首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Procedures for isolating nucleoprotein complexes containing replicating polyoma DNA from infected mouse cells were used to prepare short-lived nucleoprotein complexes (r-SV40 complexes) containing replicating simian virus 40 (SV40) DNA from infected monkey cells. Like the polyoma complexes, r-SV40 complexes were only partially released from nuclei by cell lysis but could be extracted from nuclei by prolonged treatment with solutions containing Triton X-100. r-SV40 complexes sedimented faster than complexes containing SV40 supercoiled DNA (SV40 complex) in sucrose gradients, and both types of SV40 nucleoprotein complexes sedimented ahead of polyoma complexes containing supercoiled polyoma DNA (py complex). The sedimentation rates of py complex and SV40 complex were 56 and 61S, respectively, based on the sedimentation rate of the mouse large ribosomal subunit as a marker. r-SV40 complexes sedimented as multiple peaks between 56 and 75S. Sedimentation and buoyant density measurements indicated that protein is bound to all forms of SV40 DNA at about the same ratio of protein to DNA (1-2/1) as was reported for polyoma nucleoproteins.  相似文献   

2.
Under normal growth conditions, all of the newly synthesized polyoma deoxyribonucleic acid (py DNA) that could be extracted from infected mouse cell cultures by the Triton procedure of Green, Miller, and Hendler was in the form of a 55S nucleoprotein complex. Inhibition of protein synthesis by cycloheximide reduced the sedimentation rate of the polyoma complex synthesized during the first hour after addition of the drug to 25 to 35S. Since the 55S and the 25 to 35S complexes each contain closed circular 20S py DNA, it is suggested that the slower complex contains less protein per DNA molecule and that there is normally a small or unstable pool of protein available for binding to newly replicated py DNA. In the presence of cycloheximide, the newly formed 25 to 35S complex was not derived from preexisting 55S complex. Thus, some py DNA which was not solubilized by the Triton method served as a template for replication. Further evidence for the existence of polyoma replication sites is provided by the demonstration that, during the inhibition of protein synthesis, a class of newly replicated py DNA can be solubilized by the sodium dodecyl sulfate procedure of Hirt, but not by the Triton method. It is postulated that continuous protein synthesis is required to release py DNA from replication sites in the form of a Triton-extractable nucleoprotein complex.  相似文献   

3.
P Clertant  P Gaudray    F Cuzin 《The EMBO journal》1984,3(2):303-307
Nucleoprotein complexes extracted from the nuclei of mouse cells lytically infected with polyoma virus contain an ATPase activity which appears to correspond to that of the viral large T protein, as it exhibits the same characteristic properties; in particular, the activity is extensively inhibited by polyclonal antibodies from animals bearing polyoma tumors (anti-T antigen antibodies) and by monoclonal antibodies against large T. Significant amounts of DNA were immunoprecipitated by adding these antibodies to the nucleoprotein complex, suggesting that the protein is tightly bound to DNA in the viral chromatin. Since one of the monoclonal antibodies quantitatively immunoprecipitated the pulse-labeled replicative intermediates, we conclude that some large T protein remains physically associated with the DNA throughout its replication cycle. After exposure to salt concentrations higher than 1 M KCl, about half of the large T-specific ATPase activity was still observed to co-sediment with 21S form I viral DNA. The observations that the sedimentation coefficient of the salt-stable complexes was shifted to 16S after a limited endonucleolytic digestion, and that both the viral DNA and the ATPase activity were co-precipitated in the presence of polyethylene glycol at high ionic strength, further demonstrated that the protein is engaged in an unusually stable complex with DNA in the viral chromatin.  相似文献   

4.
Simian virus 40 (SV40) nucleoprotein complexes were extracted from nuclei of infected monkey cells and fractionated on neutral sucrose density gradients. Complexes which contained replicating SV40 DNA (95S) separated well from those containing closed circular supercoiled viral DNA (75S). DNA polymerase activity was associated with the replicating nucleoprotein complexes but not with the slower sedimenting complexes. This DNA polymerase activity coprecipitated with the nucleoprotein complexes in the presence of MgCl2 and remained associated with the 95S complexes. This DNA polymerase activity has been identified as primarily DNA polymerase alpha on the basis of its sedimentation behavior, optimum salt concentration, and sensitivity to N-ethylmaleimide. DNA polymerase gamma activity was also detected in the complexes, but DNA polymerase beta was not associated with the complexes.  相似文献   

