首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transgenic mice offer a valuable way to relate gene products to phenotype, but the ability to assess the cardiovascular phenotype with pressure-volume analysis has lagged. Conductance measurement offers a method to generate an instantaneous left ventricular (LV) volume signal in the mouse but has been limited by the volume signal being a combination of blood and LV muscle. We hypothesized that by developing a mouse conductance system that operates at several simultaneous frequencies, we could identify and correct for the myocardial contribution to the instantaneous volume signal. This hypothesis is based on the assumption that mouse myocardial conductivity will vary with frequency, whereas mouse blood conductivity will not. Consistent with this hypothesis, we demonstrated that at higher excitation frequency, greater end-diastolic and end-systolic conductance are detected, as well as a smaller difference between the two. We then empirically solved for LV blood volume using two frequencies. We combined measured resistivity of mouse myocardium with an analytic approach and extracted an estimate of LV blood volume from the raw conductance signal. Development of a multifrequency catheter-based system to determine LV function could be a tool to assess cardiovascular phenotype in transgenic mice.  相似文献   

2.
Using Bluetooth wireless technology, we developed an implantable telemetry system for measurement of the left ventricular pressure-volume relation in conscious, freely moving rats. The telemetry system consisted of a pressure-conductance catheter (1.8-Fr) connected to a small (14-g) fully implantable signal transmitter. To make the system fully telemetric, calibrations such as blood resistivity and parallel conductance were also conducted telemetrically. To estimate blood resistivity, we used four electrodes arranged 0.2 mm apart on the pressure-conductance catheter. To estimate parallel conductance, we used a dual-frequency method. We examined the accuracy of calibrations, stroke volume (SV) measurements, and the reproducibility of the telemetry. The blood resistivity estimated telemetrically agreed with that measured using an ex vivo cuvette method (y=1.09x - 11.9, r2= 0.88, n=10). Parallel conductance estimated by the dual-frequency (2 and 20 kHz) method correlated well with that measured by a conventional saline injection method (y=1.59x - 1.77, r2= 0.87, n=13). The telemetric SV closely correlated with the flowmetric SV during inferior vena cava occlusions (y=0.96x + 7.5, r2=0.96, n=4). In six conscious rats, differences between the repeated telemetries on different days (3 days apart on average) were reasonably small: 13% for end-diastolic volume, 20% for end-systolic volume, 28% for end-diastolic pressure, and 6% for end-systolic pressure. We conclude that the developed telemetry system enables us to estimate the pressure-volume relation with reasonable accuracy and reproducibility in conscious, untethered rats.  相似文献   

3.
There are two implanted heart failure warning systems incorporated into biventricular pacemakers/automatic implantable cardiac defibrillators and tested in clinical trials: right heart pressures, and lung conductance measurements. However, both warning systems postdate measures of the earliest indicator of impending heart failure: left ventricular (LV) volume. There are currently no proposed implanted technologies that can perform LV blood volume measurements in humans. We propose to solve this problem by incorporating an admittance measurement system onto currently deployed biventricular and automatic implantable cardiac defibrillator leads. This study will demonstrate that an admittance measurement system can detect LV blood conductance from the epicardial position, despite the current generating and sensing electrodes being in constant motion with the heart, and with dynamic removal of the myocardial component of the returning voltage signal. Specifically, in 11 pigs, it will be demonstrated that 1) a physiological LV blood conductance signal can be derived; 2) LV dilation in response to dose-response intravenous neosynephrine can be detected by blood conductance in a similar fashion to the standard of endocardial crystals when admittance is used, but not when only traditional conductance is used; 3) the physiological impact of acute left anterior descending coronary artery occlusion and resultant LV dilation can be detected by blood conductance, before the anticipated secondary rise in right ventricular systolic pressure; and 4) a pleural effusion simulated by placing saline outside the pericardium does not serve as a source of artifact for blood conductance measurements.  相似文献   

