共查询到20条相似文献,搜索用时 0 毫秒
1.
Iwanowicz EJ Kimball SD Lin J Lau W Han WC Wang TC Roberts DG Schumacher WA Ogletree ML Seiler SM 《Bioorganic & medicinal chemistry letters》2002,12(21):3183-3186
A series of retro-binding inhibitors of human alpha-thrombin was prepared to elucidate structure-activity relationships (SAR) and optimize in vivo performance. Compounds 9 and 11, orally active inhibitors of thrombin catalytic activity, were identified to be efficacious in a thrombin-induced lethality model in mice. 相似文献
2.
The mobility of an HIV-1 integrase active site loop is correlated with catalytic activity. 总被引:2,自引:0,他引:2
Replication of HIV-1 requires the covalent integration of the viral cDNA into the host chromosomal DNA directed by the virus-encoded integrase protein. Here we explore the importance of a protein surface loop near the integrase active site using protein engineering and X-ray crystallography. We have redetermined the structure of the integrase catalytic domain (residues 50-212) using an independent phase set at 1.7 A resolution. The structure extends helix alpha4 on its N-terminal side (residues 149-154), thus defining the position of the three conserved active site residues. Evident in this and in previous structures is a conformationally flexible loop composed of residues 141-148. To probe the role of flexibility in this loop, we replaced Gly 140 and Gly 149, residues that appear to act as conformational hinges, with Ala residues. X-ray structures of the catalytic domain mutants G149A and G140A/G149A show further rigidity of alpha4 and the adjoining loop. Activity assays in vitro revealed that these mutants are impaired in catalysis. The DNA binding affinity, however, is minimally affected by these mutants as assayed by UV cross-linking. We propose that the conformational flexibility of this active site loop is important for a postbinding catalytic step. 相似文献
3.
Wlodawer A Li M Gustchina A Tsuruoka N Ashida M Minakata H Oyama H Oda K Nishino T Nakayama T 《The Journal of biological chemistry》2004,279(20):21500-21510
Kumamolisin-As (previously called ScpA) is the first known example of a collagenase from the sedolisin family (MEROPS S53). This enzyme is active at low pH and in elevated temperatures. In this study that used x-ray crystallographic and biochemical methods, we investigated the structural basis of the preference of this enzyme for collagen and the importance of a glutamate residue in the unique catalytic triad (Ser(278)-Glu(78)-Asp(82)) for enzymatic activity. Crystal structures of the uninhibited enzyme and its complex with a covalently bound inhibitor, N-acetyl-isoleucyl-prolyl-phenylalaninal, showed the occurrence of a narrow S2 pocket and a groove that encompasses the active site and is rich in negative charges. Limited endoproteolysis studies of bovine type-I collagen as well as kinetic studies using peptide libraries randomized at P1 and P1', showed very strong preference for arginine at the P1 position, which correlated very well with the presence of a negatively charged residue in the S1 pocket of the enzyme. All of these features, together with those predicted through comparisons with fiddler crab collagenase, a serine peptidase, rationalize the enzyme's preference for collagen. A comparison of the Arrhenius plots of the activities of kumamolisin-As with either collagen or peptides as substrates suggests that collagen should be relaxed before proteolysis can occur. The E78H mutant, in which the catalytic triad was engineered to resemble that of subtilisin, showed only 0.01% activity of the wild-type enzyme, and its structure revealed that Ser(278), His(78), and Asp(82) do not interact with each other; thus, the canonical catalytic triad is disrupted. 相似文献
4.
