首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The conformational dynamics of the Inserted domain (I-domain) from the lymphocyte function-associated antigen-1 (LFA-1) was investigated by normal mode analysis of multiple structures of the low, intermediate, and high affinity states. LFA-1 is an integrin expressed on leukocytes and is of critical importance in adhesion reactions, like antigen-specific responses, homing, and diapedesis. The main ligand binding site of LFA-1 is the I-domain, which recognizes intercellular adhesion molecules (ICAMs), members of the immunoglobulin superfamily. From experimental crystal structures, a large-scale conformational change of, among others, the α7 helix of the I-domain has been observed leading to the proposal that these structural changes are linked to the conformational regulation of LFA-1. The results from the present calculations show that structural changes of the α7 helix consistent with those observed in the crystal structures are significantly sampled by the low frequency modes. This was found to be particularly true for the low affinity state of the I-domain, indicating that low frequency motions favor the conformational transition implicated in activation. However, beyond the simple downward shift of the helix implied by the crystal structures, the calculations further show that there is a noticeable swinging-out motion of the helix. The consequences of this motion are discussed in the context of integrin activation and inhibition. Moreover, significant changes in the atomic-level dynamics and in long-range correlated motions of the I-domain were found to occur upon binding of the natural ligand ICAM. These changes were more local upon binding of an allosteric inhibitor. The present study opens the question of how changes in dynamics may contribute to the long-range transmission of signal upon ICAM binding by the LFA-1 I-domain.  相似文献   

2.
Integrins are cell surface receptors that transduce signals bidirectionally across the plasma membrane. The key event of integrin signaling is the allosteric regulation between its ligand-binding site and the C-terminal helix (alpha7) of integrin's inserted (I) domain. A significant axial movement of the alpha7 helix is associated with the open, active conformation of integrins. We describe the crystal structure of an engineered high-affinity I domain from the integrin alpha(L)beta(2) (LFA-1) alpha subunit in complex with the N-terminal two domains of ICAM-5, an adhesion molecule expressed in telencephalic neurons. The finding that the alpha7 helix swings out and inserts into a neighboring I domain in an upside-down orientation in the crystals implies an intrinsically unusual mobility of this helix. This remarkable feature allows the alpha7 helix to trigger integrin's large-scale conformational changes with little energy penalty. It serves as a mechanistic example of how a weakly bound adhesion molecule works in signaling.  相似文献   

3.
The interaction between the leukocyte function-associated antigen-1 (LFA-1) and the intercellular adhesion molecule is thought to be mediated primarily via the inserted domain (I-domain) in the alpha-subunit. The activation of LFA-1 is an early step in triggering the adhesion of leukocytes to target cells decorated with intercellular adhesion molecules. There is some disagreement in the literature over the respective roles of conformational changes in the I-domain and of divalent cations (Mg(2+), Mn(2+)) in the activation of LFA-1 for intercellular adhesion molecule binding. X-ray crystallographic structures of the I-domains of LFA-1 and Mac-1 in the presence and absence of cations show structural differences in the C-terminal alpha-helix; this change was proposed to represent the active and inactive conformations of the I-domain. However, more recent X-ray results have called this proposal into question. The solution structure of the Mg(2+) complex of the I-domain of LFA-1 has been determined by NMR methods, using a model-based approach to nuclear Overhauser enhancement spectroscopy peak assignment. The protein adopts the same structure in solution as that of the published I-domain X-ray structures, but the C-terminal region, where the X-ray structures are most different from each other, is different again in the solution structures. The secondary structure of this helix is well formed, but NMR relaxation data indicate that there is considerable flexibility present, probably consisting of breathing or segmental motion of the helix. The conformational diversity seen in the various X-ray structures could be explained as a result of the inherent flexibility of this C-terminal region and as a result of crystal contacts. Our NMR data are consistent with a model where the C-terminal helix has the potential flexibility to take up alternative conformations, for example, in the presence and absence of the intercellular adhesion molecule ligand. The role of divalent cations appears from our results not to be as a direct mediator of a conformational change that alters affinity for the ligand. Rather, the presence of the cation appears to be involved in some other way in ligand binding, perhaps by acting as a bridge to the ligand and by modulation of the charge of the binding surface.  相似文献   

