首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Hua A  Yang D  Wu S  Xue F 《Journal of insect physiology》2005,51(11):1261-1267
In the zygaenid moth, Pseudopidorus fasciata, both larval diapause induction and termination are under photoperiodic control. In this study, we investigated whether photoperiodic time measurement (with a 24-h light-dark cycle) in this moth is qualitative or quantitative. Photoperiodic response curves, at 22, 25, and 28 degrees C indicated that the incidence of diapause depended on whether the scotophases exceeded the critical night length (CNL) or not. All scotophases longer than the CNL-induced diapause; all scotophases shorter than the CNL-inhibited diapause. The CNL was 10.5h at 25 and 28 degrees C, and 10h at 22 degrees C. By transferring from various short photoperiods (LD 8:16, LD 9:15, LD 10:14, LD 11:13, LD 12:12, and LD 13:11) to a long photoperiod (LD 16:8) at different times, the number of light-dark cycles required for 50% diapause induction at 25 degrees C was 7.14 at LD 8:16, 7.2 at LD 9:15, 7.19 at LD 10:14, 7.16 at LD 11:13, and 7.13 at LD 12:12, without showing a significant difference between the treatments. Only at LD 13:11 (near the CNL), the number of light-dark cycles was significantly increased to 7.64. The intensity of diapause induced under different short photoperiods (LD 8:16, LD 9:15, LD 10:14, LD 11:13, and LD 12:12) at 25 degrees C was not significantly different with an average diapause duration of 36 days. The duration of diapause induced under LD 13:11 was significantly reduced to 32 days. All results indicate that the night-lengths are measured as either "long" or "short" compared with some critical value and suggest that photoperiodic time measurement for diapause induction in this moth is based on a qualitative principle.  相似文献   

2.
In the cabbage butterfly, Pieris melete, summer and winter diapause are induced principally by long and short daylengths, respectively; the intermediate daylengths (12-13 h) permit pupae to develop without diapause. In this study, photoperiodic control of summer and winter diapause was systematically investigated in this butterfly by examining the photoperiodic response, the number of days required to induce 50% summer and winter diapause and the duration of diapausing pupae induced under different photoperiods. Photoperiodic response curves at 18 and 20 degrees C showed that all pupae entered winter diapause at short daylengths (8-11 h), the incidence of diapause dropped to 82.3-85.5% at 22 degrees C without showing a significant difference between short daylengths, whereas the incidence of summer diapause induced by different long daylengths (14-18 h) was varied and was obviously affected by temperature. By transferring from various short daylengths (LD 8:16, LD 9:15, LD 10:14 and LD 11:13) to an intermediate daylength (LD 12.5:11.5) at different times after hatching, the number of cycles required to induce 50% winter diapause (7.28 at LD 8:16, 7.16 at LD 9:15, 7.60 at LD 10:14 and 6.94 at LD 11:13) showed no significant difference, whereas by transferring from various long daylengths (LD 14:10, LD 15:9, LD 16:8 and LD 17:7) to an intermediate daylength (LD 12.5:11.5) at different times, the number of cycles required to induce 50% summer diapause (5.95 at LD 14:10, 8.02 at LD 15:9, 6.80 at LD 16:8, 7.64 at LD 17:7) were significantly different. The intensity of winter diapause induced under different short daylengths (LD 8:16, LD 9:15, LD 10:14 and LD 11:13) was not significantly different with an average diapause duration of 87 days at a constant temperature of 20 degrees C and 92 days at a mean daily temperature of 19.0 degrees C, whereas the intensity of summer diapause induced under different long daylengths (LD 14:10, LD 15:9, LD 16:8 and LD 17:7) was significantly different (the diapause duration ranged from 75 to 86 days at a constant temperature of 20 degrees C and from 76 to 88 days at a mean daily temperature of 19.0 degrees C). All results suggested that photoperiodic control of diapause induction and termination is significantly different between aestivation and hibernation.  相似文献   