Venkatesan R Alahuhta M Pihko PM Wierenga RK 《Protein science : a publication of the Protein Society》2011,20(8):1387-1397
The key residue of the active site of triosephosphate isomerase (TIM) is the catalytic glutamate, which is proposed to be important (i) as a catalytic base, for initiating the reaction, as well as (ii) for the subsequent proton shuttling steps. The structural properties of this glutamate in the liganded complex have been investigated by studying the high resolution crystal structures of typanosomal TIM, complexed with three suicide inhibitors: (S)-glycidol phosphate ((S)-GOP, at 0.99 Å resolution), (R)-glycidol phosphate, ((R)-GOP, at 1.08 Å resolution), and bromohydroxyacetone phosphate (BHAP, at 1.97 Å resolution). The structures show that in the (S)-GOP active site this catalytic glutamate is in the well characterized, competent conformation. However, an unusual side chain conformation is observed in the (R)-GOP and BHAP complexes. In addition, Glu97, salt bridged to the catalytic lysine in the competent active site, adopts an unusual side chain conformation in these two latter complexes. The higher chemical reactivity of (S)-GOP compared with (R)-GOP, as known from solution studies, can be understood: the structures indicate that in the case of (S)-GOP, Glu167 can attack the terminal carbon of the epoxide in a stereoelectronically favored, nearly linear O–C–O arrangement, but this is not possible for the (R)-GOP isomer. These structures confirm the previously proposed conformational flexibility of the catalytic glutamate in its closed, liganded state. The importance of this conformational flexibility for the proton shuttling steps in the TIM catalytic cycle, which is apparently achieved by a sliding motion of the side chain carboxylate group above the enediolate plane, is also discussed. 相似文献
5.
M C Kennedy G Spoto M H Emptage H Beinert 《The Journal of biological chemistry》1988,263(17):8190-8193
Previous reports have demonstrated that aconitase has a single reactive sulfhydryl at or near the active site (Johnson, P. G., Waheed, A., Jones, L., Glaid, A. J., and Gawron, O. (1977) Biochem. Biophys. Res. Commun. 74, 384-389). On the basis of experiments with phenacyl bromide in which enzyme activity was abolished while substrate afforded protection, it was concluded that this group was an essential sulfhydryl. We have further examined the reactivity of this group and confirmed the result that, when reagents with bulky groups (e.g. N-ethylmaleimide or phenacyl bromide) modify the protein at the reactive sulfhydryl, activity is lost. However, when smaller groups, e.g. the SCH3 from methylmethanethiosulfonate or the CH2CONH2 from iodoacetamide, are introduced, there is only partial (50%) or no loss of activity. Experiments were performed to obtain evidence that these reagents are modifying the same residue. Methylmethanethio-sulfonate-treated enzyme showed an increase in the Km for citrate from 200 to 330 microM. EPR spectra were taken of the reduced N-ethylmaleimide- and iodoacetamide-modified enzyme in the presence of substrate. The former gave a spectrum typical of the substrate-free enzyme, while the spectrum of the latter was identical to enzyme with bound substrate. We, therefore, conclude that modification of this sulfhydryl affects activity by interfering with the binding of substrate to the active site and is not essential in the catalytic process. 相似文献
6.
Two crystal structures for cathepsin D: the lysosomal targeting signal and active site. 总被引:1,自引:4,他引:1 下载免费PDF全文
Two crystal structures are described for the lysosomal aspartic protease cathepsin D (EC 3.4.23.5). The molecular replacement method was used with X-ray diffraction data to 3 A resolution to produce structures for human spleen cathepsin D and for bovine liver cathepsin D complexed with the 6-peptide inhibitor pepstatin A. The lysosomal targeting region of cathepsin D defined by previous expression studies [Barnaski et al. (1990) Cell, 63, 281-219] is located in well defined electron density on the surface of the molecules. This region includes the putative binding site of the cis-Golgi phosphotransferase which is responsible for the initial sorting step for soluble proteins destined for lysosomes by phosphorylating the carbohydrates on these molecules. Carbohydrate density is visible at both expected positions on the cathepsin D molecules and, at the best defined position, four sugar residues extend towards the lysosomal targeting region. The active site of the protease and the active site cleft substrate binding subsites are described using the pepstatin inhibited structure. The model geometry for human cathepsin D has rms deviations from ideal of bonds and angles of 0.013 A and 3.2 degrees respectively. For bovine cathepsin D the corresponding figures are 0.014 A and 3.3 degrees. The crystallographic residuals (R factors) are 16.1% and 15.8% for the human and inhibited bovine cathepsin D models respectively. The free R factors, calculated with 10% of the data reserved for testing the models and not used for refinement, are 25.1% and 24.1% respectively. 相似文献
7.
