permeabilized arteries, which were significantly decreased in uterine arteries from pregnant compared with nonpregnant animals. The results suggest that pregnancy upregulates the thick-filament regulatory pathway by increasing MLC20 phosphorylation but downregulates the thin-filament regulatory pathway by decreasing the contractile sensitivity of MLC20-P, resulting in attenuated baseline Ca2+ sensitivity in the uterine artery. In addition, PKC plays an important role in the regulation of basal Ca2+ sensitivity, which is downregulated during pregnancy. 相似文献
3.
Xiao D Longo LD Zhang L 《American journal of physiology. Heart and circulatory physiology》2005,288(6):H2828-H2835
We previously demonstrated that ERK/PKC signaling pathways play a key role in regulation of Ca(2+) sensitivity and contractility of the uterine artery. The present study tested the hypothesis that ERK and PKC differentially regulated myosin light chain phosphatase activity by phosphorylation of myosin phosphatase target protein-1 (MYPT-1) and CPI-17. Agonist-induced contractions and phosphorylation of MYPT-1/Thr(696), MYPT-1/Thr(850), and CPI-17/Thr(38) were measured simultaneously in the same tissues of isolated near-term pregnant ovine uterine arteries. Phenylephrine produced time-dependent concurrent increases in the phosphorylation of ERK(44/42) and MYPT-1/Thr(850) that preceded contractions. In addition, phenylephrine induced phosphorylation of CPI-17/Thr(38) that was concurrent with the contractions. In contrast, phenylephrine did not induce phosphorylation of MYPT-1/Thr(696) in the uterine artery. PD-098059 inhibited phosphorylation of ERK(44/42) and the initial peak phosphorylation of MYPT-1/Thr(850) but did not affect CPI-17/Thr(38) phosphorylation. Activation of PKC by phorbol 12,13-dibutyrate induced a time-dependent phosphorylation of CPI-17/Thr(38) that preceded contractions of the uterine artery. In addition, phorbol 12,13-dibutyrate activated PKC-alpha and induced a coimmunoprecipitation of PKC-alpha with caldesmon. The results suggest that phosphorylation of MYPT-1/Thr(850) and CPI-17/Thr(38) play important roles in regulation of agonist-mediated Ca(2+) sensitivity in the uterine artery, in part by ERK and PKC, respectively. In addition, phosphorylated CPI-17 may regulate Ca(2+) sensitivity by interacting with caldesmon and reversing its inhibitory effect on myosin ATPase. 相似文献
4.
Slater SJ Seiz JL Cook AC Buzas CJ Malinowski SA Kershner JL Stagliano BA Stubbs CD 《The Journal of biological chemistry》2002,277(18):15277-15285
In this study, the role of interdomain interactions involving the C1 and C2 domains in the mechanism of activation of PKC was investigated. Using an in vitro assay containing only purified recombinant proteins and the phorbol ester, 4 beta-12-O-tetradecanoylphorbol-13-acetate (TPA), but lacking lipids, it was found that PKC alpha bound specifically, and with high affinity, to a alpha C1A-C1B fusion protein of the same isozyme. The alpha C1A-C1B domain also potently activated the isozyme in a phorbol ester- and diacylglycerol-dependent manner. The level of this activity was comparable with that resulting from membrane association induced under maximally activating conditions. Furthermore, it was found that alpha C1A-C1B bound to a peptide containing the C2 domain of PKC alpha. The alpha C1A-C1B domain also activated conventional PKC beta I, -beta II, and -gamma isoforms, but not novel PKC delta or -epsilon. PKC delta and -epsilon were each activated by their own C1 domains, whereas PKC alpha, -beta I, -beta II, or -gamma activities were unaffected by the C1 domain of PKC delta and only slightly activated by that of PKC epsilon. PKC zeta activity was unaffected by its own C1 domain and those of the other PKC isozymes. Based on these findings, it is proposed that the activating conformational change in PKC alpha results from the dissociation of intra-molecular interactions between the alpha C1A-C1B domain and the C2 domain. Furthermore, it is shown that PKC alpha forms dimers via inter-molecular interactions between the C1 and C2 domains of two neighboring molecules. These mechanisms may also apply for the activation of the other conventional and novel PKC isozymes. 相似文献
5.