3.
Photoperiodic responses to both constant and changing photoperiods were studied in the Mediterranean tiger moth Cymbalophora pudica. Embryos, larval instars and prepupae were all sensitive to photoperiod, and the responses of larvae and prepupae to changing photoperiods were similar. At 23+/-2 degrees C, constant 24-h photoperiods with short photophases (11, 12h) induced a long diapause (mean 88days) whereas long photophases (14, 16h) induced a short diapause (mean 52days). A change to a longer or shorter photophase during larval development or during diapause caused a significant extension (up to a maximum of 138days) or shortening (down to a minimum of 10days) of diapause, respectively, but only when at least one of the photophases was longer than 14h. Thus, shortening and prolongation of photophase had an opposite effect than constant short and long photophases, respectively. Changes within the range of photophases of 10-14h did not cause a significant change in diapause duration.Experimental results enabled us to outline the mechanisms regulating voltinism and the duration of summer diapause. For the monovoltine cycle, cold autumn/winter temperatures slow down larval development, and prepupal aestivation starts relatively late (March, April). Prepupae are then kept in diapause by the increasing daylength (>14h after late April). Pupation is synchronized by decreasing daylength after summer solstice, and imagoes emerge in September/October. For the bivoltine cycle, when the autumn/winter temperatures are relatively warm, a certain portion of the population (depending on the individual rate of growth) may be diverted to a bivoltine life-cycle. In such a case, larval development is fast and short enough to allow an early start of diapause (prior to or during February). The duration of such early diapause is not influenced by changes in daylength (<14h); pupation occurs very early (April/May), and spring generation imagoes fly and oviposit in May/June. Summer larvae and prepupae live under decreasing daylength (>14h), which shortens their diapause to 20-30days. Imagoes of the autumnal generation thus occur in September/October, together with the univoltine portion of the population.  相似文献   

4.
Induction of larval diapause is a photoperiodically controlled event in the life history of the moth Pseudopidorus fasciata. In the present study, the photoperiodic counter of diapause induction has been systematically investigated. The required day number (RDN) for a 50% response was determined by transferring from a short night (LD 16:8) to a long night (LD 12:12) or vice versa at different times after hatching, The RND differed significantly between short- and long-night cycles at different temperatures. The RDN for long-night cycles at 20, 22, 25 and 28 degrees C was 11.5, 9.5, 7.5 and 8.5 days, respectively. The RDN for short-night cycles was 3 days at 22 degrees C and 5 days at 20 degrees C indicating that the effect of one short night was equivalent to the effect of 2-3 long nights effect. Night-interruption experiments of 24h photoperiods by a 1 h light pulse showed that the most crucial event for the photoperiodic time measurement in this moth was whether the length of pre-interruption (D(1)) or the post-interruption (D(2)) scotophases exceeded the critical night length (10.5 h). If D(1) or D(2) exceeded 10.5 h diapause was induced. The diapause-averting effect of a single short-night cycle (LD 16:8) against a background of long nights (LD 12:12) showed that the photoperiodic sensitivity was greatest during the first 7 days of the larval period and the highest sensitivity was on the fourth day. Both non-24 and 24 h light-dark cycle experiments revealed that the photoperiodic counter in P. fasciata is able to accumulate both long and short nights during the photosensitive period, but in different ways. The information from short-night cycles seems to be accumulated one by one in contrast to long-night cycles where six successive cycles were necessary for about 50% diapause induction and eight cycles for about 90% diapause. These results suggest the accumulation of long-night and short-night cycles may be based on different mechanisms.  相似文献   