Structural basis of eukaryotic nitrate reduction: crystal structures of the nitrate reductase active site 下载免费PDF全文
Nitrate assimilation in autotrophs provides most of the reduced nitrogen on earth. In eukaryotes, reduction of nitrate to nitrite is catalyzed by the molybdenum-containing NAD(P)H:nitrate reductase (NR; EC 1.7.1.1-3). In addition to the molybdenum center, NR contains iron-heme and flavin adenine dinucleotide as redox cofactors involved in an internal electron transport chain from NAD(P)H to nitrate. Recombinant, catalytically active Pichia angusta nitrate-reducing, molybdenum-containing fragment (NR-Mo) was expressed in P. pastoris and purified. Crystal structures for NR-Mo were determined at 1.7 and 2.6 angstroms. These structures revealed a unique slot for binding nitrate in the active site and identified key Arg and Trp residues potentially involved in nitrate binding. Dimeric NR-Mo is similar in overall structure to sulfite oxidases, with significant differences in the active site. Sulfate bound in the active site caused conformational changes, as compared with the unbound enzyme. Four ordered water molecules located in close proximity to Mo define a nitrate binding site, a penta-coordinated reaction intermediate, and product release. Because yeast NAD(P)H:NR is representative of the family of eukaryotic NR, we propose a general mechanism for nitrate reduction catalysis. 相似文献
8.
Vitamin K epoxide reductase (VKOR) recycles reduced vitamin K, which is used subsequently as a co-factor in the gamma-carboxylation of glutamic acid residues in blood coagulation enzymes. VKORC1, a subunit of the VKOR complex, has recently been shown to possess this activity. Here, we show that VKORC1 is a member of a large family of predicted enzymes that are present in vertebrates, Drosophila, plants, bacteria and archaea. Four cysteine residues and one residue, which is either serine or threonine, are identified as likely active-site residues. In some plant and bacterial homologues the VKORC1 homologous domain is fused with domains of the thioredoxin family of oxidoreductases. These might reduce disulfide bonds of VKORC1-like enzymes as a prerequisite for their catalytic activities. 相似文献
9.
P. R. Mittl A. Berry N. S. Scrutton R. N. Perham G. E. Schulz 《Protein science : a publication of the Protein Society》1994,3(9):1504-1514
The coenzyme specificity of Escherichia coli glutathione reductase was switched from NADP to NAD by modifying the environment of the 2'-phosphate binding site through a set of point mutations: A179G, A183G, V197E, R198M, K199F, H200D, and R204P (Scrutton NS, Berry A, Perham RN, 1990, Nature 343:38-43). In order to analyze the structural changes involved, we have determined 4 high-resolution crystal structures, i.e., the structures of the wild-type enzyme (1.86 A resolution, R-factor of 16.8%), of the wild-type enzyme ligated with NADP (2.0 A, 20.8%), of the NAD-dependent mutant (1.74 A, 16.8%), and of the NAD-dependent mutant ligated with NAD (2.2 A, 16.9%). A comparison of these structures reveals subtle differences that explain details of the specificity change. In particular, a peptide rotation occurs close to the adenosine ribose, with a concomitant change of the ribose pucker. The mutations cause a contraction of the local chain fold. Furthermore, the engineered NAD-binding site assumes a less rigid structure than the NADP site of the wild-type enzyme. A superposition of the ligated structures shows a displacement of NAD versus NADP such that the electron pathway from the nicotinamide ring to FAD is elongated, which may explain the lower catalytic efficiency of the mutant. Because the nicotinamide is as much as 15 A from the sites of the mutations, this observation reminds us that mutations may have important long-range consequences that are difficult to anticipate. 相似文献
10.