4.
The conductance catheter (CC) allows thorough evaluation of cardiac function because it simultaneously provides measurements of pressure and volume. Calibration of the volume signal remains challenging. With different calibration techniques, in vivo left ventricular volumes (V(CC)) were measured in mice (n = 52) with a Millar CC (SPR-839) and compared with MRI-derived volumes (V(MRI)). Significant correlations between V(CC) and V(MRI) [end-diastolic volume (EDV): R(2) = 0.85, P < 0.01; end-systolic volume (ESV): R(2) = 0.88, P < 0.01] were found when injection of hypertonic saline in the pulmonary artery was used to calibrate for parallel conductance and volume conversion was done by individual cylinder calibration. However, a significant underestimation was observed [EDV = -17.3 microl (-22.7 to -11.9 microl); ESV = -8.8 microl (-12.5 to -5.1 microl)]. Intravenous injection of the hypertonic saline bolus was inferior to injection into the pulmonary artery as a calibration method. Calibration with an independent measurement of stroke volume decreased the agreement with V(MRI). Correction for an increase in blood conductivity during the in vivo experiments improved estimation of EDV. The dual-frequency method for estimation of parallel conductance failed to produce V(CC) that correlated with V(MRI). We conclude that selection of the calibration procedure for the CC has significant implications for the accuracy and precision of volume estimation and pressure-volume loop-derived variables like myocardial contractility. Although V(CC) may be underestimated compared with MRI, optimized calibration techniques enable reliable volume estimation with the CC in mice.  相似文献   

5.
A new dynamic model of left ventricular (LV) pressure-volume relationships in beating heart was developed by mathematically linking chamber pressure-volume dynamics with cardiac muscle force-length dynamics. The dynamic LV model accounted for >80% of the measured variation in pressure caused by small-amplitude volume perturbation in an otherwise isovolumically beating, isolated rat heart. The dynamic LV model produced good fits to pressure responses to volume perturbations, but there existed some systematic features in the residual errors of the fits. The issue was whether these residual errors would be damaging to an application where the dynamic LV model was used with LV pressure and volume measurements to estimate myocardial contractile parameters. Good agreement among myocardial parameters responsible for response magnitude was found between those derived by geometric transformations of parameters of the dynamic LV model estimated in beating heart and those found by direct measurement in constantly activated, isolated muscle fibers. Good agreement was also found among myocardial kinetic parameters estimated in each of the two preparations. Thus the small systematic residual errors from fitting the LV model to the dynamic pressure-volume measurements do not interfere with use of the dynamic LV model to estimate contractile parameters of myocardium. Dynamic contractile behavior of cardiac muscle can now be obtained from a beating heart by judicious application of the dynamic LV model to information-rich pressure and volume signals. This provides for the first time a bridge between the dynamics of cardiac muscle function and the dynamics of heart function and allows a beating heart to be used in studies where the relevance of myofilament contractile behavior to cardiovascular system function may be investigated.  相似文献   

6.
We previously reported the unexpected finding that 4 wk of exposure to intermittent hypoxia (IH), which simulates the hypoxic stress of obstructive sleep apnea, improved LV cardiac function in healthy, lean C57BL/6J mice. The purpose of the present study was to assess the impact of 4 wk of IH on cardiac function in a transgenic murine model that exhibits a natural history of heart failure. We hypothesized that IH exposure would exacerbate cardiac decompensation in heart failure. Adult male FVB (wild type) and transgenic mice with cardiac overexpression of tumor necrosis factor α (TNF-αTG) at 10-12 wk of age were exposed to 4 wk of IH (nadir inspired oxygen 5-6% at 60 cycles/h for 12 h during light period) or intermittent air (IA) as control. Cardiac function was assessed by echocardiography and pressure-volume loop analyses, and mRNA and protein expression were performed on ventricular homogenates. TNF-αTG mice exposed to IA exhibited impaired LV contractility and increased LV dilation associated with markedly elevated cardiac expression of atrial natriuretic peptide and brain natriuretic peptide compared with wild-type mice. When wild-type FVB mice were exposed to IH, they exhibited increases in arterial pressure and dP/dt(max), consistent with our previous report in C57BL/6J mice. Surprisingly, we found that TNF-αTG mice exposed to IH showed a reduction in end-diastolic volume (38.7 ± 3.8 to 22.2 ± 2.1 ul; P < 0.01) and an increase in ejection fraction (29.4 ± 2.5 to 41.9 ± 3.1%; P < 0.05). In contrast to our previous study in C56Bl/6J mice, neither FVB nor TNF-αTG mice exhibited an upregulation in β-adrenergic expression or cAMP in response to IH exposure. We conclude that 4 wk of exposure to IH in mice induces adaptive responses that improve cardiac function in not only healthy animals but also in animals with underlying heart failure.  相似文献   