4.
In their active state, beta(2)-integrins, such as LFA-1, mediate the firm arrest of leukocytes by binding intercellular adhesion molecules (ICAMs) expressed on endothelium. Although the primary function of LFA-1 is assumed to be the ability to mediate firm adhesion, recent work has shown that LFA-1 can contribute to cell tethering and rolling under hydrodynamic flow, a role previously largely attributed to the selectins. The inserted (I) domain of LFA-1 has recently been crystallized in the wild-type (wt) and locked-open conformations and has been shown to, respectively, support rolling and firm adhesion under flow when expressed in alpha(L)beta(2) heterodimers or as isolated domains on cells. Here, we report results from cell-free adhesion assays where wt I-domain-coated polystyrene particles were allowed to interact with ICAM-1-coated surfaces in shear flow. We show that wt I-domain can independently mediate the capture of particles from flow and support their rolling on ICAM-1 surfaces in a manner similar to how carbohydrate-selectin interactions mediate rolling. Adhesion is specific and blocked by appropriate antibodies. We also show that the rolling velocity of I-domain-coated particles depends on the wall shear stress in flow chamber, I-domain site density on microsphere surfaces, and ICAM-1 site density on substrate surfaces. Furthermore, we show that rolling is less sensitive to wall shear stress and ICAM-1 substrate density at high density of I-domain on the microsphere surface. Computer simulations using adhesive dynamics can recreate bead rolling dynamics and show that the mechanochemical properties of ICAM-1-I-domain interactions are similar to those of carbohydrate-selectin interactions. Understanding the biophysics of adhesion mediated by the I-domain of LFA-1 can elucidate the complex roles this integrin plays in leukocyte adhesion in inflammation.  相似文献   

5.
MEM83 is an inserted domain (I-domain)-specific antibody that up-regulates the interaction of LFA-1 with ICAM-1 through an outside-in activation mechanism. We demonstrate here that there is no change in the affinity of the MEM83 antibody for the I-domain in either its low (wild-type) or high affinity form and that MEM83 does not enhance the binding of the wild-type I-domain to ICAM-1. Furthermore, we show that the antibody acts as an activating agent to induce LFA-1/ICAM-1-dependent homotypic cell aggregation only as an IgG, but not as a Fab fragment. On the basis of these data, we propose an avidity-based mechanism that requires no direct activation of the LFA-1 I-domain by the binding of the antibody; rather, activation is enhanced when there is an interaction with both arms of the IgG. A molecular model of the antibody interaction with LFA-1 illustrates the symmetry and accessibility of the two MEM83 epitopes across the LFA-1/ICAM-1 heterotetramer. We hypothesize that MEM83 stabilizes adjacent LFA-1 molecules in their active form by the free energy that is gained from the binding of the I-domains to each arm of the IgG. This leads to stabilization of the open state of the integrin and outside-in signaling. Our model supports a mechanism in which both affinity and avidity regulation are required in the activation of LFA-1.  相似文献   

