首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Computer-based approaches identified PTE2 as a candidate human peroxisomal acyl-CoA thioesterase gene. The PTE2 gene product is highly similar to the rat cytosolic and mitochondrial thioesterases, CTE1 and MTE1, respectively, and terminates in a tripeptide sequence, serine-lysine-valine(COOH), that resembles the consensus sequence for type-1 peroxisomal targeting signals. PTE2 was targeted to peroxisomes and recombinant PTE2 showed intrinsic acyl-CoA thioesterase activity with a pH optimum of 8.5. A comparison of PTE2 and PTE1 thioesterase activities across multiple acyl-CoA substrates indicated that while PTE1 was most active on medium-chain acyl-CoAs, with little activity on long-chain acyl-CoAs, PTE2 displayed high activity on medium- and long-chain acyl-CoAs. The identification of PTE2 therefore offers an explanation for the observed long-chain acyl-CoA thioesterase activity of mammalian peroxisomes.  相似文献   

2.
Peroxisomes function in beta-oxidation of very long and long-chain fatty acids, dicarboxylic fatty acids, bile acid intermediates, prostaglandins, leukotrienes, thromboxanes, pristanic acid, and xenobiotic carboxylic acids. These lipids are mainly chain-shortened for excretion as the carboxylic acids or transported to mitochondria for further metabolism. Several of these carboxylic acids are slowly oxidized and may therefore sequester coenzyme A (CoASH). To prevent CoASH sequestration and to facilitate excretion of chain-shortened carboxylic acids, acyl-CoA thioesterases, which catalyze the hydrolysis of acyl-CoAs to the free acid and CoASH, may play important roles. Here we have cloned and characterized a peroxisomal acyl-CoA thioesterase from mouse, named PTE-2 (peroxisomal acyl-CoA thioesterase 2). PTE-2 is ubiquitously expressed and induced at mRNA level by treatment with the peroxisome proliferator WY-14,643 and fasting. Induction seen by these treatments was dependent on the peroxisome proliferator-activated receptor alpha. Recombinant PTE-2 showed a broad chain length specificity with acyl-CoAs from short- and medium-, to long-chain acyl-CoAs, and other substrates including trihydroxycoprostanoyl-CoA, hydroxymethylglutaryl-CoA, and branched chain acyl-CoAs, all of which are present in peroxisomes. Highest activities were found with the CoA esters of primary bile acids choloyl-CoA and chenodeoxycholoyl-CoA as substrates. PTE-2 activity is inhibited by free CoASH, suggesting that intraperoxisomal free CoASH levels regulate the activity of this enzyme. The acyl-CoA specificity of recombinant PTE-2 closely resembles that of purified mouse liver peroxisomes, suggesting that PTE-2 is the major acyl-CoA thioesterase in peroxisomes. Addition of recombinant PTE-2 to incubations containing isolated mouse liver peroxisomes strongly inhibited bile acid-CoA:amino acid N-acyltransferase activity, suggesting that this thioesterase can interfere with CoASH-dependent pathways. We propose that PTE-2 functions as a key regulator of peroxisomal lipid metabolism.  相似文献   

3.
A new esterase activity from Bacillus licheniformis was characterized from an Escherichia coli recombinant strain. The protein was a single polypeptide chain with a molecular mass of 81 kDa. The optimum pH for esterase activity was 8-8.5 and it was stable in the range 7-8.5. The optimum temperature for activity was 45 degrees C and the half-life was 1 h at 64 degrees C. Maximum activity was observed on p-nitrophenyl caproate with little activity toward long-chain fatty acid esters. The enzyme had a KM of 0.52 mM for p-nitrophenyl caproate hydrolysis at pH 8 and 37 degrees C. The enzyme activity was not affected by either metal ions or sulfydryl reagents. Surprisingly, the enzyme was only slightly inhibited by PMSF. These characteristics classified the new enzyme as a thermostable esterase that shared similarities with lipases. The esterase might be useful for biotechnological applications such as ester synthesis.  相似文献   