7.
Recent studies have been directed at modulating the heart failure process through inhibition of activated matrix metalloproteinases (MMPs). We hypothesized that a loss of MMP inhibitory control by tissue inhibitor of MMP (TIMP)-1 deficiency alters the course of postinfarction chamber remodeling and induced chronic myocardial infarction (MI) in wild-type (WT) and TIMP-1(-/-) mice. Left ventricular (LV) pressure-volume loops obtained from WT and TIMP-1(-/-) mice demonstrated that LV end-diastolic volume [52 +/- 4 (WT) vs. 71 +/- 6 (TIMP-1(-/-)) microl] and LV end-diastolic pressure [9.0 +/- 1.2 (WT) vs. 12.7 +/- 1.4 (TIMP-1(-/-)) mmHg] were significantly increased in the TIMP-1(-/-) mice 2 wk after MI. LV contractility was reduced to a similar degree in the WT and TIMP-1(-/-) groups after MI, as indicated by a significant fall in the LV end-systolic pressure-volume relationship. Ventricular weight and cross-sectional areas of LV myocytes were significantly increased in TIMP-1(-/-) mice, indicating that the hypertrophic response was more pronounced. The observed significant loss of fibrillar collagen in the TIMP-1(-/-) controls may have been an important contributory factor for the observed LV alterations in the TIMP-1(-/-) mice after MI. These findings demonstrate that TIMP-1 deficiency amplifies adverse LV remodeling after MI in mice and emphasizes the importance of local endogenous control of cardiac MMP activity by TIMP-1.  相似文献   

8.
Right ventricular (RV) weight increases dependent on time after myocardial infarction (MI) and on MI size. The sequential changes in RV volume and hemodynamics and their relations to left ventricular (LV) remodeling after MI are unknown. We therefore examined the time course of RV remodeling in rats with LV MI. MI was produced by left coronary artery ligation. Four, eight, and sixteen weeks later, LV and RV hemodynamic measurements were performed and pressure-volume curves were obtained. For serial measurement of RV volumes and performance, cine-MRI was performed 2 and 8 wk after MI. The ratios of beta-myosin heavy chain (MHC) to alpha-MHC and skeletal to cardiac alpha-actin were determined for the RV and LV after large MI or sham operation. RV weight increased in rats with MI, as did RV volume. RV pressure-volume curves were shifted toward larger volumes 16 wk after large MI. RV systolic pressure increased gradually over time; however, the gain in RV weight was always in excess of RV systolic pressure. The ratios of skeletal to cardiac alpha-actin and beta-MHC to alpha-MHC were increased after MI in both ventricles in a similar fashion. Because RV wall stress was not increased after infarction, mechanical factors may not conclusively explain hypertrophy, which maintained balanced loading conditions for the RV even after large LV infarction.  相似文献   

9.
10.
Measurement of left ventricular (LV) function is often overlooked in murine studies, which have been used to analyze the effects of genetic manipulation on cardiac phenotype. The goal of this study was to address the effects of changes in LV contractility on indexes of contractility in mice. LV function was assessed in vivo in closed-chest mice by echocardiography and by LV catheterization using a conductance pressure-volume (P-V) catheter with three different interventions that alter contractility by 1) atrial pacing to increase inotropy by augmentation of the force-frequency relation (modest increment of inotropy), 2) dobutamine to maximize inotropy, and 3) esmolol infusion to decrease contractility. Load-independent parameters derived from P-V relations, such as slope of end-systolic P-V relations (ESPVR) and slope of the first maximal pressure derivative over time (dP/dt(max))-end-diastolic volume relation (dP/dt-EDV), and standard echocardiographic parameters were measured. The dP/dt-EDV changed the most among parameters after atrial pacing and dobutamine infusion (percent change, 162.8 +/- 95.9% and 271.0 +/- 44.0%, respectively). ESPVR was the most affected by a decrease in LV contractility during esmolol infusion (percent change, -49.8 +/- 8.3%). However, fractional shortening failed to detect changes in contractility during atrial pacing and esmolol infusion and its percent change was <20%. This study demonstrated that contractile parameters derived from P-V relations change the most during a change in LV contractility and should therefore best detect a small change in contractility in mice. Heart rate has a modest but significant effect on P-V relationship-derived indexes and must be considered in the evaluation of murine cardiac physiology.  相似文献   