6.
LFA-1 (lymphocyte function-associated antigen-1) plays a role in intercellular adhesion and lymphocyte trafficking and activation and is an attractive anti-inflammatory drug target. The alpha-subunit of LFA-1, in common with several other integrins, has an N-terminally inserted domain (I-domain) of approximately 200 amino acids that plays a central role in regulating ligand binding to LFA-1. An additional region, termed the I-domain allosteric site (IDAS), has been identified exclusively within the LFA-1 I-domain and shown to regulate the function of this protein. The IDAS is occupied by small molecule LFA-1 inhibitors when cocrystallized or analyzed by (15)N-(1)H HSQC (heteronuclear single-quantum coherence) NMR (nuclear magnetic resonance) titration experiments. We report here a novel arylthio inhibitor that binds the I-domain with a K(d) of 18.3 nM as determined by isothermal titration calorimetry (ITC). This value is in close agreement with the IC(50) (10.9 nM) derived from a biochemical competition assay (DELFIA) that measures the level of inhibition of binding of whole LFA-1 to its ligand, ICAM-1. Having established the strong affinity of the arylthio inhibitor for the isolated I-domain, we have used a range of techniques to further characterize the binding, including ITC, NMR, and X-ray crystallography. We have first developed an effective ITC binding assay for use with low-solubility inhibitors that avoids the need for ELISA-based assays. In addition, we utilized a fast NMR-based assay for the generation of I-domain-inhibitor models. This is based around the collection of HCCH-TOCSY spectra of LFA-1 in the bound form and the identification of a subset of side chain methyl groups that give chemical shift changes upon binding of LFA-1 inhibitors. This subset was used in two-dimensional (13)C-(15)N and (15)N-filtered and -edited two-dimensional NMR experiments to identify a minimal set of intraligand and ligand-protein NOEs, respectively (nuclear Overhauser enhancements). Models from the NMR data were assessed by comparison to an X-ray crystallographic structure of the complex, confirming that the method correctly predicted the essential features of the bound ligand.  相似文献   

7.
A new class of lymphocyte function-associated antigen-1 (LFA-1) antagonists is described. Elaboration of the 2,3-dihydro-1H-pyrrolizin-5(7aH)-one scaffold resulted in the synthesis of potent inhibitors of the LFA-1/ICAM-1 interaction. Along with the in vitro activity, we present the X-ray crystal structure of the complex of compound 9b, in a novel binding mode to the I-domain of LFA-1.  相似文献   

8.
The activation of leukocyte function-associated antigen-1 (LFA-1) plays a critical role in regulating immune responses. The metal ion-dependent adhesion site on the I-domain of LFA-1 αL subunit is the key recognition site for ligand binding. Upon activation, conformation changes in the I-domain can lead LFA-1 from the low affinity state to the high affinity (HA) state. Using the purified HA I-domain locked by disulfide bonds for immunization, we developed an mAb, 2E8, that specifically binds to cells expressing the HA LFA-1. The surface plasmon resonance analysis has shown that 2E8 only binds to the HA I-domain and that the dissociation constant (KD) for HA I-domain is 197 nm. The binding of 2E8 to the HA I-domain is metal ion-dependent, and the affinity decreased as Mn2+ was replaced sequentially by Mg2+ and Ca2+. Surface plasmon resonance analysis demonstrates that 2E8 inhibits the interaction of HA I-domain and ICAM-1. Furthermore, we found that 2E8 can detect activated LFA-1 on both JY and Jurkat cells using flow cytometry and parallel plate adhesion assay. In addition, 2E8 inhibits JY cell adhesion to human umbilical vein endothelial cells and homotypic aggregation. 2E8 treatment reduces the proliferation of both human CD4+ and CD8+ T cells upon OKT3 stimulation without the impairment of their cytolytic function. Taken together, these data demonstrate that 2E8 is specific for the high affinity form of LFA-1 and that 2E8 inhibits LFA-1/ICAM-1 interactions. As a novel activation-specific monoclonal antibody, 2E8 is a potentially useful reagent for blocking high affinity LFA-1 and modulating T cell activation in research and therapeutics.  相似文献   