4.
Extracellular and cell-bound esterases produced by Acidiphilium sp. AIU 409 were homogeneously purified from culture broth and cells, respectively, and some properties were investigated. Both esterases more rapidly hydrolyzed p-nitrophenyl acyl esters containing long-chain fatty acids from C 8:0 to C 18:0 than those containing short-chain fatty acids from C 2:0 to C 6:0. The Km values for p-nitrophenyl long-chain fatty acid esters from C 8:0 to C 18:0 were approximately 1.3-1.5 mM. The enzymes were stable at 50 degrees C for 2 days between pH 3.0 and 6.5, and optimum pH and temperature were 5.0 and 70 degrees C, respectively. Enzyme activity was inhibited by phenylmethylsulfonyl fluoride and SDS. The molecular mass of both enzymes was estimated to be approximately 64 kDa by SDS-PAGE. The 23 amino acid sequence from the NH(2)-terminus was also the same in both enzymes. These results suggest that extracellular esterase might be composed of the same components as cell-bound esterase.  相似文献   

5.
Extracts of avocado mesocarp rapidly desaturate stearyl-acyl carrier protein (ACP) to free oleic acid. In addition to stearyl-ACP desaturase activity, the extracts contained a very active acyl thioesterase. After this activity was separated by ammonium sulfate fractionation from stearyl-ACP desaturase, over 95% of the desaturase product (18:1) was recovered as 18:1-ACP. The thioesterase was much more active toward 18:1-ACP than toward the other acyl-ACPs and acyl-CoAs tested. Long chain acyl thioesterase activity was present in a variety of plant cells, photosynthetic as well as nonphotosynthetic. The possible role of acyl thioesterases in regulating plant biosynthetic reactions involving lipids is discussed.  相似文献   

6.
By using computer-based homology searches of the Arabidopsis genome, we identified the gene for ACH2, a putative acyl-CoA thioesterase. With the exception of a unique 129-amino acid N-terminal extension, the ACH2 protein is 17-36% identical to members of a family of acyl-CoA thioesterases that are found in both prokaryotes and eukaryotes. The eukaryotic homologs of ACH2 are peroxisomal acyl-CoA thioesterases that are up-regulated during times of increased fatty acid oxidation, suggesting potential roles in peroxisomal beta-oxidation. We investigated ACH2 to determine whether it has a similar role in the plant cell. Like its eukaryotic homologs, ACH2 carries a putative type 1 peroxisomal targeting sequence (-SKL(COOH)), and maintains all the catalytic residues typical of this family of acyl-CoA thioesterases. Analytical ultracentrifugation of recombinant ACH2-6His shows that it associates as a 196-kDa homotetramer in vitro, a result that is significant in light of the cooperative kinetics demonstrated by ACH2-6His in vitro. The cooperative effects are most pronounced with medium chain acyl-CoAs, where the Hill coefficient is 3.8 for lauroyl-CoA, but decrease for long chain acyl-CoAs, where the Hill coefficient is only 1.9 for oleoyl-CoA. ACH2-6His hydrolyzes both medium and long chain fatty acyl-CoAs but has highest activity toward the long chain unsaturated fatty acyl-CoAs. Maximum rates were found with palmitoleoyl-CoA, which is hydrolyzed at 21 micromol/min/mg protein. Additionally, ACH2-6His is insensitive to feedback inhibition by free CoASH levels as high as 100 microm. ACH2 is most highly expressed in mature tissues such as young leaves and flowers rather than in germinating seedlings where beta-oxidation is rapidly proceeding. Taken together, these results suggest that ACH2 activity is not linked to fatty acid oxidation as has been suggested for its eukaryotic homologs, but rather has a unique role in the plant cell.  相似文献   

7.
Long-chain acyl-CoA thioesterases hydrolyze long-chain acyl-CoAs to the corresponding free fatty acid and CoASH and may therefore play important roles in regulation of lipid metabolism. We have recently cloned four members of a highly conserved acyl-CoA thioesterase multigene family expressed in cytosol (CTE-I), mitochondria (MTE-I), and peroxisomes (PTE-Ia and -Ib), all of which are regulated via the peroxisome proliferator-activated receptor alpha (Hunt, M. C., Nousiainen, S. E. B., Huttunen, M. K., Orii, K. E., Svensson, L. T., and Alexson, S. E. H. (1999) J. Biol. Chem. 274, 34317-34326). Sequence comparison revealed the presence of putative active-site serine motifs (GXSXG) in all four acyl-CoA thioesterases. In the present study we have expressed CTE-I in Escherichia coli and characterized the recombinant protein with respect to sensitivity to various amino acid reactive compounds. The recombinant CTE-I was inhibited by phenylmethylsulfonyl fluoride and diethyl pyrocarbonate, suggesting the involvement of serine and histidine residues for the activity. Extensive sequence analysis pinpointed Ser(232), Asp(324), and His(358) as the likely components of a catalytic triad, and site-directed mutagenesis verified the importance of these residues for the catalytic activity. A S232C mutant retained about 2% of the wild type activity and incubation with (14)C-palmitoyl-CoA strongly labeled this mutant protein, in contrast to wild-type enzyme, indicating that deacylation of the acyl-enzyme intermediate becomes rate-limiting in this mutant protein. These data are discussed in relation to the structure/function of acyl-CoA thioesterases versus acyltransferases. Furthermore, kinetic characterization of recombinant CTE-I showed that this enzyme appears to be a true acyl-CoA thioesterase being highly specific for C(12)-C(20) acyl-CoAs.  相似文献   