5.
Intracellular nucleoprotein complexes containing SV40 supercoiled DNA were purified from cell lysates by chromatography on hydroxyapatite columns followed by velocity sedimentation through sucrose gradients. The major protein components from purified complexes were identified as histone-like proteins. When analyzed by electrophoresis in sodium dodecyl sulfate-polyacrylamide gels, complex proteins comigrated with viral core polypeptides VP4, VP5, VP6, and VP7. (3H) tryptophan was not detected in polypeptides from intracellular complexes or in the histone components from purified SV40 virus. However, a large amount of (3H) tryptophan was found in the viral polypeptide VP3 relative to that incorporated into the capsid polypeptides VP1 and VP2. Intracellular complexes contain 30 to 40% more protein than viral cores prepared by alkali dissociation of intact virus, but when complexes were exposed to the same alkaline conditions, protein also was removed from complexes and they subsequently co-sedimented with and had the same buoyant density as viral cores. The composition and physical similarities of nucleoprotein complex and viral cores indicate that complexes may have a role in the assembly of virions.  相似文献   

6.
Polyoma virus transcription in vitro.   总被引:5,自引:0,他引:5  
  相似文献   

7.
Complexes of OsO4 with 2,2'-bipyridine (Os,2,2'-bipy),4,4'-bipyridine (Os,4,4'-bipy), 1,10-phenanthroline (Os,phe), bathophenanthroline disulfonic acid (Os,bpds) and OsO4, pyridine reagent (Os,py) were used to probe structural distortions at the junctions between right-handed B and left-handed Z DNA in supercoiled plasmids pRW751 and pPK1 (both containing (dC-dG)13 and (dC-dG)16 segments). With all five complexes the site-specific modification at the B-Z junctions was detected in vitro but only Os,2,2'-bipy and Os,bpds produced strong site specific modification at submillimolar concentrations. In addition to the B-Z junctions. Os,phe also reacted at other sites. With the exception of Os,2,2'-bipy no one of the tested OsO4 complexes has proved to be suitable for probing structural distortions at the B-Z junctions in E. coli cells.  相似文献   

8.
9.
Nucleoprotein complexes containing viral DNA and cellular histones were extracted from nuclei of permissive cells infected with polyoma virus or simian virus 40 (SV40) and examined by electron microscopy. Polyoma and SV40 nucleoprotein complexes are almost identical. They appear as relaxed circular molecules consisting of 20 to 21 globular particles interconnected by thin filaments. Their contour length in 0.02 M salt is 2.7 times shorter than that of viral DNA form I obtained after dissociation of the proteins in 1 M NaCl. The nucleosomes have an average diameter of 12.5 nm. Each nucleosome contains 175 to 205 DNA base pairs condensed fivefold in length. The nucleosomes are regularly spaced on the circular molecule. The internucleosomal filaments are made of naked DNA, and each filament contains about 55 base pairs. The partial sensitivity of the nucleoprotein complex to cleavage by EcoR1 endonuclease suggests that the nucleosomes are not formed at specific sites on the viral genome. Faster sedimenting nucleoprotein complexes containing replicative intermediates were studied. Isopycnic centrifugation in metrizamide gradients in the absence of aldehyde fixation showed that these molecules conserved the same DNA-to-protein ratio as the form I DNA-containing complexes.  相似文献   

10.
A study was undertaken to examine polyoma DNA-protein complexes. A biophysical characterization of the complexes was made, and the proteins found in such complexes were identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A comparison was made between a 52S nucleoprotein complex isolated from nuclei of 26-h polyoma-infected cells and a 28S virion core complex ejected out of mature virus particles. It was found that both complexes were reduced to a 20S viral DNA component plus free protein after incubation in 1 M NaCl or Sarkosyl. Treatment of the complexes with either Pronase or 0.5 M NaCl resulted in only partial removal of proteins from the viral DNA. After fixation in formaldehyde, the 52S nucleoprotein complex had a buoyant density of 1.45 g/cm3, and the virion core complex had a buoyant density of 1.59 g/cm3. Sodium dodecyl sulfate-polyacrylamide gel profiles of purified polyoma virion proteins, used as a reference marker, demonstrated three capsid proteins, V1 to V3, as well as four histones, V4 to V7, which constituted about 7% of the total virion protein. Electrophoretic analysis of the proteins comprising the 52S nucleoprotein complex revealed that the same seven proteins present in the mature virion were also found in this complex. However, the ratios of the proteins in the complex were quite different from that of the mature virion, with the four histones comprising 48% of the total complex protein. A pulse-chase experiment of the nucleoprotein complex demonstrated that the 26-h complex was chased into mature virions.  相似文献   

11.
Polyoma viral DNA is shown to be replicated in close association with the mouse cell chromatin. Two virus-specific nucleoprotein complexes, designated complex A and B, can be dissociated from the isolated chromatin by gentle homogenization in 0.5 M NaCl. Complex A contains only replicating polyoma (Py) DNA whereas complex B contains only mature Py DNA I. The results show, furthermore, that complex A, containing viral DNA in different stages of replication, and complex B are both nucleoproteins with the same buoyant density. The data presently available suggest that newly synthesized stretches of Py DNA are immediately complexed with mouse cell histones and that complex B becomes the "core" of progeny Py virions. These results suggested that Py-induced replication of the mouse cell chromatin may be necessary to provide replicating Py DNA with histones.  相似文献   