9.
Integrin alpha(1)beta(1) and alpha(2)beta(1) are the major cellular receptors for collagen, and collagens bind to these integrins at the inserted I-domain in their alpha subunit. We have previously shown that a cyclic peptide derived from the metalloproteinase domain of the snake venom protein jararhagin blocks the collagen-binding function of the alpha(2) I-domain. Here, we have optimized the structure of the peptide and identified the site where the peptide binds to the alpha(2) I-domain. The peptide sequence Arg-Lys-Lys-His is critical for recognition by the I-domain, and five negatively charged residues surrounding the "metal ion-dependent adhesion site" (MIDAS) of the I-domain, when mutated, show significantly impaired binding of the peptide. Removal of helix alphaC, located along one side of the MIDAS and suggested to be involved in collagen-binding in these I-domains, does not affect peptide binding. This study supports the notion that the metalloproteinase initially binds to the alpha(2) I-domain at a location distant from the active site of the protease, thus blocking collagen binding to the adhesion molecule in the vicinity of the MIDAS, while at the same time leaving the active site free to degrade nearby proteins, the closest being the beta(1) subunit of the alpha(2)beta(1) cell-surface integrin itself.  相似文献   

10.
Ten years ago, we introduced a fluorescent probe that shed light on the inside-out regulation of one of the major leukocyte integrins, very late antigen-4 (VLA-4, CD49d/CD29). Here we describe the regulation of another leukocyte integrin, lymphocyte function-associated antigen-1 (LFA-1, CD11a/CD18) using a novel small fluorescent probe in real time on live cells. We found that multiple signaling mechanisms regulate LFA-1 conformation in a manner analogous to VLA-4. LFA-1 can be rapidly activated by Gα(i)-coupled G protein-coupled receptors (GPCRs) and deactivated by Gα(s)-coupled GPCRs. The effects of Gα(s)-coupled GPCR agonists can be reversed in real time by receptor-specific antagonists. The specificity of the fluorescent probe binding has been assessed in a competition assay using the natural LFA-1 ligand ICAM-1 and the LFA-1-specific α I allosteric antagonist BIRT0377. Similar to VLA-4 integrin, modulation of the ligand dissociation rate can be observed for different LFA-1 affinity states. However, we also found a striking difference in the binding of the small fluorescent ligand. In the absence of inside-out activation ligand, binding to LFA-1 is extremely slow, at least 10 times slower than expected for diffusion-limited binding. This implies that an additional structural mechanism prevents ligand binding to inactive LFA-1. We propose that such a mechanism explains the inability of LFA-1 to support cell rolling, where the absence of its rapid engagement by a counterstructure in the inactive state leads to a requirement for a selectin-mediated rolling step.  相似文献   

11.
Manifestations of inflammatory arthritis are critically dependent on LFA-1   总被引:5,自引:0,他引:5  
Leukocyte infiltration of synovial fluid and tissues is the hallmark of inflammatory arthritis. Selectins and beta2 integrins have been implicated in the multistep process of leukocyte adhesion to vascular endothelium. However, previous work has revealed disparate requirements for leukocyte recruitments to specific anatomic locales. Moreover, the mechanisms regulating recruitment of leukocytes to the joint in inflammatory arthritis models are not fully understood. We hypothesized that beta2 integrins, expressed on leukocytes, might play a pathogenic role in synovial inflammation. Using mice deficient in all beta2 integrins (CD18 null mice), we demonstrate that expression of these heterodimeric adhesion molecules is critical for arthritis induction in the K/B x N serum transfer model. Using null-allele mice and blocking mAbs, we demonstrate specifically that CD11a/CD18 (LFA-1) is absolutely required for the development of arthritis in this model. Blocking mAbs further revealed an ongoing requirement for LFA-1 I-domain adhesive function in disease perpetuation. These findings suggest that the LFA-1 I-domain forms an attractive target for treatment of human inflammatory arthritis.  相似文献   

12.
We herein report a group of allosteric inhibitors of integrin alpha(2)beta(1) based on an arylamide scaffold. Compound 4 showed an IC(50) of 4.80 microM in disrupting integrin I-domain/collagen binding in an ELISA. These arylamide compounds are able to block collagen binding to integrin alpha(2)beta(1) on the platelet surface. Further we find that compound 4 recognizes a hydrophobic cleft on the side of the alpha(2) I-domain, suggesting an alternative targeting site for drug development.  相似文献   