Previously, we demonstrated that activation of protein kinase C (PRKC) enhanced alpha(1)-adrenergic receptor-induced contractions in nonpregnant ovine uterine arteries but inhibited the contractions in pregnant ovine uterine arteries. The present study tested the hypothesis that differential regulation of PRKC isozyme activities contributes to the different effects of phorbol 12, 13-dibutyrate (PDBu) on alpha(1)-adrenergic receptor-mediated contractions between the pregnant and nonpregnant ovine uterine arteries. Phenylephrine-induced contractions of ovine nonpregnant and pregnant uterine arteries were determined in the absence or presence of the PRKC activator PDBu and/or in combination with conventional and novel PRKC isozyme inhibitor GF109203X, PRKC isozyme-selective inhibitory peptides for conventional PRKC, PRKCB1, PRKCB2, and PRKCE. GF109203X produced a concentration-dependent inhibition of phenylephrine-induced contractions in both nonpregnant and pregnant uterine arteries, and it reversed the PDBu-mediated potentiation and inhibition of phenylephrine-induced contractions in nonpregnant and pregnant uterine artieries, respectively. In addition, PRKCB1, PRKCB2, and PRKCE inhibitory peptides blocked the PDBu-mediated responses in both nonpregnant and pregnant uterine arteries. Western blot analysis showed that PDBu induced a membrane translocation of PRKCA, PRKCB1, PRKCB2, and PRKCE in pregnant uterine arteries, and PRKCB1, PRKCB2, and PRKCE in nonpregnant uterine arteries. The results disprove the hypothesis that the dichotomy of PRKC mechanisms in the regulation of alpha(1)-adrenergic receptor-induced contractions in nonpregnant and pregnant uterine arteries is caused by the activation of different PRKC isozymes, and suggest downstream mechanisms of differential subcellular distributions for the distinct functional effects of PRKC isozymes in the adaptation of uterine arteries to pregnancy. 相似文献
6.
Xiao D Huang X Pearce WJ Longo LD Zhang L 《American journal of physiology. Heart and circulatory physiology》2003,284(4):H1142-H1151
Cortisol potentiated norepinephrine (NE)-mediated contractions in ovine uterine arteries (UA). We tested the hypothesis that cortisol regulated alpha(1)-adrenoceptor-mediated pharmacomechanical coupling differentially in nonpregnant UA (NUA) and pregnant UA (PUA). Cortisol (10 ng/ml for 24 h) significantly increased contractile coupling efficiency of alpha(1)-adrenoceptors in NUA, but increased alpha(1)-adrenoceptor density in PUA. Cortisol potentiated NE-induced inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)] synthesis in both NUA and PUA, but increased coupling efficiency of alpha(1)-adrenoceptors to Ins(1,4,5)P(3) synthesis only in NUA. Carbenoxolone alone did not affect NE-mediated Ins(1,4,5)P(3) production, but significantly enhanced cortisol-mediated potentiation of NE-stimulated Ins(1,4,5)P(3) synthesis in PUA. In addition, cortisol potentiated the NE-induced increase in Ca(2+) concentration in PUA, but increased NE-mediated contraction for a given amount of Ca(2+) concentration in NUA. Collectively, the results indicate that cortisol potentiates NE-mediated contractions differentially in NUA and PUA, i.e., by upregulating alpha(1)-adrenoceptor density leading to increased Ca(2+) mobilization in PUA while increasing alpha(1)-adrenoceptor coupling efficiency and myofilament Ca(2+) sensitivity in NUA. In addition, the results suggest that pregnancy increases type 2 11 beta-hydroxysteroid dehydrogenase activity in the UA. 相似文献
7.