Sims PA Menefee AL Larsen TM Mansoorabadi SO Reed GH 《Journal of molecular biology》2006,355(3):422-431
Enolase is a dimeric enzyme that catalyzes the interconversion of 2-phospho-D-glycerate and phosphoenolpyruvate. This reversible dehydration is effected by general acid-base catalysis that involves, principally, Lys345 and Glu211 (numbering system of enolase 1 from yeast). The crystal structure of the inactive E211Q enolase shows that the protein is properly folded. However, K345 variants have, thus far, failed to crystallize. This problem was solved by crystallization of an engineered heterodimer of enolase. The heterodimer was composed of an inactive subunit that has a K345A mutation and an active subunit that has N80D and N126D surface mutations to facilitate ion-exchange chromatographic separation of the three dimeric species. The structure of this heterodimeric variant, in complex with substrate/product, was obtained at 1.85 A resolution. The structure was compared to a new structure of wild-type enolase obtained from crystals belonging to the same space group. Asymmetric dimers having one subunit exhibiting two of the three active site loops in an open conformation and the other in a conformation having all three loops closed appear in both structures. The K345A subunit of the heterodimer is in the loop-closed conformation; its Calpha carbon atoms closely match those of the corresponding subunit of wild-type enolase (root-mean-squared deviation of 0.23 A). The kcat and kcat/Km values of the heterodimer are approximately half those of the N80D/N126D homodimer, which suggests that the subunits in solution are kinetically independent. A comparison of enolase structures obtained from crystals belonging to different space groups suggests that asymmetric dimers can be a consequence of the asymmetric positioning of the subunits within the crystal lattice. 相似文献
11.
Sandra Macedo-Ribeiro Wieger Hemrika Rokus Renirie Ron Wever A. Messerschmidt 《Journal of biological inorganic chemistry》1999,4(2):209-219
The X-ray structures of the chloroperoxidase from Curvularia inaequalis, heterologously expressed in Saccharomyces cerevisiae, have been determined both in its apo and in its holo forms at 1.66 and 2.11?Å resolution, respectively. The crystal structures reveal that the overall structure of this enzyme remains nearly unaltered, particularly at the metal binding site. At the active site of the apo-chloroperoxidase structure a clearly defined sulfate ion was found, partially stabilised through electrostatic interactions and hydrogen bonds with positively charged residues involved in the interactions with the vanadate in the native protein. The vanadate binding pocket seems to form a very rigid frame stabilising oxyanion binding. The rigidity of this active site matrix is the result of a large number of hydrogen bonding interactions involving side chains and the main chain of residues lining the active site. The structures of single site mutants to alanine of the catalytic residue His404 and the vanadium protein ligand His496 have also been analysed. Additionally we determined the structural effects of mutations to alanine of residue Arg360, directly involved in the compensation of the negative charge of the vanadate group, and of residue Asp292 involved in forming a salt bridge with Arg490 which also interacts with the vanadate. The enzymatic chlorinating activity is drastically reduced to approximately 1% in mutants D292A, H404A and H496A. The structures of the mutants confirm the view of the active site of this chloroperoxidase as a rigid matrix providing an oxyanion binding site. No large changes are observed at the active site for any of the analysed mutants. The empty space left by replacement of large side chains by alanines is usually occupied by a new solvent molecule which partially replaces the hydrogen bonding interactions to the vanadate. The new solvent molecules additionally replace part of the interactions the mutated side chains were making to other residues lining the active site frame. When this is not possible, another side chain in the proximity of the mutated residue moves in order to satisfy the hydrogen bonding potential of the residues located at the active site frame. 相似文献
12.
Earlier work [Bonagura et al. (1996) Biochemistry 35, 6107] showed that the K+ site found in the proximal pocket of ascorbate peroxidase (APX) could be engineered into cytochrome c peroxidase (CCP). Binding of K+ at the engineered site results in a loss in activity and destabilization of the CCP compound I Trp191 cationic radical owing to long-range electrostatic effects. The engineered CCP mutant crystal structure has been refined to 1.5 A using data obtained at cryogenic temperatures which provides a more detailed basis for comparison with the naturally occurring K+ site in APX. The characteristic EPR signal associated with the Trp191 radical becomes progressively weaker as K+ is added, which correlates well with the loss in enzyme activity as [K+] is increased. These results coupled with stopped-flow studies support our earlier conclusions that the loss in activity and EPR signal is due to destabilization of the Trp191 cationic radical. 相似文献
13.