13.
The interaction of the alphaLbeta2 integrin with its cellular ligand the intercellular adhesion molecule-1 (ICAM-1) is critical for the tight binding interaction between most leukocytes and the vascular endothelium before transendothelial migration to the sites of inflammation. In this article we have modeled the alphaL subunit I-domain in its active form, which was computationally docked with the D1 domain of the ICAM-1 to probe potential protein-protein interactions. The experimentally observed key interaction between the carboxylate of Glu 34 in the ICAM-1 D1 domain and the metal ion-dependent adhesion site (MIDAS) in the open alphaL I-domain was consistently reproduced by our calculations. The calculations reveal the nature of the alphaLbeta2/ICAM-1 interaction and suggest an explanation for the increased ligand-binding affinity in the "open" versus the "closed" conformation of the alphaL I-domain. A mechanism for substrate selectivity among alphaL, alphaM, and alpha2 I-domains is suggested whereby the orientation of the loops within the I-domain is critical in mediating the interaction of the Glu 34 carboxylate of ICAM-1 D1 with the MIDAS.  相似文献   

14.
Interactions of cell-adhesion molecule LFA-1 and its ligand ICAM-1 play important roles during immune and inflammatory responses. Critical residues of LFA-1 for ICAM-1 binding are known to be in the I-domain of the alpha-subunit and the I-like domain of the beta-subunit. On the basis of our previous work demonstrating the inhibitory activity of I-domain cyclic peptide cLAB.L on LFA-1/ICAM-1 interaction, here we have explored the activity of I-like-domain peptide LBE on the binding mechanism of cLAB.L. LBE enhances cLAB.L binding to T-cells and epithelial cells. The adherence of T-cells to epithelial monolayers was suppressed by the two peptides. The addition of LBE to the monolayers prior to the addition cLAB.L produced a better inhibitory effect than the reverse procedure. LBE, but not cLAB.L, changes the ICAM-1 conformation, suggesting that LBE binds to ICAM-1 at sites that are distinct from these of cLAB.L and induces improved conformation in ICAM-1 for binding to cLAB.L.  相似文献   