8.
9.
Nie L  Ren Y  Janakiraman A  Smith S  Schulz H 《Biochemistry》2008,47(36):9618-9626
An alternative pathway of beta-oxidation for unsaturated fatty acids was studied in Escherichia coli. 9- cis,11- trans-Octadecadienoic acid (conjugated linoleic acid), a potential substrate of this pathway, was shown to support growth of E. coli in the absence of any other carbon source. The identification of 3,5-dodecadienoic acid in the growth medium revealed the partial beta-oxidation of conjugated linoleic acid to 3,5-dodecadienoyl-CoA, which was hydrolyzed to 3,5-dodecadienoic acid and released from cells. The involvement of acyl-CoA thioesterases in this process was evaluated by determining the substrate specificity of thioesterase II and comparing it with that of a novel thioesterase (thioesterase III) and by assessing mutant strains devoid of one or both of these thioesterases for growth on conjugated linoleic acid. Both thioesterases were highly active with 3,5-dodecadienoyl-CoA as substrate. A deficiency of either thioesterase decreased the growth rate of cells on conjugated linoleic acid but not on palmitic acid. The absence of both thioesterases reduced the cellular growth in a cumulative manner but did not abolish it. It is concluded that thioesterases II and III and at least one other thioesterase function in the partial degradation of conjugated linoleic acid via the thioesterase-dependent pathway of beta-oxidation, which provides all energy and carbon precursors required for the growth of E. coli.  相似文献   

10.
The fatty acid synthetase from lactating rat mammary gland is shown to consist of two polyfunctional polypeptides of similar molecular weight (about 220,000); a 4'-phosphopantetheine residue is covalently bound to one, or both subunits. Limited trypsinization of the fatty acid synthetase releases on enzymatically active thioesterase component which has been purified and its properties studied. The thioesterase sediments in the ultracentrifuge as a single component of molecular weight 32,000; its sedimentation coefficient is 2.9 x 10-(13) s its diffusion coefficient 5.0 x 10-(7) cm2 s-(1). The thioesterase also elutes from a column of Sephadex G-75 as a single, symmetrical peak of constant specific activity. However, electrophoresis of the denatured thioesterase in the presence of sodium dodecyl sulfate reveals that the enzyme has been partially nicked during isolation. The kinetic data of the enzyme reaction were studied using palmityl-CoA as a model substrate. Solvent pH was found to affect both Vmax and Km (Km = 0.5 micron at pH 6.6, 2.5 micron at pH 8.0) wereas solvent ionic strength affected Vmax but no Km. The thioesterases from the fatty acid synthetases of rat liver and lactating mammary gland have identical physical properties, identical amino acid compositions, and are immunologically indistinguishable. Both thioesterases hydrolyze long chain, in preference to short chain, thioesters of CoA, an observation consistent with their role in regulation of the chain-terminating step in fatty acid synthesis by the parent multienzyme complexes.  相似文献   

11.
A new esterase activity which hydrolyzes palmitoyl-CoA was found in the membrane fraction of Pseudomonas aeruginosa. All the 11 strains of P. aeruginosa tested possessed this esterase activity. The esterase was constitutive and was fully active on the intact cell bodies toward substrates in the medium. It was located on the outer membrane of the cell envelope, and was not released into the culture medium. This activity was designated as OM (outer membrane) esterase. OM esterase was solubilized from the cell envelope with EDTA-Triton X-100 and purified 690-fold. It was a minor component of the outer membrane. Its molecular weight was approximately 55,000. The activity was rather stable to heat, a wide range of pH, and treatment with detergents and organic solvents. No cofactors were required. The pH optimum of the reaction was 8.5. Among various acyl-CoAs, only long chain (C12--C18) thioesters were hydrolyzed. OM esterase also hydrolyzed some kinds of oxy-esters such as p-nitrophenyl acyl esters, monoacyl esters of sucrose and Tween 80 (polyoxyethylene sorbitan monooleate). On the other hand, triglycerides, phospholipids, or hydrophobic monoesters were not hydrolyzed at all. Thus, this enzyme seems to have specificity for long chain acyl esters with hydrophilic groups, whether thio- or oxy-ester. Mutants deficient in this esterase activity were isolated. These mutants were unable to grow on Tween 80 as a sole carbon source. This suggests a possible role of OM esterase in the utilization of acyl esters as carbon sources.  相似文献   