8.
9.
Endothelium-independent and -dependent contractions induced by endothelin-1 in canine basilar arteries 总被引:1,自引:0,他引:1
Endothelium-dependence of contractile responses to endothelin-1 was examined in isolated canine basilar arteries. Within 2 hrs after mounting tissue preparations, endothelin-1 (10(-9) M) caused a monophasic tonic contraction that developed very slowly and was sustained in intact and endothelium-removed arteries. More than 5 hrs after tissue mounting, endothelin-1 (10(-9) M) caused a biphasic contraction consisting of phasic and tonic components in intact arteries, and caused a monophasic tonic contraction in endothelium-removed arteries. This phasic component was significantly decreased by aspirin (5 x 10(-5) M,), OKY-046 (10(-5) M) (a TXA2 synthetase inhibitor) and ONO-3708 (10(-8) M) (a TXA2 antagonist). The present experiments demonstrate that endothelin-1 causes an endothelium-independent tonic contraction and an endothelium-dependent phasic contraction in canine basilar arteries, and suggest that TXA2 plays a role as an endothelium-derived contracting factor. 相似文献
10.
11.
12.
Xiao D Huang X Bae S Ducsay CA Zhang L 《American journal of physiology. Heart and circulatory physiology》2002,283(1):H238-H246
During pregnancy, maternal plasma cortisol concentrations approximately double. Given that cortisol plays an important role in the regulation of vascular reactivity, the present study investigated the potential role of cortisol in potentiation of uterine artery (UA) contractility and tested the hypothesis that pregnancy downregulated the cortisol-mediated potentiation. In vitro cortisol treatment (3, 10, or 30 ng/ml for 24 h) produced a dose-dependent increase in norepinephrine (NE)-induced contractions in both nonpregnant and pregnant (138-143 days gestation) sheep UA. However, this cortisol-mediated response was significantly attenuated by approximately 50% in pregnant UA. The 11 beta-hydroxysteroid dehydrogenase (11-beta HSD) inhibitor carbenoxolone did not change the effect of cortisol in nonpregnant UA but abolished its effect in pregnant UA by increasing the NE pD(2) in control tissues from 6.20 +/- 0.05 to 6.59 +/- 0.11. The apparent dissociation constant value of NE alpha(1)-adrenoceptors was not changed by cortisol in pregnant UA but was decreased in nonpregnant UA. There was no difference in glucocorticoid receptor density between nonpregnant and pregnant UA. Cortisol significantly decreased endothelial nitric oxide (NO) synthase protein levels and NO release in both nonpregnant and pregnant UA, but the effect of cortisol was attenuated in pregnant UA by approximately 50%. Carbenoxolone alone had no effects on NO release in nonpregnant UA but was decreased in pregnant UA. These results suggest that cortisol potentiates NE-mediated contractions by decreasing NO release and increasing NE-binding affinity to alpha(1)-adrenoceptors in nonpregnant UA. Pregnancy attenuates UA sensitivity to cortisol, which may be mediated by increasing type-2 11-beta HSD activity in UA. 相似文献
13.
人Ⅰ型干扰素(type I interferon, IFN-I)的诱生和应答在机体抗病毒固有免疫中发挥重要作用。但病毒多可逃逸宿主此类抗病毒免疫,导致感染和致病。Ⅰ型干扰素受体(interferon alpha receptor, IFNAR)是识别及结合IFN-I的一种跨细胞膜蛋白受体,其IFNAR1亚型在干扰素发挥抗病毒效应的启动阶段发挥关键作用;本文从IFNAR1蛋白质的表达、降解及其功能等方面,概述病毒以IFNAR1为靶点负调控IFN-I的抗病毒机制,以期为该领域基础研究和临床抗病毒策略提供有益的参考依据。 相似文献
14.