15.
The activation of LFA-1 (lymphocyte function-associated antigen) is a critical event for T cell co-stimulation. The mechanism of LFA-1 activation involves both affinity and avidity regulation, but the role of each in T cell activation remains unclear. We have identified antibodies that recognize and block different affinity states of the mouse LFA-1 I-domain. Monoclonal antibody 2D7 preferentially binds to the low affinity conformation, and this specific binding is abolished when LFA-1 is locked in the high affinity conformation. In contrast, M17/4 can bind both the locked high and low affinity forms of LFA-1. Although both 2D7 and M17/4 are blocking antibodies, 2D7 is significantly less potent than M17/4 in blocking LFA-1-mediated adhesion; thus, blocking high affinity LFA-1 is critical for preventing LFA-1-mediated adhesion. Using these reagents, we investigated whether LFA-1 affinity regulation affects T cell activation. We found that blocking high affinity LFA-1 prevents interleukin-2 production and T cell proliferation, demonstrated by TCR cross-linking and antigen-specific stimulation. Furthermore, there is a differential requirement of high affinity LFA-1 in the activation of CD4+ and CD8+ T cells. Although CD4+ T cell activation depends on both high and low affinity LFA-1, only high affinity LFA-1 provides co-stimulation for CD8+ T cell activation. Together, our data demonstrated that the I-domain of LFA-1 changes to the high affinity state in primary T cells, and high affinity LFA-1 is critical for facilitating T cell activation. This implicates LFA-1 activation as a novel regulatory mechanism for the modulation of T cell activation and proliferation.LFA-1 (lymphocyte function-associated antigen), an integrin family member, is important in regulating leukocyte adhesion and T cell activation (1, 2). LFA-1 consists of the αL (CD11a) and β2 (CD18) heterodimer. The ligands for LFA-1, including intercellular adhesion molecule ICAM3-1, ICAM-2, and ICAM-3, are expressed on antigen-presenting cells (APCs), endothelial cells, and lymphocytes (1). Mice that are deficient in LFA-1 have defects in leukocyte adhesion, lymphocyte proliferation, and tumor rejection (35). Blocking LFA-1 with antibodies can prevent inflammation, autoimmunity, organ graft rejection, and graft versus host disease in human and murine models (610).LFA-1 is constitutively expressed on the surface of leukocytes in an inactive state. Activation of LFA-1 is mediated by inside-out signals from the cytoplasm (1, 11). Subsequently, activated LFA-1 binds to the ligands and transduces outside-in signals back into the cytoplasm that result in cell adhesion and activation (12, 13). The activation of LFA-1 is a critical event in the formation of the immunological synapse, which is important for T cell activation (2, 14, 15). The active state of LFA-1 is regulated by chemokines and the T cell receptor (TCR) through Rap1 signaling (16). LFA-1 ligation lowers the activation threshold and affects polarization in CD4+ T cells (17). Moreover, productive LFA-1 engagement facilitates efficient activation of cytotoxic T lymphocytes and initiates a distinct signal essential for the effector function (1820). Thus, LFA-1 activation is essential for the optimal activation of T cells.The mechanism of LFA-1 activation involves both affinity (conformational changes within the molecule) and avidity (receptor clustering) regulation (2123). The I-domain of the LFA-1 αL subunit is the primary ligand-binding site and has been proposed to change conformation, leading to an increased affinity for ligands (2426). The structural basis of the conformational changes in the I-domain of LFA-1 has been extensively characterized (27). Previously, we have demonstrated that the conformation of the LFA-1 I-domain changes from the low affinity to the high affinity state upon activation. By introducing disulfide bonds into the I-domain, LFA-1 can be locked in either the closed or open conformation, which represents the “low affinity” or “high affinity” state, respectively (28, 29). In addition, we identified antibodies that are sensitive to the affinity changes in the I-domain of human LFA-1 and showed that the activation-dependent epitopes are exposed upon activation (30). This study supports the presence of the high affinity conformation upon LFA-1 activation in cell lines. It has been demonstrated recently that therapeutic antagonists, such as statins, inhibit LFA-1 activation and immune responses by locking LFA-1 in the low affinity state (3134). Furthermore, high affinity LFA-1 has been shown to be important for mediating the adhesion of human T cells (35, 36). Thus, the affinity regulation is a critical step in LFA-1 activation.LFA-1 is a molecule of great importance in the immune system, and its activation state influences the outcome of T cell activation. Our previous data using the activating LFA-1 I-domain-specific antibody MEM83 indicate that avidity and affinity of the integrin can be coupled during activation (37). However, whether affinity or avidity regulation of LFA-1 contributes to T cell activation remains controversial (23, 38, 39). Despite the recent progress suggesting that conformational changes represent a key step in the activation of LFA-1, there are considerable gaps to be filled. When LFA-1 is activated, the subsequent outside-in signaling contributes to T cell activation via immunological synapse and LFA-1-dependent signaling. It is critical to determine whether high affinity LFA-1 participates in the outside-in signaling and affects the cellular activation of T cells. Nevertheless, the rapid and dynamic process of LFA-1 activation has hampered further understanding of the role of high affinity LFA-1 in primary T cell activation. The affinity of LFA-1 for ICAM-1 increases up to 10,000-fold within seconds and involves multiple reversible steps (23). In addition, the activation of LFA-1 regulates both adhesion and activation of T cells, two separate yet closely associated cellular functions. When LFA-1 is constitutively expressed in the active state in mice, immune responses are broadly impaired rather than hyperactivated, suggesting the complexity of affinity regulation (40). Therefore, it is difficult to dissect the mechanisms by which high affinity LFA-1 regulates stepwise activation of T cells in the whole animal system.In the present study, we identified antibodies recognizing and blocking different affinity states of mouse LFA-1. These reagents allowed us to determine the role of affinity regulation in T cell activation. We found that blocking high affinity LFA-1 inhibited IL-2 production and proliferation in T cells. Furthermore, there is a differential requirement of high affinity LFA-1 in antigen-specific activation of CD4+ and CD8+ T cells. The activation of CD4+ T cells depends on both high and low affinity LFA-1. For CD8+ T cell activation, only high affinity LFA-1 provides co-stimulation. Thus, affinity regulation of LFA-1 is critical for the activation and proliferation of naive T cells.  相似文献   