11.
This study was conducted to determine the effects of chronic combined pulmonary stenosis and pulmonary insufficiency (PSPI) on right (RV) and left ventricular (LV) function in young, growing swine. Six pigs with combined PSPI were studied, and data were compared with previously published data of animals with isolated pulmonary insufficiency and controls. Indexes of systolic function (stroke volume, ejection fraction, and cardiac functional reserve), myocardial contractility (slope of the end-systolic pressure-volume and change in pressure over time-end-diastolic volume relationship), and diastolic compliance were assessed within 2 days of intervention and 3 mo later. Magnetic resonance imaging was used to quantify pulmonary insufficiency and ventricular volumes. The conductance catheter was used to obtain indexes of the cardiac functional reserve, diastolic compliance, and myocardial contractility from pressure-volume relations acquired at rest and under dobutamine infusion. In the PSPI group, the pulmonary regurgitant fraction was 34.3 +/- 5.8%, the pressure gradient across the site of pulmonary stenosis was 20.9 +/- 20 mmHg, and the average RV peak systolic pressure was 70% systemic at 12 wk follow-up. Biventricular resting cardiac outputs and cardiac functional reserves were significantly limited (P < 0.05), LV diastolic compliance significantly decreased (P < 0.05), but RV myocardial contractility significantly enhanced (P < 0.05) compared with control animals at 3-mo follow-up. In the young, developing heart, chronic combined PSPI impairs biventricular systolic pump function and diastolic compliance but preserves RV myocardial contractility.  相似文献   

12.
After myocardial infarction (MI), there is progressive left ventricular (LV) remodeling and impaired exercise capacity. We tested the hypothesis that LV remodeling results in structural and functional changes that determine exercise impairment post-MI. Rats underwent coronary artery ligation (n = 12) or sham (n = 11) surgery followed by serial exercise tests and echocardiography for 16 wk post-MI. LV pressure-volume relationships were determined using a blood-perfused Langendorff preparation. Exercise capacity was 60% of shams immediately post-MI (P < 0.05) followed by a recovery to near normal during weeks 5-8. Thereafter, there was a progressive decline in exercise capacity to +/-40% of shams (P < 0.01). At both 8 and 16 wk post-MI, fractional shortening (FS) was reduced and end-diastolic diameter (EDD) was increased (P < 0.01). However, neither FS nor EDD correlated with exercise at 8 or 16 wk (r(2) < 0.12, P > 0.30). LV septal wall thickness was increased at both 8 (P = 0.17 vs. shams) and 16 wk (P = 0.035 vs. shams) post-MI and correlated with exercise at both times (r(2) >/= 0.50 and P 相似文献   

13.
Cardiac myosin binding protein-C (cMyBP-C) is a thick filament-associated protein that binds tightly to myosin and has a potential role for modulating myocardial contraction. We tested the hypothesis that cMyBP-C 1) contributes to the enhanced in vivo contractile state following beta-adrenergic stimulation and 2) is necessary for myocardial adaptation to chronic increases in afterload. In vivo pressure-volume relations demonstrated that left ventricular (LV) systolic and diastolic function were compromised under basal conditions in cMyBP-C(-/-) compared with WT mice. Moreover, whereas beta-adrenergic treatment significantly improved ejection fraction, peak elastance, and the time to peak elastance in WT mice, these functional indexes remained unchanged in cMyBP-C(-/-) mice. Morphological and functional changes were measured through echocardiography in anesthetized mice following 5 wk of aortic banding. Adaptation to pressure overload was diminished in cMyBP-C(-/-) mice as characterized by a lack of an increase in posterior wall thickness, increased LV diameter, deterioration of fractional shortening, and prolonged isovolumic relaxation time. These results suggest that the absence of cMyBP-C significantly diminishes in vivo LV function and markedly attenuates the increase in LV contractility following beta-adrenergic stimulation or adaptation to pressure overload.  相似文献   