12.
Thioesterase superfamily member 1 (Them1; synonyms acyl-CoA thioesterase 11 and StarD14) is highly expressed in brown adipose tissue and limits energy expenditure in mice. Them1 is a putative fatty acyl-CoA thioesterase that comprises tandem hot dog-fold thioesterase domains and a lipid-binding C-terminal steroidogenic acute regulatory protein-related lipid transfer (START) domain. To better define its role in metabolic regulation, this study examined the biochemical and enzymatic properties of Them1. Purified recombinant Them1 dimerized in solution to form an active fatty acyl-CoA thioesterase. Dimerization was induced by fatty acyl-CoAs, coenzyme A (CoASH), ATP, and ADP. Them1 hydrolyzed a range of fatty acyl-CoAs but exhibited a relative preference for long-chain molecular species. Thioesterase activity varied inversely with temperature, was stimulated by ATP, and was inhibited by ADP and CoASH. Whereas the thioesterase domains of Them1 alone were sufficient to yield active recombinant protein, the START domain was required for optimal enzyme activity. An analysis of subcellular fractions from mouse brown adipose tissue and liver revealed that Them1 contributes principally to the fatty acyl-CoA thioesterase activity of microsomes and nuclei. These findings suggest that under biological conditions, Them1 functions as a lipid-regulated fatty acyl-CoA thioesterase that could be targeted for the management of metabolic disorders.  相似文献   

13.
An acyl-CoA hydrolase from dark-grown Euglena gracilis Z was purified 700-fold by subjecting the 105,000g supernatant of the cell-free extract to (NH4)2SO4 precipitation, acid precipitation, calcium phosphate gel treatment, gel filtration on Sephadex G-100, and chromatography on QAE-Sephadex, hydroxylapatite, and CM-Sephadex. Polyacrylamide disc gel electrophoresis of the purified enzyme showed a major protein band (greater than 80%) which contained thioesterase activity and a minor protein band with no thioesterase activity. Molecular weight estimated by gel filtration was 37,000 and sodium dodecyl sulfate-electrophoresis showed one major band (greater than 80%) corresponding to a molecular weight of 37,000 and a minor band of molecular weight 32,000, suggesting that the enzyme was monomeric. The pH optimum of the purified enzyme progressively increased with the chain length of the substrate, with hexanoyl-CoA showing a pH optimum at 4.5 and stearoyl-CoA at 7.0. The rate of hydrolysis of acyl-CoA showed a nonlinear dependence on protein concentration, and bovine serum albumin overcame this effect as well as stimulated the rate. The extent of stimulation by albumin increased with chain length of the substrate up to lauroyl-CoA and then decreased as chain length increased; albumin inhibited the hydrolysis of stearoyl-CoA. This enzyme hydrolyzed CoA esters of C6 to C18 fatty acids with a maximal rate of 17 mumol min-1 mg protein-1 for C14. Typical substrate saturation patterns were obtained with all substrates except that high concentrations were inhibitory. Studies on the effect of pH on the apparent Km and Vmax values for octanoyl-CoA, lauroyl-CoA, and palmitoyl-CoA showed that in all cases Vmax was greatest and Km was lowest at the respective pH optima. Active-serine-directed reagents severely inhibited the thioesterase activity, suggesting the participation of an active serine residue in catalysis; thiol-directed reagents were not effective inhibitors. Diethylpyrocarbonate also inhibited the enzyme and hydroxylamine reversed this inhibition, suggesting the involvement of a histidine residue in catalysis as expected for enzymes containing active serine. This thioesterase did not affect the chain length distribution of the products generated by the Euglena fatty acid synthase I.  相似文献   