16.
The purpose of this work was to study the conformation of cyclic peptide 1, cyclo(1,12)-Pen1-Ile2-Thr3-Asp4-Gly5-Glu6-Ala7- Thr8-Asp9-Ser10-Gly11-Cys12-OH, derived from the I-domain of the LFA-1 alpha-subunit. We found that cyclic peptide 1 can bind to the D1-domain of ICAM-1 and inhibit ICAM-1/LFA-1-mediated homotypic and heterotypic T-cell adhesion. To understand the bioactive conformation and binding requirements for cyclic peptide 1, its solution structure was studied using NMR, CD, and molecular dynamics simulations. Furthermore, possible binding properties between the cyclic peptide and the D1-domain of ICAM-1 were evaluated using docking experiments. This cyclic peptide has a stable betaII -turn at Asp4- Gly5-Glu6-Ala7 and a betaI-turn at Pen1-Ile2-Thr3-Asp4; a less stable betaV-turn is found at the C-terminal region. The beta-turn at Asp4- Gly5-Glu6-Ala7 was also found in the X-ray structure of the I-domain of LFA-1. Our CD studies showed that the peptide binds to calcium/magnesium and forms a 1:1 (peptide:calcium/magnesium) complex with low cation concentrations and multiple types of complexes with higher cation concentrations. Binding to divalent cations causes a conformational change in peptide 1; this is consistent with our previous study that binding of peptide 1 to ICAM-1 was influenced by divalent cations. Docking studies show the interaction between cyclic peptide 1 and the D1-domain of ICAM-1; it indicates that the Ile2-Thr3-Asp4-Gly4-Glu6-Ala7-Thr8 sequence interacts with the F and C strands of the D1-domain. Finally, these studies will help us design a new generation of selective peptides that may bind better to the D1-domain of ICAM-1.  相似文献   

17.
The lymphocyte function-associated antigen-1 (LFA-1) binding of a unique class of small-molecule antagonists as represented by compound 3 was analyzed in comparison to that of soluble intercellular adhesion molecule-1 (sICAM-1) and A-286982, which respectively define direct and allosteric competitive binding sites within LFA-1's inserted (I) domain. All three molecules antagonized LFA-1 binding to ICAM-1-Immunoglobulin G fusion (ICAM-1-Ig) in a competition ELISA, but only compound 3 and sICAM-1 inhibited the binding of a fluorescein-labeled analog of compound 3 to LFA-1. Compound 3 and sICAM-1 displayed classical direct competitive binding behavior with ICAM-1. Their antagonism of LFA-1 was surmountable by both ICAM-1-Ig and a fluorescein-labeled compound 3 analog. The competition of both sICAM-1 and compound 3 with ICAM-1-Ig for LFA-1 resulted in equivalent and linear Schild plots with slopes of 1.24 and 1.26, respectively. Cross-linking studies with a photoactivated analog of compound 3 localized the high-affinity small-molecule binding site to the N-terminal 507 amino acid segment of the alpha chain of LFA-1, a region that includes the I domain. In addition, cells transfected with a variant of LFA-1 lacking this I domain showed no significant binding of a fluorescein-labeled analog of compound 3 or ICAM-1-Ig. These results demonstrate that compound 3 inhibits the LFA-1/ICAM-1 binding interaction in a directly competitive manner by binding to a high-affinity site on LFA-1. This binding site overlaps with the ICAM-1 binding site on the alpha subunit of LFA-1, which has previously been localized to the I domain.  相似文献   