14.
A marked increase in plasma TNF-alpha has been described in patients with chronic heart failure (CHF). Nevertheless, little is known about the direct role of this cytokine early after myocardial infarction (MI) and its possible effects on the subsequent development of CHF. Wistar rats were subjected to permanent in vivo coronary artery ligation. At 5, 7, and 9 days after MI, cardiac function, passive compliance of the left ventricle (LV), and cardiac geometry were evaluated. The same model was used to perform pharmacological studies 7 days and 10 wk after MI in rats treated with monomeric recombinant human soluble TNF-alpha receptor type II (sTNF-RII, 40 microg/kg iv) or a placebo on day 3. Maximal alterations of cardiac function and geometry occurred 7 days after MI, which correlated chronologically with a peak of cardiac and serum TNF-alpha, as shown by immunohistochemistry and ELISA, respectively. sTNF-RII improved LV end-diastolic pressure under basal conditions and after volume overload 7 days and 10 wk after MI. Moreover, a significant leftward shift of the pressure-volume curve in the sTNF-RII-treated group 7 days after MI indicated a preservation of LV volume. Infarct expansion index was also significantly improved by sTNF-RII 7 days after MI (P < 0.01). Nevertheless, 10 wk after MI, geometric indexes and passive pressure-volume curves were not significantly improved by the treatment. In conclusion, TNF-alpha plays a major role in cardiac alterations 7 days after MI in rats and contributes to hemodynamic derangement, but not to cardiac remodeling, in subsequent CHF.  相似文献   

15.
There is no direct evidence to indicate that pump dysfunction in a dilated chamber reflects the impact of chamber dilatation rather than the degree of intrinsic systolic failure resulting from myocardial damage. In the present study, we explored the relative roles of intrinsic myocardial systolic dysfunction and chamber dilatation as mediators of left ventricular (LV) pump dysfunction. Administration of isoproterenol, a beta-adrenoreceptor agonist, for 3 mo to rats (0.1 mg.kg(-1).day(-1)) resulted in LV pump dysfunction as evidenced by a reduced LV endocardial fractional shortening (echocardiography) and a decrease in the slope of the LV systolic pressure-volume relation (isolated heart preparations). Although chronic beta-adrenoreceptor activation induced cardiomyocyte damage (deoxynucleotidyl transferase-mediated dUTP nick-end labeling) as well as beta(1)- and beta(2)-adrenoreceptor inotropic downregulation (attenuated contractile responses to dobutamine and salbutamol), these changes failed to translate into alterations in intrinsic myocardial contractility. Indeed, LV midwall fractional shortening (echocardiography) and the slope of the LV systolic stress-strain relation (isolated heart preparations) were unchanged. A normal intrinsic myocardial systolic function, despite the presence of cardiomyocyte damage and beta-adrenoreceptor inotropic downregulation, was ascribed to marked increases in myocardial norepinephrine release, to upregulation of alpha-adrenoreceptor-mediated contractile effects as determined by phenylephrine responsiveness, and to compensatory LV hypertrophy. LV pump failure was attributed to LV dilatation, as evidenced by increased LV internal dimensions (echocardiography), and a right shift and increased volume intercept of the LV diastolic pressure-volume relation. In conclusion, chronic sympathetic stimulation, despite reducing beta-adrenoreceptor-mediated inotropic responses and promoting myocyte apoptosis, may nevertheless induce pump dysfunction primarily through LV dilatation, rather than intrinsic myocardial systolic failure.  相似文献   