5.
Abstract Sericinus montelus overwinters as diapausing pupae. In the present study, the effects of photoperiod and temperature on diapause induction and termination of diapause are investigated. The results obtained demonstrate that high temperature can reverse the effect of short day‐lengths on diapause induction. Under an LD 12 : 12 h photoperiod, all pupae enter diapause at 15, 20 and 25 °C, whereas all pupae develop without diapause at 35 °C. No pupae enter diapause under an LD 14 : 10 h photoperiod when the temperature is above 20 °C. Photoperiodic response curves obtained at 25 and 30 °C indicate that S. montelus is a long‐day species and the critical day‐length is approximately 13 h at 25 °C. At 25 °C, the duration of diapause is shortest when the diapausing pupae are maintained under an LD 16 : 8 h photoperiod and increases under LD 14 : 10 h and LD 12 : 12 h photoperiods. Under an LD 16 : 8 h photoperiod, the duration of diapause is shortest when the diapausing pupae are maintained at 25 °C, followed by 20 and 30 °C, and then at 15 °C. These results suggest that a moderate temperature favours diapause development under a diapause‐averting photoperiod in this species. The duration of diapause induced by an LD 12 : 12 h photoperiod is significantly longer at 25 °C than those at 15, 20 and 30 °C, and is shortest at 15 °C. At 25 °C, the duration of diapause induced by LD 6 : 18, LD 12 : 12 and LD 13 : 11 h photoperiods is similar and longer than 90 days. Thus, the diapause‐inducing conditions may affect diapause intensity and a photoperiod close to the critical day‐length has significant influence on diapause intensity in S. montelus.  相似文献   

6.
To study the question whether photoperiodic time measurement in the spider mite Tetranychus urticae is based on a qualitative or quantitative principle, the duration of diapause development was determined in individual females at various constant photoperiods at 19 degrees C. Diapause duration at all four long-night treatments fluctuated around 64.5 days, varying from 62.2 at LD 12:12h to 66.4 at LD 10:14h. The within-treatment variation in diapause duration of the long-night groups appeared to be significantly correlated to the nightlength of the photoperiods used; the longer the nightlength, the higher the within-treatment variation. Frequency distributions of females completing diapause under the two regimes with nightlengths near the critical nightlength were skewed to the right. Mean diapause durations at these regimes, LD 13:11h and LD 14:10h, were 25.4 and 11.9 days, respectively. Mites completed diapause rapidly and synchronously under the three short-night photoperiods tested; within two weeks after transfer from cold storage at 4 degrees C to the diapause terminating regimes at 19 degrees C all females started reproduction. Mean diapause durations were 8.1, 6.4 and 6.5 days for the short-night treatments LD 15:9h, LD 17:7h and LD 19:5h, respectively. The coefficients of variation of diapause duration (variability within groups relative to the mean) of the short-night and the long-night groups varied from 18 to 42%; the coefficients of the two intermediate groups were 69and 81%. There was a clear difference in diapause duration between long-night and short-night groups, but no significant difference was present in this characteristic between different long-night groups on the one hand and only a small difference between different short-night groups on the other. These results support the hypothesis that photoperiodic time measurement in the spider mite is based on a qualitative principle; photoperiods are classified as either 'long' or 'short' in relation to a 'critical' photoperiod. However, around the critical nightlength, intermediate responses were observed which might hint at the quantitative nature of the underlying mechanism. Therefore, although most results are in agreement with the hypothesis of a qualitative mechanism, it cannot be excluded that photoperiodic time measurement in the spider mite is based on a quantitative principle.  相似文献   

7.
Diapausing larvae of Ephestia elutella reared at 20°C in short photoperiods (LD 11:13), and then maintained 12 weeks or longer at 5–15°C before transfer to 20 or 25°C, pupated sooner than unchilled controls. At 25°C, all samples kept in long photoperiods (LD 15:9) survived better and pupated faster than similarly treated samples held in short photoperiods (LD 9:15). Samples kept at 20°C after chilling pupated much slower than those at 25°C, and, except after exposure at 5°C, pupated at similar rates at LD 11:13 or 15:9, although mortality was higher at the shorter photoperiod. After exposure at 5°C, larvae required increased day-length as well as increased temperature to hasten pupation whereas after exposure at 10°C most responded to increased temperature only.For samples maintained in slightly heated or unheated outbuildings, the summer emergence was poorly synchronized and males on average emerged ahead of females. Samples moved from the unheated outbuilding to 25°C and long days in the laboratory in early spring, however, pupated quickly and males and females emerged together. A late phase of diapause development thus exists requiring both high temperature and long photoperiods to ensure a prompt resumption of morphogenesis. Spring temperatures in the United Kingdom are seldom high enough to synchronize the completion of diapause.  相似文献   