18.
The alpha1beta1 integrin is a major cell surface receptor for collagen. Ligand binding is mediated, in part, through a 200 amino acid inserted 'I'-domain contained in the extracellular part of the integrin alpha chain. Integrin I-domains contain a divalent cation binding (MIDAS) site and require cations to interact with integrin ligands. We have determined the crystal structure of recombinant I-domain from the rat alpha1beta1 integrin at 2.2 A resolution in the absence of divalent cations. The alpha1 I-domain adopts the dinucleotide binding fold that is characteristic of all I-domain structures that have been solved to date and has a structure very similar to that of the closely related alpha2beta1 I-domain which also mediates collagen binding. A unique feature of the alpha1 I-domain crystal structure is that the MIDAS site is occupied by an arginine side chain from another I-domain molecule in the crystal, in place of a metal ion. This interaction supports a proposed model for ligand-induced displacement of metal ions. Circular dichroism spectra determined in the presence of Ca2+, Mg2+ and Mn2+ indicate that no changes in the structure of the I-domain occur upon metal ion binding in solution. Metal ion binding induces small changes in UV absorption spectra, indicating a change in the polarity of the MIDAS site environment.  相似文献   

19.
Chemokine receptors play a major role in immune system regulation and have consequently been targets for drug development leading to the discovery of several small molecule antagonists. Given the large size and predominantly extracellular receptor interaction of endogenous chemokines, small molecules often act more deeply in an allosteric mode. However, opposed to the well described molecular interaction of allosteric modulators in class C 7-transmembrane helix (7TM) receptors, the interaction in class A, to which the chemokine receptors belong, is more sparsely described. Using the CCR5 chemokine receptor as a model system, we studied the molecular interaction and conformational interchange required for proper action of various orthosteric chemokines and allosteric small molecules, including the well known CCR5 antagonists TAK-779, SCH-C, and aplaviroc, and four novel CCR5 ago-allosteric molecules. A chimera was successfully constructed between CCR5 and the closely related CCR2 by transferring all extracellular regions of CCR2 to CCR5, i.e. a Trojan horse that resembles CCR2 extracellularly but signals through a CCR5 transmembrane unit. The chimera bound CCR2 (CCL2 and CCL7), but not CCR5 chemokines (CCL3 and CCL5), with CCR2-like high affinities and potencies throughout the CCR5 signaling unit. Concomitantly, high affinity binding of small molecule CCR5 agonists and antagonists was retained in the transmembrane region. Importantly, whereas the agonistic and antagonistic properties were preserved, the allosteric enhancement of chemokine binding was disrupted. In summary, the Trojan horse chimera revealed that orthosteric and allosteric sites could be structurally separated and still act together with transmission of agonism and antagonism across the different receptor units.  相似文献   

20.
Interactions of cell-adhesion molecule LFA-1 and its ligand ICAM-1 play important roles during immune and inflammatory responses. Critical residues of LFA-1 for ICAM-1 binding are known to be in the I-domain of the α-subunit and the I-like domain of the β-subunit. On the basis of our previous work demonstrating the inhibitory activity of I-domain cyclic peptide cLAB.L on LFA-1/ICAM-1 interaction, here we have explored the activity of I-like-domain peptide LBE on the binding mechanism of cLAB.L. LBE enhances cLAB.L binding to T-cells and epithelial cells. The adherence of T-cells to epithelial monolayers was suppressed by the two peptides. The addition of LBE to the monolayers prior to the addition cLAB.L produced a better inhibitory effect than the reverse procedure. LBE, but not cLAB.L, changes the ICAM-1 conformation, suggesting that LBE binds to ICAM-1 at sites that are distinct from these of cLAB.L and induces improved conformation in ICAM-1 for binding to cLAB.L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号