16.
Transgenic mice with cardiac-specific expression of a peptide inhibitor of G protein-coupled receptor kinase (GRK)3 [transgenic COOH-terminal GRK3 (GRK3ct) mice] display myocardial hypercontractility without hypertrophy and enhanced α(1)-adrenergic receptor signaling. A role for GRK3 in the pathogenesis of heart failure (HF) has not been investigated, but inhibition of its isozyme, GRK2, has been beneficial in several HF models. Here, we tested whether inhibition of GRK3 modulated evolving cardiac hypertrophy and dysfunction after pressure overload. Weight-matched male GRK3ct transgenic and nontransgenic littermate control (NLC) mice subjected to chronic pressure overload by abdominal aortic banding (AB) were compared with sham-operated (SH) mice. At 6 wk after AB, a significant increase of cardiac mass consistent with induction of hypertrophy was found, but no differences between GRK3ct-AB and NLC-AB mice were discerned. Simultaneous left ventricular (LV) pressure-volume analysis of electrically paced, ex vivo perfused working hearts revealed substantially reduced systolic and diastolic function in NLC-AB mice (n = 7), which was completely preserved in GRK3ct-AB mice (n = 7). An additional cohort was subjected to in vivo cardiac catheterization and LV pressure-volume analysis at 12 wk after AB. NLC-AB mice (n = 11) displayed elevated end-diastolic pressure (8.5 ± 3.1 vs. 2.9 ± 1.2 mmHg, P < 0.05), reduced cardiac output (3,448 ± 323 vs. 4,488 ± 342 μl/min, P < 0.05), and reduced dP/dt(max) and dP/dt(min) (both P < 0.05) compared with GRK3ct-AB mice (n = 16), corroborating the preserved cardiac structure and function observed in GRK3ct-AB hearts assessed ex vivo. Increased cardiac mass and myocardial mRNA expression of β-myosin heavy chain confirmed the similar induction of cardiac hypertrophy in both AB groups, but only NLC-AB hearts displayed significantly elevated mRNA levels of brain natriuretic peptide and myocardial collagen contents as well as reduced β(1)-adrenergic receptor responsiveness to isoproterenol, indicating increased LV wall stress and the transition to HF. Inhibition of cardiac GRK3 in mice does not alter the hypertrophic response but attenuates cardiac dysfunction and HF after chronic pressure overload.  相似文献   

17.
Recent awareness of cardiovascular diseases as a number one killer of the middle-aged women has prompted interest in sex differences leading to heart failure (HF). Therefore, we evaluated cardiac function in female and male mice following myocardial infarction (MI) using the Millar pressure-volume (P-V) conductance system in vivo, at time points corresponding to early (2 wk), late compensatory hypertrophy (4 wk), and decompensation (10 wk) to HF. A significant deterioration of the load dependent and independent hemodynamic measurements occurred in both female and male mice during the early phase of hypertrophy. Later, compensatory hypertrophy was marked by a normalization of volumes to control levels in females compared with males. The most notable differences between sexes occurred in the measurements of cardiac contractility during the decompensation to HF. In females, there was a significant improvement in contractility compared with males, which was apparent in the load-independent measurements of preload recruitable stroke work (10 wk post-MI, female=48.7+/-8.0 vs. male=25.2+/-1.8 mmHg, P<0.05) and maximum dP/dt vs. maximum end-diastolic volume (10 wk post-MI, female=359+/-58 vs. male=149+/-28 mmHg.s(-1).microl(-1), P<0.05). Despite these differences, there were no differences in the heart weight to body weight ratio and infarct size between the sexes. These data demonstrate that compensatory hypertrophy is associated with an improvement in contractility and a delayed decompensation to HF in females. However, compensatory hypertrophy in males appears to be undermined by a steady decline in contractility associated with decompensation to HF.  相似文献   