The role of an active site histidine in the catalytic mechanism of aspartate transcarbamoylase 总被引:2,自引:0,他引:2
Although the allosteric enzyme aspartate transcarbamoylase from Escherichia coli has been the focus of numerous physical and enzymological studies for over 2 decades, the catalytic mechanism is still poorly understood. There has been much speculation regarding the role of a conserved histidine residue at position 134 which recent crystallographic studies have implicated in the catalytic mechanism as a general acid or as a general base. We have used a combination of site-directed mutagenesis, 13C-isotope incorporation, and high field NMR to probe the role of His134 in the catalytic mechanism of aspartate transcarbamoylase. By comparing the wild-type catalytic trimer with that from a partially active mutant in which His134 is replaced by alanine, we have assigned the 13C resonance for His134 in the wild-type enzyme. This residue is shown to have a pK less than 6, indicating that the imidazole ring is unprotonated at pH values optimal for enzymatic activity (pH 8.0). This result eliminates the possibility of His134 participating as a general acid in the carbamoyl transfer mechanism. Since the crystallographic studies indicate that His134 is close enough to hydrogen-bond to the carbonyl of the liganded bisubstrate analog N-(phosphonacetyl)-L-aspartate, the imidazole ring would be oriented as to make it unlikely that the N1 lone pair of electrons could participate in general base catalysis. Moreover, if His134 is implicated in base catalysis, we would have expected a much greater loss of activity upon its replacement by alanine. Perhaps the role of His134 is merely to help position the carbonyl group of carbamoyl phosphate for nucleophilic attack by the alpha-amino group of aspartate. 相似文献
14.
The transition state of the group I intron self-splicing reaction is stabilized by three metal ions. The functional groups within the intron substrates (guanosine and an oligoribonucleotide mimic of the 5'-exon) that coordinate these metal ions have been systematically defined through a series of metal ion specificity switch experiments. In contrast, the catalytic metal ligands within the ribozyme active site are unknown. In an effort to identify them, stereospecific (R(P) or S(P)) single-site phosphorothioate substitutions were introduced at five phosphates predicted to be in the vicinity of the catalytic center (A207, C208, A304, U305, and A306) within the Tetrahymena intron. Of the 10 ribozymes that were studied, four phosphorothioate substitutions (A207 S(P), C208 S(P), A306 R(P), and A306 S(P)) exhibited a significant reduction in the cleavage rate. Only the effect of the C208 S(P) phosphorothioate substitution could be significantly rescued by the addition of a thiophilic metal ion, either Mn(2+) or Zn(2+), when tested with an all-oxy substrate. The effect was not rescued with Cd(2+). To determine if one of the catalytic metal ions is coordinated to the C208 pro-S(P) oxygen, the phosphorothioate-substituted ribozymes were also assayed using oligonucleotide substrates with a 3'-phosphorothiolate or an S(P) phosphorothioate substitution at the scissile phosphate. This resulted in a second metal specificity switch, in that Mn(2+) or Zn(2+) no longer rescued the C208 S(P) ribozyme, but Cd(2+) provided efficient rescue in the context of either sulfur-containing substrate. The 3'-oxygen and the pro-S(P) oxygen of the scissile phosphate are both known to coordinate the same metal ion, M(A), which stabilizes the negative charge on the leaving group 3'-oxygen in the transition state. Taken together, these data suggest that metal M(A) is coordinated to the C208 pro-S(P) phosphate oxygen, which constitutes the first functional link between a specific catalytic metal ion and a particular functional group within the group I ribozyme active site. 相似文献
15.