12.
The interaction of polyoma virus with a continuous line of rat cells was studied. Infection of these cells with polyoma did not cause virus multiplication but induced transformation. Transformed cells did not produce infectious virus, but in all clones tested virus was rescuable upon fusion with permissive mouse cells. Transformed rat cells contained, in addition to integrated viral genomes, 20 to 50 copies of nonintegrated viral DNA equivalents per cell (average). "Free" viral DNA molecules were also found in cells transformed by the ts-a and ts-8 polyoma mutants and kept at 33 C. This was not due to a virus carrier state, since the number of nonintegrated viral DNA molecules was found to be unchanged when cells were grown in the presence of antipolyoma serum. Recloning of the transformed cell lines produced subclones, which also contained free viral DNA. Most of these molecules were supercoiled and were found in the muclei of the transformed cells. The nonintegrated viral DNA is infectious. Its specifici infectivity is, however, about 100-fold lower than that of polyoma DNA extracted from productively infected cells, suggesting that these molecules contain a large proportion of defectives.  相似文献   

13.
Nucleoprotein complexes containing both form 1 and replicative intermediates of polyoma DNA prepared from nuclei of virus-infected mouse fibroblasts retain a limited ability to elongate progeny strands of the replicative intermediates. Compared to isolated nuclei, both the rate and the extent of strand elongation is greatly decreased. The isolated complexes synthesize initiator RNA and start new Okazaki fragments, but are deficient in the joining of these fragments. Addition of small amounts of an extract from 16 hours old Drosophila embryos corrects the deficiencies. The stimulatory activity of the extract can be partially purified and has been separated into two fractions by chromatography on Sepharose 6B. With immunological techniques we demonstrate that the mouse DNA polymerase-α, tightly bound to the complexes, is responsible for DNA strand elongation.The Drosophila α-polymerase present in one of the two fractions purified on Sepharose 6B cannot substitute for the mouse enzyme. The stimulatory activity of the Drosophila fractions is thus not due to α-polymerase.  相似文献   

14.
Nucleoprotein complexes containing viral DNA and cellular histones were extracted from nuclei of permissive cells infected with polyoma virus or simian virus 40 (SV40) and examined by electron microscopy. Polyoma and SV40 nucleoprotein complexes are almost identical. They appear as relaxed circular molecules consisting of 20 to 21 globular particles interconnected by thin filaments. Their contour length in 0.02 M salt is 2.7 times shorter than that of viral DNA form I obtained after dissociation of the proteins in 1 M NaCl. The nucleosomes have an average diameter of 12.5 nm. Each nucleosome contains 175 to 205 DNA base pairs condensed fivefold in length. The nucleosomes are regularly spaced on the circular molecule. The internucleosomal filaments are made of naked DNA, and each filament contains about 55 base pairs. The partial sensitivity of the nucleoprotein complex to cleavage by EcoR1 endonuclease suggests that the nucleosomes are not formed at specific sites on the viral genome. Faster sedimenting nucleoprotein complexes containing replicative intermediates were studied. Isopycnic centrifugation in metrizamide gradients in the absence of aldehyde fixation showed that these molecules conserved the same DNA-to-protein ratio as the form I DNA-containing complexes.  相似文献   

15.
Integration of HIV-1 (human immunodeficiency virus type 1) DNA into the genome of the host cell is an essential step in the viral replication cycle that is mediated by the virally encoded integrase protein. We have used atomic force microscopy to study stable complexes formed between HIV-1 integrase and viral DNA and their interaction with host DNA. A tetramer of integrase stably bridges a pair of viral DNA ends, consistent with previous analysis by gel electrophoresis. The intasome, composed of a tetramer of integrase bridging a pair of viral DNA ends, is highly stable to high ionic strength that would strip more loosely associated integrase from internal regions of the viral DNA. We also observed tetramers of integrase associated with single viral DNA ends; time-course experiments suggest that these may be intermediates in intasome assembly. Strikingly, integrase tetramers are only observed in tight association with viral DNA ends. The self-association properties of intasomes suggest that the integrase tetramer within the intasome is different from the integrase tetramer formed at high concentration in solution in the absence of viral DNA. Finally, the integration product remains tightly bound by the integrase tetramer, but the 3′ ends of the target DNA in the complex are not restrained and are free to rotate, resulting in relaxation of initially supercoiled target DNA.  相似文献   