8.
Abstract. The intensity of larval diapause in Sesamia nonagrioides Lef (Lepidoptera: Noctuidae) was investigated under laboratory conditions. Newly hatched larvae were exposed to different stationary photoperiods (from LD 7 : 17 h to LD 14 : 10 h), at a constant temperature of 25 °C. Diapause incidence was higher when larvae were exposed to daylengths shorter than the critical value (LD 12 : 12 h), whereas the within‐treatment variation in the larval period appeared to be significantly correlated with the photoperiod applied. The incidences of diapause and the duration of larval development were also measured after exposing larvae to short photoperiods (LD 8 : 16 h, LD 10 : 14 h or LD 12 : 12 h) in combination with various temperatures (20, 22.5 or 25 °C). Although an increase in the incidence of diapause appeared with the lowering of the temperature, no statistical differences were observed in the time needed for pupation within the photoperiodic treatments at the temperatures of 20 and 22.5 °C. Furthermore, when diapausing larvae were transferred to the long photoperiod of LD 16 : 8 h, they immediately proceeded to pupation, regardless of the photoperiod or the temperature to which they had been previously exposed, indicating that there were no differences in the intensity of diapause. Photoperiodic changes from LD 10 : 14 h to LD 12 : 12 h or to LD 14 : 10 h at different larval ages reduced the intensity of diapause with (a) early age of transfer and (b) increase of daylength. By contrast, when larvae were transferred from the long photoperiod of LD 14 : 10 h to shorter, such as LD 10 : 14 h or LD 12 : 12 h, a small increase in the intensity of diapause with the shortening of the daylength was apparent. These results support the hypothesis that insects may compare the duration of the photoperiod and could classify them as either longer or shorter in relation to the critical value.  相似文献   

9.
The effect of daylength and temperature on the regulation of the larval diapause of a central Missouri population of the sunflower moth, Homoeosoma electellum, was examined. Fully grown fourth-instar larvae exhibit a facultative diapause. Measurements of the effect of photoperiod on diapause induction revealed critical photoperiods of about 13 h 30 min light/day at 20°C, and between 11 h 45 min and 12 h light/day at 23°C. Third and fourth-instar larvae were shown to be the main sensitive stages for diapause determination. Daylength was also shown to be an important regulator of the rate of diapause development. A short day of LD 10:14 h permitted only a low rate of diapause development, whereas long days of LD 14:10 h and LD 16:8 h accelerated diapause development at 25 and 30°C. When long days were alternated with short days at 30°C the accelerating effect of long days on diapause development was not found. Systematic transfers of chilled diapausing larvae revealed an accelerated diapause development in groups transferred from 10 to 30°C LD 10:14 h, but diapause development was not accelerated in groups transferred from 10 to 30°C LD 16:8 h.  相似文献   

10.
Helicoverpa armigera (Hübner) exhibits a facultative pupal diapause, which depends on temperature and photoperiod. Pupal diapause is induced at 20 degrees C by short photoperiods and inhibited by long photoperiods during the larval stage. However, in some pupae (35% of males and 57% of females) of a non-selected field population from Okayama Prefecture (34.6 degrees N), diapause is not induced by short photoperiods. In the present experiment, the importance of temperature for diapause induction was studied in the non-diapausing strain, which was selected from such individuals reared at 20 degrees C under a short photoperiod of 10L:14D. Furthermore, the sensitive stage for thermal determination of pupal diapause was determined by transferring larvae of various instars and pupae between 20 degrees C and 15 degrees C. Diapause was induced by 15 degrees C without respect to photoperiod. When larvae or pupae reared from eggs at 20 degrees C under a short or a long photoperiod were transferred to 15 degrees C in the periods of the middle fifth instar to the first three days after pupation, the diapause induction rate was significantly reduced in both males and females, especially in females. In contrast, when larvae or pupae reared at 15 degrees C were transferred to 20 degrees C in the same periods, diapause was induced in males, but not in females. However, the diapause induction rate of pupae transferred to 20 degrees C on the fourth day after pupation was significantly increased in females. The results show that temperature is the major diapause cue in the photoperiod-insensitive strain and the periods of middle fifth larval instar to early pupal stage are the thermal sensitive stages for pupal diapause induction with some different responses to temperatures between males and females in H. armigera.  相似文献   