14.
Acyl coenzyme A (acyl-CoA) thioesterases hydrolyze thioester bonds in acyl-CoA metabolites. The majority of mammalian thioesterases are α/β-hydrolases and have been studied extensively. A second class of Hotdog-fold enzymes has been less well described. Here, we present a structural and functional analysis of a new mammalian mitochondrial thioesterase, Them5. Them5 and its paralog, Them4, adopt the classical Hotdog-fold structure and form homodimers in crystals. In vitro, Them5 shows strong thioesterase activity with long-chain acyl-CoAs. Loss of Them5 specifically alters the remodeling process of the mitochondrial phospholipid cardiolipin. Them5(-/-) mice show deregulation of lipid metabolism and the development of fatty liver, exacerbated by a high-fat diet. Consequently, mitochondrial morphology is affected, and functions such as respiration and β-oxidation are impaired. The novel mitochondrial acyl-CoA thioesterase Them5 has a critical and specific role in the cardiolipin remodeling process, connecting it to the development of fatty liver and related conditions.  相似文献   

15.
Short-chain fatty acid (SCFA) biosynthesis is pertinent to production of biofuels, industrial compounds, and pharmaceuticals from renewable resources. To expand on Escherichia coli SCFA products, we previously implemented a coenzyme A (CoA)-dependent pathway that condenses acetyl-CoA to a diverse group of short-chain fatty acyl-CoAs. To increase product titers and reduce premature pathway termination products, we conducted in vivo and in vitro analyses to understand and improve the specificity of the acyl-CoA thioesterase enzyme, which releases fatty acids from CoA. A total of 62 putative bacterial thioesterases, including 23 from the cow rumen microbiome, were inserted into a pathway that condenses acetyl-CoA to an acyl-CoA molecule derived from exogenously provided propionic or isobutyric acid. Functional screening revealed thioesterases that increase production of saturated (valerate), unsaturated (trans-2-pentenoate), and branched (4-methylvalerate) SCFAs compared to overexpression of E. coli thioesterase tesB or native expression of endogenous thioesterases. To determine if altered thioesterase acyl-CoA substrate specificity caused the increase in product titers, six of the most promising enzymes were analyzed in vitro. Biochemical assays revealed that the most productive thioesterases rely on promiscuous activity but have greater specificity for product-associated acyl-CoAs than for precursor acyl-CoAs. In this study, we introduce novel thioesterases with improved specificity for saturated, branched, and unsaturated short-chain acyl-CoAs, thereby expanding the diversity of potential fatty acid products while increasing titers of current products. The growing uncertainty associated with protein database annotations denotes this study as a model for isolating functional biochemical pathway enzymes in situations where experimental evidence of enzyme function is absent.  相似文献   

16.
Strains of Halobacteria from an Algerian culture collection were screened for their lipolytic activity against p-nitrophenyl butyrate (PNPB) and p-nitrophenyl palmitate (PNPP). Most strains were active on both esters and 12% hydrolyzed olive oil. A strain identified as Natronococcus sp. was further studied. It grew optimally at 3.5 M NaCl, pH 8 and 40 degrees C. An increase in temperature shifted the optimum salt concentration range for growth from a wider range of 2-4 M, obtained at 25-30 degrees C, to a narrower range of 3.5-4 M, obtained at 35-40 degrees C. At 45 degrees C the optimum salt concentration was 2 M. These results show a clear correlation between salt and temperature requirement. The optimum conditions for the production of hydrolytic activity during growth were: 3.5 M NaCl and pH 8 for PNPB hydrolytic activity and 4 M NaCl and pH 7.5 for PNPP hydrolytic activity; both at 40 degrees C. The clear supernatant of cells grown at 4 M NaCl showed olive oil hydrolysis activity (in presence of 4 M NaCl) demonstrating the occurrence of a lipase activity in this strain. To our knowledge, this is the first report of a lipase activity at such high salt concentration.  相似文献   

17.
Mutants of Escherichia coli deficient in thioesterase II activity were isolated by taking advantage of the fact that thioesterase I specifically hydrolyzes long-chain (C12 to C18) acyl coenzyme A (CoA) esters but is unable to cleave the short-chain substrate decanoyl-CoA. One of these lesions (designated tesB1) reduces thioesterase II activity to about 10% of the normal level. The mutant enzyme activity was abnormally labile to temperature, but it was normal in all the other characteristics examined (pH optimum, Km for decanoyl-CoA, molecular weight). The level of thioesterase I activity was unaffected by the tesB1 lesion. The tesB locus was mapped with a closely linked Tn10 insertion. tesB was mapped to minute 10 of the E. coli linkage map, close to the lon locus. The clockwise gene order is lon tesB acrA dnaZ. The tesB mutation is recessive. We found no phenotype for the mutation. The fatty acid compositions of the phospholipids, lipid A, and lipoprotein components are normal in thioesterase II mutants. These data show that thioesterases I and II of E. coli are encoded by different genetic loci and strongly suggest that tesB is the structural gene for thioesterase II.  相似文献   