16.
At 100 microM 5'-S-isobutyladenosine (SIBA) inhibits polyoma virus production in infected mouse embryo fibroblasts and in mouse kidney cells, as measured by plaque formation and by haemagglutination assays. SIBA has no significant effect on the synthesis of T and V antigens as well as on viral DNA synthesized in infected cells. Analysis of virus production on CsCl gradients on CsCl gradients showed that in the presence of SIBA reduced amount of heavy viral particles is produced and that part of these particles are pseudovirions containing low density DNA instead of supercoiled viral DNA.  相似文献   

17.
Structures retaining many of the morphological features of nuclei may be released by lysing HeLa cells in solutions containing non-ionic detergents and high concentrations of salt. These nucleoids contain few chromatin proteins. We have shown that the DNA of nucleoids is quasicircular and supercoiled by measure spectrofluorometrically the amount of the intercalating dye, ethidium, bound to unirradiated and gamma-irradiated nucleoids. Ethidium binds to nucleoids in the manner characteristic of the binding to superhelical DNA: at low concentrations more ethidium binds to unirradiated nucleoids than to their gamma-irradiated counterparts with broken DNA, and at higher concentrations less ethidium binds to the unirradiated nucleoids. The quasi-circles in nucleoids are 22 times less sensitive to gamma-irradiation than are circles of pure PM2 DNA: they must contain about 2.2 X 10(5) base pairs. The constraints that maintain the quasi-circularity of nucleoid DNA are very resistant to extremes of temperature and alkali; some remain under conditions in which the duplex is denatured. The constraints are destabilised by ethidium suggesting that they are stabilised by free energy of supercoiling. Proteolytic enzymes, but not ribonucleases, remove the constraints. Possible structures for the constraining mechanism are discussed.  相似文献   

18.
Escherichia coli topoisomerase IV (Topo IV) is an essential ATP-dependent enzyme that unlinks sister chromosomes during replication and efficiently removes positive but not negative supercoils. In this article, we investigate the binding properties of Topo IV onto DNA in the absence of ATP using a single molecule micromanipulation setup. We find that the enzyme binds cooperatively (Hill coefficient alpha approximately 4) with supercoiled DNA, suggesting that the Topo IV subunits assemble upon binding onto DNA. It interacts preferentially with (+) rather than (-) supercoiled DNA (Kd+=0.15 nM, Kd-=0.23 nM) and more than two orders-of-magnitude more weakly with relaxed DNA (Kd0 approximately 36 nM). Like gyrase but unlike the eukaryotic Topo II, Topo IV bends DNA with a radius 0= 6.4 nm and locally changes its twist and/or its writhe by 0.16 turn per bound complex. We estimate its free energy of binding and study the dynamics of interaction of Topo IV with DNA at the binding threshold. We find that the protein/DNA complex alternates between two states: a weakly bound state where it stays with probability p = 0.89 and a strongly bound state (with probability p = 0.11). The methodology introduced here to characterize the Topo IV/DNA complex is very general and could be used to study other DNA/protein complexes.  相似文献   

19.
We studied the structure of viral nucleoprotein complexes extracted from the nuclei of mouse cells infected with the immunosuppressive strain of the minute virus of mice (MVMi). Two types of complex were detected, with sedimentation coefficients of about 110 and 40S. The complexes sedimenting at 110S contained single-stranded MVMi DNA as well as a second form of viral DNA which apparently had a heat-sensitive secondary structure. The 110S peak also contained proteins which coelectrophoresed with the MVMi capsid proteins. Complexes sedimenting at 40S contained the double-stranded replicative form of MVMi DNA. These complexes sedimented faster than did the pure replicative form DNA (15S), but more slowly than cellular chromatin fragments containing DNA of the same length. They incorporated labeled deoxynucleoside triphosphate in vitro into the replicative form DNA. We investigated the structure of MVMi nucleoprotein complexes in the following ways. Nuclei of MVMi-infected cells were digested with staphylococcal nuclease, and the resulting DNA fragments were electrophoresed, transferred to nitrocellulose, and hybridized first with labeled MVMi DNA and then with cellular DNA. A nucleosomal repeat pattern was seen with the cellular DNA probe but not with the MVMi DNA probe. The DNA in MVMi nucleoprotein complexes was cross-linked with psoralen, purified, denatured, and examined with an electron microscope. Bubbles, indicating the presence of proteins, were seen in the MVMi DNA. The length of the DNA in the bubbles was 90 +/- 29 nucleotides. On the other hand, nucleosomes protected 160 base pairs from cross-linking by psoralen. The MVMi nucleoprotein complexes thus have a distinct structure which is different from that of chromatin.  相似文献   

20.
Purified polyoma empty capsids and polyoma type I DNA interact in a cell-free system to form nucleoprotein complexes. Complexes that consist of one, two, three, and four empty capsids per DNA molecule have been detected. Polyoma virions or capsomers do not react with added DNA to form such complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号