11.
Prepupae of the arctiid moth Cymbalophora pudica spend spring and summer months in a summer diapause (aestivation), the duration of which is photoperiodically controlled. Cold hardiness, drought tolerance and some physiological and biochemical parameters were measured in aestivating prepupae. Large amounts of metabolic reserves, in the form of lipids and glycogen, accumulated prior to aestivation. Glycogen served as the main metabolic fuel for aestivating prepupae. Metabolic rate decreased rapidly after the onset of the inactive prepupal stage and remained low (5-15% of the level in active larva) during aestivation. A spontaneous increase of the respiration rate occurred before pupation. Neither low mol. wt sugars or alcohols (polyols) accumulated nor the haemolymph osmotic pressure changed during aestivation. Drought tolerance of aestivating prepupae was high (no decrease in survival after exposure to r.h.<10% at a temperature of 23 degrees C for a substantial part of diapause) owing to their extensive capacity to stabilize the relative body water content irrespective of the r.h. of surrounding air. Cold hardiness was low (>90% decrease in survival after exposure to -7 degrees C for 24h). Cold and drought acclimations did not lead to significant changes in the measured physiological and biochemical parameters but cold (not drought) acclimation caused a significant increase in cold hardiness. Neither drought tolerance nor the increase in cold hardiness after cold acclimation appear to be related to presence/accumulation of polyols in aestivating C. pudica prepupae.  相似文献   

12.
A study was made of photoperiodic induction of the facultative pupal diapause in the tobacco hornworm, Manduca sexta, reared on artificial diet in the laboratory. The species entered a prolonged diapause when the egg and larval feeding stages were reared in daily photoperiods of 13·5 hr or less. Diapause was induced in all insects at photoperiods ranging from 1 to 13 hr, and part of the population entered diapause at only 15 to 30 min of light per day. Photoperiods of 14 hr or more and continous darkness prevented diapause. Duration of diapause varied with the inductive photoperiod in which the hornworms were reared during the sensitive period. Insects reared in longer diapause-inducing photoperiods within a range of 12 to 13·25 hr remained in diapause longer than those reared in shorter photoperiods. There was no difference in the rate of larval development of hornworms reared in diapause-inducing vs diapause-preventing photoperiods. Temperatures of 26 to 30°C were most favourable for the photoperiodic induction of diapause; at 21°C, the critical photoperiod and incidence of diapause were decreased. Diapause induction was suppressed by low (18°C) and higher (33°C) temperatures. The number of inductive 12L:12D (light = 12 hr; dark = 12 hr) cycles required to induce diapause ranged from as few as 5 for some insects to as many as 12 for others when the post-inductive régimen was continuous light, but with insects previously held in continuous dark, as few as 2 12L:12D cycles during the last 2 days of larval feeding induced diapause in 38 per cent of the population. Only 3 to 4 cycles of 15L:9D during the final larval instar reversed inductive effects of 14 to 15 12L:12D cycles. Photoperiodic sensitivity extended from the late embryo to the end of larval feeding but showed considerable fluctuation during development with maximum sensitivity occurring just before egg hatch and during larval growth.Light breaks applied at different times during the dark period of 12L:12D cycles generated different response curves, depending on the number of cycles in which light breaks were repeated. When repeated for 6 cycles, a unimodal response curve was obtained; 10 cycles produced a bimodal curve and light breaks given for 18 cycles throughout the sensitive period averted diapause regardless of time of night applied. It is suggested that diapause is regulated by a photo- and thermolabile substance that accumulates during long nights (11 hr or more) and acts during the early pupal stage to inhibit the translocation and release of development-promoting neurosecretion from the brain.  相似文献   