Delta(5)-3-Ketosteroid isomerase catalyzes cleavage and formation of a C-H bond at a diffusion-controlled limit. By determining the crystal structures of the enzyme in complex with each of three different inhibitors and by nuclear magnetic resonance (NMR) spectroscopic investigation, we evidenced the ionization of a hydroxyl group (pK(a) approximately 16.5) of an inhibitor, which forms a low barrier hydrogen bond (LBHB) with a catalytic residue Tyr(14) (pK(a) approximately 11.5), and the protonation of the catalytic residue Asp(38) with pK(a) of approximately 4.5 at pH 6.7 in the interaction with a carboxylate group of an inhibitor. The perturbation of the pK(a) values in both cases arises from the formation of favorable interactions between inhibitors and catalytic residues. The results indicate that the pK(a) difference between catalytic residue and substrate can be significantly reduced in the active site environment as a result of the formation of energetically favorable interactions during the course of enzyme reactions. The reduction in the pK(a) difference should facilitate the abstraction of a proton and thereby eliminate a large fraction of activation energy in general acid/base enzyme reactions. The pK(a) perturbation provides a mechanistic ground for the fast reactivity of many enzymes and for the understanding of how some enzymes are able to extract a proton from a C-H group with a pK(a) value as high as approximately 30. 相似文献
16.
17.
Mazumdar A Bandyopadhyay D Bandyopadhyay U Banerjee RK 《Molecular and cellular biochemistry》2002,237(1-2):21-30
The role of active site histidine residues in SCN– oxidation by lacrimal gland peroxidase (LGP) has been probed after modification with diethylpyrocarbonate (DEPC). The enzyme is irreversibly inactivated following pseudo-first order kinetics with a second order rate constant of 0.26 M–1 sec–1 at 25°C. The pH dependent rate of inactivation shows an inflection point at 6.6 indicating histidine derivatization. The UV difference spectrum of the modified versus native enzyme shows a peak at 242 nm indicating formation of N-carbethoxyhistidine. Carbethoxyhistidine formation and associated inactivation are reversed by hydroxylamine indicating histidine modification. The stoichiometry of histidine modification and the extent of inactivation show that out of five histidine residues modified, modification of two residues inactivates the enzyme. Substrate protection with SCN– during modification indicates that although one histidine is protected, it does not prevent inactivation. The spectroscopically detectable compound II formation is lost due to modification and is not evident after SCN– protection. The data indicate that out of two histidines, one regulates compound I formation while the other one controls SCN– binding. SCN– protected enzyme is inactive due to loss of compound I formation. SCN– binding studies by optical difference spectroscopy indicate that while the native enzyme binds SCN– with the Kd of 15 mM, the modified enzyme shows very weak binding with the Kd of 660 mM. From the pH dependent binding of SCN–, a plot of log Kd vs. pH shows a sigmoidal curve from which the involvement of an enzyme ionizable group of pKa 6.6 is ascertained and attributed to the histidine residue controlling SCN– binding. LGP has thus two distinctly different essential histidine residues – one regulates compound I formation while the other one controls SCN– binding. 相似文献
18.
It has been found that with mutation of two surface residues (Lys22 → Glu and His104 → Arg) in human purine nucleoside phosphorylase (hPNP), there is an enhancement of catalytic activity in the chemical step. This is true although the mutations are quite remote from the active site, and there are no significant changes in crystallographic structure between the wild-type and mutant active sites. We propose that dynamic coupling from the remote residues to the catalytic site may play a role in catalysis, and it is this alteration in dynamics that causes an increase in the chemical step rate. Computational results indicate that the mutant exhibits stronger coupling between promotion of vibrations and the reaction coordinate than that found in native hPNP. Power spectra comparing native and mutant proteins show a correlation between the vibrations of Immucillin-G (ImmG):O5′…ImmG:N4′ and H257:Nδ…ImmG:O5′ consistent with a coupling of these motions. These modes are linked to the protein promoting vibrations. Stronger coupling of motions to the reaction coordinate increases the probability of reaching the transition state and thus lowers the activation free energy. This motion has been shown to contribute to catalysis. Coincident with the approach to the transition state, the sum of the distances of ImmG:O4′…ImmG:O5′…H257:Nδ became smaller, stabilizing the oxacarbenium ion formed at the transition state. Combined results from crystallography, mutational analysis, chemical kinetics, and computational analysis are consistent with dynamic compression playing a significant role in forming the transition state. Stronger coupling of these pairs is observed in the catalytically enhanced mutant enzyme. That motion and catalysis are enhanced by mutations remote from the catalytic site implicates dynamic coupling through the protein architecture as a component of catalysis in hPNP. 相似文献
19.