Changes in the response to adrenergic drugs on mouse uterine contractions during pregnancy 总被引:1,自引:0,他引:1
The effect of isoproterenol (ISO), norepinephrine (NE) and phenylephrine (PHE) on electrically-induced contractions of mice uterine horns was studied during pregnancy. At the different times of gestation adrenergic agonists always inhibited uterine contractions in the following rank order of potency: ISO greater than NE greater than PHE. Cumulative dose-response curves constructed for the effect of these amines during diestrous, and at days 3-7, 10-15, 17-21 of gestation, showed that EC50 values increased gradually as term approached, which could imply a lower capacity of the uterus to respond to adrenergic drugs. Some likely explanations for this phenomenon are proposed. It is suggested that this lower response to catecholamines at the end of pregnancy could be a cause for the reduced success of beta 2-adrenergic drugs to stop premature labor. 相似文献
15.
Evaluation of the fluid flow pattern in a non-pregnant uterus is important for understanding embryo transport in the uterus.
Fertilization occurs in the fallopian tube and the embryo (fertilized ovum) enters the uterine cavity within 3 days of ovulation.
In the uterus, the embryo is conveyed by the uterine fluid for another 3 to 4 days to a successful implantation site at the
upper part of the uterus. Fluid movements within the uterus may be induced by several mechanisms, but they seem to be dominated
by myometrial contractions. Intra-uterine fluid transport in a sagittal cross-section of the uterus was simulated by a model
of wall-induced fluid motion within a two-dimensional channel. The time-dependent fluid pattern was studied by employing the
lubrication theory. A comprehensive analysis of peristaltic transport resulting from symmetric and asymmetric contractions
is presented for various displacement waves on the channel walls. The results provide information on the flow field and possible
trajectories by which an embryo may be transported before implantation at the uterine wall. 相似文献
16.
17.
18.
19.
We have reported that α1 Na/K-ATPase regulates the trafficking of caveolin-1 and consequently alters cholesterol distribution in the plasma membrane. Here, we report the reciprocal regulation of α1 Na/K-ATPase by cholesterol. Acute exposure of LLC-PK1 cells to methyl β-cyclodextrin led to parallel decreases in cellular cholesterol and the expression of α1 Na/K-ATPase. Cholesterol repletion fully reversed the effect of methyl β-cyclodextrin. Moreover, inhibition of intracellular cholesterol trafficking to the plasma membrane by compound U18666A had the same effect on α1 Na/K-ATPase. Similarly, the expression of α1, but not α2 and α3, Na/K-ATPase was significantly reduced in the target organs of Niemann-Pick type C mice where the intracellular cholesterol trafficking is blocked. Mechanistically, decreases in the plasma membrane cholesterol activated Src kinase and stimulated the endocytosis and degradation of α1 Na/K-ATPase through Src- and ubiquitination-dependent pathways. Thus, the new findings, taken together with what we have already reported, revealed a previously unrecognized feed-forward mechanism by which cells can utilize the Src-dependent interplay among Na/K-ATPase, caveolin-1, and cholesterol to effectively alter the structure and function of the plasma membrane. 相似文献
20.
Hypoxia-inducible factor 1 (HIF-1) plays a central role in cellular adaptation to changes in oxygen availability. Recently, prolyl hydroxylation was identified as a key regulatory event that targets the HIF-1alpha subunit for proteasomal degradation via the pVHL ubiquitination complex. In this report, we reveal an important function for ARD1 in mammalian cells as a protein acetyltransferase by direct binding to HIF-1alpha to regulate its stability. We present further evidence showing that ARD1-mediated acetylation enhances interaction of HIF-1alpha with pVHL and HIF-1alpha ubiquitination, suggesting that the acetylation of HIF-1alpha by ARD1 is critical to proteasomal degradation. Therefore, we have concluded that the role of ARD1 in the acetylation of HIF-1alpha provides a key regulatory mechanism underlying HIF-1alpha stability. 相似文献