18.
Long chain acyl-CoA esters are important intermediates in degradation and synthesis of fatty acids, as well as having important functions in regulation of intermediary metabolism and gene expression. Although the physiological functions for most acyl-CoA thioesterases have not yet been elucidated, previous data suggest that these enzymes may be involved in lipid metabolism by modulation of cellular concentrations of acyl-CoAs and fatty acids. In line with this, we have cloned four highly homologous acyl-CoA thioesterase genes from mouse, showing multiple compartmental localizations. The nomenclature for these genes has tentatively been assigned as CTE-I (cytosolic), MTE-I (mitochondrial), and PTE-Ia and Ib (peroxisomal), based on the identification of putative targeting signals. Although the various isoenzymes show between 67% and 94% identity at amino acid level, each individual enzyme shows a specific tissue expression. Our data suggest that all four genes are located within a very narrow cluster on chromosome 12 in mouse, similar to a sequence cluster on human chromosome 14, which identified four genes homologous to the mouse thioesterase genes. Four related genes were also identified in Caenorhabditis elegans, all containing putative PTS1 targeting signals, suggesting that the ancestral type I thioesterase gene(s) is/are of peroxisomal origin. All four thioesterases are differentially expressed in tissues examined, but all are inducible at mRNA level by treatment with the peroxisome proliferator clofibrate, or during the physiological condition of fasting, both of which conditions cause a perturbation in overall lipid homeostasis. These results strongly support the existence of a novel multi-gene family cluster of mouse acyl-CoA thioesterases, each with a distinct function in lipid metabolism.  相似文献   

19.
One of the acyl-CoA oxidases from the yeast Yarrowia lipolytica, acyl-CoA oxidase 2 (Aox2p), has been expressed in Escherichia coli as an active, N-terminally tagged (His)(6) fusion protein. The specific activity of the purified enzyme, containing FAD, was 19.7 micromolmin(-1)mg(-1) using myristoyl-CoA as substrate. Using substrates with different chain lengths and different substituents, its kinetic properties were further analyzed. Straight-chain acyl-CoAs, with a chain length of 10-14C, are well oxidized, reflecting the properties of Aox2p as deduced from in vivo studies. Acyl-CoAs containing more than 14C were also desaturated, if their concentration was below 25 microM or if proteins capable of binding these CoA-esters, such as albumin or beta-casein, were added to the assay. These long-chain acyl-CoAs, although poor substrates, acted as competitors for the short- and medium-chain substrates. Compared to palmitoyl-CoA, activity toward hexadecadioyl-CoA, containing a omega-carboxy group, was similar. Taken together, these data suggest that micelles of long-chain acyl-CoAs are able to bind and inhibit Aox2p. The enzyme was also active toward acyl-CoA-esters containing a 2-methyl group, but only the 2S isomer was recognized.  相似文献   

20.
Acyl-CoA thioesterases hydrolyze acyl-CoAs to free fatty acids and CoASH, thereby regulating fatty acid metabolism. This activity is catalyzed by numerous structurally related and unrelated enzymes, of which several acyl-CoA thioesterases have been shown to be regulated via the peroxisome proliferator-activated receptor alpha, strongly linking them to fatty acid metabolism. Two protein families have recently been characterized, the type I acyl-CoA thioesterase gene family and the type II protein family, which are expressed in cytosol, mitochondria and peroxisomes. Still, only little is known about regulation of their expression and precise functions in vivo. In the present study, we have investigated the activity and expression of acyl-CoA thioesterase in the porcine ovary during different phases of the estrus cycle. The activity was low in homogenates obtained during the immature and follicular phases, increasing nearly 4-fold during the luteal phase, with the highest activity being found in the pregnant corpus luteum (about 7-fold higher than in immature follicles). The increase in homogenate activity in corpus luteum from pregnant pigs was due to a moderate increase in the cytosolic activity, and an approximately 20-25-fold increase in the mitochondrial fraction. Western blot analysis showed no detectable expression of the type I acyl-CoA thioesterases (CTE-I and MTE-I) and revealed that the increased activity in cytosol and mitochondria is due to increased expression of the type II acyl-CoA thioesterases (CTE-II and MTE-II). This apparent hormonal regulation of expression of the type II acyl-CoA thioesterase may provide new insights into the functions of these enzymes in the mammalian ovary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号