We performed functional analyses for various single amino-acid substitution variants of Escherichia coli, Bacillus subtilis, and human tRNase Zs. The well-conserved six histidine, His(I)-His(VI), and two aspartate, Asp(I) and Asp(II), residues together with metal ions are thought to form the active site of tRNase Z. The Mn(2+)-rescue analysis for Thermotoga maritima tRNase Z(S) has suggested that Asp(I) and His(V) directly contribute the proton transfer for the catalysis, and a catalytic mechanism has been proposed. However, experimental evidence supporting the proposed mechanism was limited. Here we intensively examined E. coli and B. subtilis tRNase Z(S) variants and human tRNase Z(L) variants for cleavage activities on pre-tRNAs in the presence of Mg(2+) or Mn(2+) ions. We observed that the Mn(2+) ions cannot rescue the activities of Asp(I)Ala and His(V)Ala variants from each species, which are lost in the presence of Mg(2+). This observation may support the proposed catalytic mechanism. 相似文献
20.
The active site loop of S-adenosylmethionine synthetase modulates catalytic efficiency 总被引:1,自引:0,他引:1
Crystallographic studies of Escherichia coli S-adenosylmethionine synthetase (ATP:L-methionine S-adenosyltransferase, MAT) have defined a flexible polypeptide loop that can gate access to the active site without contacting the substrates. The influence of the length and sequence of this active site loop on catalytic efficiency has been characterized in a mutant in which the E. coli MAT sequence (DRADPLEQ) has been replaced with the distinct sequence of the corresponding region of the otherwise highly homologous rat liver enzyme (HDLRNEEDV). Four additional mutants in which the entire DRADPLEQ sequence was replaced by five, six, seven, or eight glycines have been studied to unveil the effects of loop length and the influence of side chains. In all of the mutants, the maximal rate of S-adenosylmethionine formation (k(cat)) is diminished by more than 200-fold whereas the rate of hydrolysis of the tripolyphosphate intermediate is decreased by less than 3-fold. Thus, the function of the loop is localized to the first step in the overall reaction. The K(m) for methionine increases in all of the oligoglycine mutants, whereas the K(m) values for ATP are not substantially different. The k(cat) for the wild-type enzyme is decreased by increases in solution microviscosity with 55% of the maximal dependence. Thus, a diffusional event is coupled to the chemical step of AdoMet formation, which is known to be rate-limiting. The results indicate that a conformational change, possibly loop closure, is associated with AdoMet synthesis. The data integrate a previously discovered conformational change associated with PPP(i) binding to the E x AdoMet complex into the reaction sequence, reflecting a difference in protein conformation in the E x AdoMet x PPP(i) complex whether it is formed from the E x ATP x methionine complex or from binding of exogenous PPP(i). The temperature dependence of the k(cat) for S-adenosylmethionine formation shows that the removal of the side chains in the glycine mutants causes the activation enthalpy of the reaction to approximately double in each case, while the activation entropy changes from negative in the wild-type enzyme to positive in the mutants. The favorable activation entropy in the mutant-catalyzed reactions may reflect release of water during catalysis, while the negative activation entropy in the reaction catalyzed by the wild-type enzyme apparently reflects reorganization of the loop. The observations point to how nature can fine-tune the activity of an enzyme by modifying substrate and product access to the active site rather than by altering the enzyme x substrate contacts or the catalytic machinery itself. 相似文献