13.
Abstract. The effect of photoperiod and temperature on the duration of the nymphal period, diapause induction and colour change in adults of Nezara viridula (L.) (Heteroptera: Pentatomidae) from Japan was studied in the laboratory. At 20 °C, the developmental period for nymphs was significantly shorter under LD 10 : 14 h (short day) and LD 16 : 8 h (long day) than under intermediate photoperiods, whereas at 25 °C it was slightly shorter under intermediate than short- and long-day conditions. It is assumed that photoperiod-mediated acceleration of nymphal growth takes place in autumn when day-length is short and it is unlikely that nymphal development is affected by day-length under summer long-day and hot conditions. Nezara viridula has an adult diapause controlled by a long-day photoperiodic response. At 20 °C and 25 °C in both sexes, photoperiodic responses were similar and had thresholds close to 12.5 h, thus suggesting that the response is thermostable within this range of temperatures and day-length plays a leading role in diapause induction. Precopulation and preoviposition periods were significantly longer under near-critical regimes than under long-day ones. Short-day and near-critical photoperiods induced a gradual change of adult colour from green to brown/russet. The rate of colour change was significantly higher under LD 10 : 14 h than under LD 13 : 11 h, suggesting that the colour change is strongly associated with diapause induction. The incidences of diapause or dark colour did not vary among genetically determined colour morphs, indicating that these morphs have a similar tendency to enter diapause and change colour in response to short-day conditions.  相似文献   

14.
条纹小斑蛾的生物学特性   总被引:1,自引:0,他引:1  
何海敏  黄芳  杨东  薛芳森 《昆虫知识》2009,46(3):411-414
条纹小斑蛾Thyrassia penangae(Moor)是乌蔹莓(Japanese cayratia)的重要害虫,在南昌1年发生4~5代,以老熟幼虫结茧越冬。由于该虫各世代总有极少部分个体进入滞育,少数进入越夏的个体1年只发生2代或3代。羽化时间多出现在上午7~10时,羽化后当日或次日下午交配,交配时间集中在下午3~6时,交配一般可持续12个h左右。成虫羽化后需取食花蜜做补充营养才能充分产卵。产配后次日即可产卵。第1代成虫常将卵数十粒聚产于幼嫩叶片的背面,以后各代主要聚产于花蕾上,平均每雌产卵量为43粒。幼虫为4龄。第1代主要取食叶芽、幼枝及嫩叶,以后各代主要取食花蕾。在自然条件下各虫态发育历期:卵为4~7d;幼虫为10~14d;非滞育的茧期(指幼虫结茧后的预蛹至成虫羽化的日期)为8~11d,越夏茧期为32~40d,越冬茧期为205~224d。成虫寿命为3~13d。  相似文献   

15.
Wei X  Xue F  Li A 《Journal of insect physiology》2001,47(12):1367-1375
Pseudopidorus fasciata enters diapause as fourth instar larvae at short day lengths. Using 24-h light-dark cycles, the photoperiodic response curves in this species appeared to be similar with a critical night length of 10.5h at temperatures below 30 degrees C. At an average temperature of 30.5 degrees C, the critical night length had shifted to between 15 and 17h. In experiments using non-24-h light-dark cycles, it was clearly demonstrated that the dark period (scotophase) was the decisive phase for a diapause determination. In night interruption experiments using 24-h light-dark cycles, a 1-h light pulse at LD12:12 completely reversed the long night effect and averted diapause in all treatments. At LD 9:15 light pulses of 1-h, 30- or 15-min also averted diapause effectively when both the pre-interruption (D(1)) or the post-interruption scotophases (D(2)) did not exceed the critical night length. If D(1) or D(2) exceeded the critical night length diapause was induced. The most crucial event for the photoperiodic time measurement in this species is the length of the scotophase. A 10-min light pulse placed in the most photosensitive phase reversed diapause in over 50% of the individuals. Night interruption experiments under non-24-h light-dark cycles indicated that the photoperiodic clock measured only D(1) regardless of the length of D(2), suggesting that the most inductive cycles are often those in which L+D are close to 24h. In resonance experiments, this species showed a circadian periodicity at temperatures of 24.5 or 26 degrees C, but not at 30.5 and 23.3 degrees C. On the other hand, Bünsow and skeleton photoperiod experiments failed to reveal the involvement of a circadian system in this photoperiodic clock. These results suggest the photoperiodic clock in this species is a long-night measuring hourglass and the circadian effect found in the final expression of the photoperiodic response in the resonance experiments may be caused by a disturbing effect of the circadian system in unnatural regimes.  相似文献   