18.
Insulin resistance is an increasingly prevalent condition in humans that frequently clusters with disorders characterized by left ventricular (LV) pressure overload, such as systemic hypertension. To investigate the impact of insulin resistance on LV remodeling and functional response to pressure overload, C57BL6 male mice were fed a high-fat (HFD) or a standard diet (SD) for 9 days and then underwent transverse aortic constriction (TAC). LV size and function were assessed in SD- and HFD-fed mice using serial echocardiography before and 7, 21, and 28 days after TAC. Serial echocardiography was also performed on nonoperated SD- and HFD-fed mice over a period of 6 wk. LV perfusion was assessed before and 7 and 28 days after TAC. Nine days of HFD induced systemic and myocardial insulin resistance (assessed by myocardial 18F-fluorodeoxyglucose uptake), and myocardial perfusion response to acetylcholine was impaired. High-fat feeding for 28 days did not change LV size and function in nonbanded mice; however, TAC induced greater hypertrophy, more marked LV systolic and diastolic dysfunction, and decreased survival in HFD-fed compared with SD-fed mice. Compared with SD-fed mice, myocardial perfusion reserve was decreased 7 days after TAC, and capillary density was decreased 28 days after TAC in HFD-fed mice. A short duration of HFD induces insulin resistance in mice. These metabolic changes are accompanied by increased LV remodeling and dysfunction after TAC, highlighting the impact of insulin resistance in the development of pressure-overload-induced heart failure.  相似文献   

19.
The conductance catheter method has substantially enhanced the characterization of in vivo cardiovascular function in mice. Absolute volume determination requires assessment of parallel conductance (V(p)) offset because of conductivity of structures external to the blood pool. Although such a determination is achievable by hypertonic saline bolus injection, this method poses potential risks to mice because of volume loading and/or contractility changes. We tested another method based on differences between blood and muscle conductances at various catheter excitation frequencies (20 vs. 2 kHz) in 33 open-chest mice. The ratio of mean frequency-dependent signal difference to V(p) derived by hypertonic saline injection was consistent [0.095 +/- 0.01 (SD), n = 11], and both methods were strongly correlated (r(2) = 0.97, P < 0.0001). This correlation persisted when the ratio was prospectively applied to a separate group of animals (n = 12), with a combined regression relation of V(p(DF)) = 1.1 * V(p(Sal)) - 2.5 [where V(p(DF)) is V(p) derived by the dual-frequency method and V(p(Sal)) is V(p) derived by hypertonic saline bolus injection], r(2) = 0.95, standard error of the estimate = 1.1 microl, and mean difference = 0.6 +/- 1.4 microl. Varying V(p(Sal)) in a given animal resulted in parallel changes in V(p(DF)) (multiple regression r(2) = 0.92, P < 0.00001). The dominant source of V(p) in mice was found to be the left ventricular wall itself, since surrounding the heart in the chest with physiological saline or markedly varying right ventricular volumes had a minimal effect on the left ventricular volume signal. On the basis of V(p) and flow probe-derived cardiac output, end-diastolic volume and ejection fraction in normal mice were 28 +/- 3 microl and 81 +/- 6%, respectively, at a heart rate of 622 +/- 28 min(-1). Thus the dual-frequency method and independent flow signal can be used to provide absolute volumes in mice.  相似文献   

20.
Pressure overload cardiac hypertrophy may be a compensatory mechanism to normalize systolic wall stress and preserve left ventricular (LV) function. To test this concept, we developed a novel in vivo method to measure myocardial stress (sigma)-strain (epsilon) relations in normal and hypertrophied mice. LV volume was measured using two pairs of miniature omnidirectional piezoelectric crystals implanted orthogonally in the endocardium and one crystal placed on the anterior free wall to measure instantaneous wall thickness. Highly linear sigma-epsilon relations were obtained in control (n = 7) and hypertrophied mice produced by 7 days of transverse aortic constriction (TAC; n = 13). Administration of dobutamine in control mice significantly increased the load-independent measure of LV contractility, systolic myocardial stiffness. In TAC mice, systolic myocardial stiffness was significantly greater than in control mice (3,156 +/- 1,433 vs. 1,435 +/- 467 g/cm(2), P < 0.01), indicating enhanced myocardial contractility with pressure overload. However, despite the increased systolic performance, both active (time constant of LV pressure decay) and passive (diastolic myocardial stiffness constant) diastolic properties were markedly abnormal in TAC mice compared with control mice. These data suggest that the development of cardiac hypertrophy is associated with a heightened contractile state, perhaps as an early compensatory response to pressure overload.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号