16.
ABSTRACT. Geographic variation and genetic aspect of reproductive diapause were studied in Drosophila triauraria Bock & Wheeler and D. quadraria Bock & Wheeler, in relation to their quantitative response to photoperiods. D. quadraria from the subtropical region had no photoperiodic diapause. In D. triauraria strains, diapause was induced under LD 10:14 or 12:12, but not under LD 14:10 or longer photoperiods. Their diapause was induced more effectively and maintained longer by LD 10:14 than by LD 12:12. The duration of diapause was longer in a northern strain, but the diapause inducing process varied little among different geographical strains. Diapause incidence was 50% or lower in F1 hybrids between D. triauraria and D. quadraria and backcross progenies between F1 and D. quadraria , and about 70% in backcross progenies between F1 and D. triauraria under LD 10:14, but very low under LD 12:12. The lower incidence of diapause in these F; and backcross progenies is assumed to be due to the less efficient induction of diapause, since once diapause was induced in them, it was maintained for a long time, especially in the backcross progenies between F1 and D. triauraria. These experiments suggest that diapause induction and maintenance are different physiological processes controlled by different genetic systems.  相似文献   

17.
18.
A photoperiodically-controlled diapause of the long-day, short-day type was identified in a brown-winged, yellow-eyed strain of Ephestia cautella (Walker). The proportion of larvae diapausing in very long photoperiods was less than in short photoperiods. The mean critical photoperiod, here defined as that photoperiod giving half the maximum percentage of insects that diapause in response to photoperiod at a given temperature, was between 12 and 13 hr for the long-day reaction at both 20 and 25°C. The principal sensitive phase occurred near the time of the last larval moult. The mean duration of diapause was 2–3 months at 20°C and slightly longer at 25°C. The optimum temperature for diapause development was near 15°C, all larvae pupating within 24 days after a 45-day exposure at this temperature. Diapause could be terminated whenever larvae diapausing at 20°C were exposed to as few as five long (15 hr) photoperiods at 25°C. Long photoperiods at 20°C, or short photoperiods (9 hr) at 25°C were less effective in terminating diapause.  相似文献   

19.
Abstract.  The effects of day length on adult diapause development, associated with diapause body colour change as well as postdiapause reproduction are studied in Nezara viridula from Japan. Facultative diapause spontaneously terminates under three constant short-day and near-critical photoperiods at 25 °C without low temperature treatment. The period required for body colour change from russet to green and the precopulation and preoviposition periods differ significantly between the photoperiodic treatments, being shortest under LD 13 : 11 h, intermediate under LD 12 : 12 h and longest under LD 10 : 14 h. Photoperiodic conditions do not affect postdiapause reproductive performance: the total egg production, duration of the period of oviposition and other reproductive indices do not differ significantly between the photoperiodic conditions. The total egg production depends on the duration of the period of oviposition but not on how long females remained russet during diapause. It is concluded that diapause in N. viridula does not require low temperature for its successful completion and diapause duration affects winter survival but not postdiapause reproductive performance or longevity. Such independence of the postdiapause reproductive performance from the duration of diapause may have contributed to the continuous worldwide range expansion of this species into temperate zone.  相似文献   

20.
Grapholita molesta (Busck) is one of the major pests of Rosaceae, causing significant damage to buds and fruits. In Southern Brazil, its population density is reduced during Rosaceae dormancy months. The present study evaluated the influence of different photoperiods (L:D) (10:14, 11:13, 12:12, 13:11, 14:10 and 16:8) at 25 ± 1oC and 60 ± 10% RH on diapause induction of G. molesta eggs, larvae, prepupae, and pupae. The effects of the photoperiod on the life cycle of non-diapausing insects and on the second generation were also assessed. Prepupal diapause was observed only when eggs and neonates (≤ 12h-old larvae) were exposed to photophases from 10h to 14h long. Development of non-diapausing individuals and those from the second generation tended to be longer in photophases between 10h and 14h long.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号