首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1. Physiological concentrations of either Ca2+ or Mg2+ stimulated L-glycerol 3-phosphate oxidation by intact mitochondria isolated from various mammalian tissues (hamster brown adipose tissue, rat brain, liver of normal and hyperthyroid rats). A higher cation concentration was required for stimulation by Mg2+ than by Ca2+. L-glycerol-3-phosphate dehydrogenase was the target of the stimulation by both cations as revealed by measurements with intact mitochondria as well as with the solubilized enzyme. With different electron acceptors Ca2+ and Mg2+ stimulation occurred at significantly different cation concentrations. 2. Substrate activation of mitochondrial L-glycerol-3-phosphate dehydrogenase was observed in intact mitochondria and with the solubilized enzyme isolated from hyperthyroid rats in the absence of Ca2+ and Mg2+. According to kinetic analysis two independent binding sites, functioning with different turnovers and with different affinities for the substrate, could account for the phenomenon. In the presence of Ca2+ or Mg2+ substrate activation could not be detected; the kinetic parameters apparently correspond to the tight substrate-binding site functioning with high turnover. 3. Thiol group(s), which in the absence of Ca2+ and Mg2+ did not participate in the functioning of the enzyme, played an essential role in the binding of these cations to the enzyme, as shown by chemical modification studies. 4. From the solubilized mitochondrial proteins L-glycerol-3-phosphate dehydrogenase was bound selectively to the hydrophobic phenyl-Sepharose 4B matrix in the presence Ca2+, and the bound enzyme could be eluted with EDTA. This suggests that Ca2+ caused an alteration in the conformation of the enzyme.  相似文献   

2.
The serine protease domain of activated protein C (APC) contains a Na+ and a Ca2+ site. However, the number and identity of the APC residues that coordinate to Na+ is not precisely known. Further, the functional link between the Na+ and the Ca2+ site is insufficiently defined, and their linkage to the substrate S1 site has not been studied. Here, we systematically investigate the functional significance of these two cation sites and their thermodynamic links to the S1 site. Kinetic data reveal that Na+ binds to the substrate-occupied APC with K(d) values of approximately 24 mm in the absence and approximately 6 mm in the presence of Ca2+. Sodium-occupied APC has approximately 100-fold increased catalytic efficiency ( approximately 4-fold decrease in K(m) and approximately 25-fold increase in k(cat)) in hydrolyzing S-2288 (H-d-Ile-Pro-Arg-p-nitroanilide) and Ca2+ further increases this k(cat) slightly ( approximately 1.2-fold). Ca2+ binds to the protease domain of APC with K(d) values of approximately 438 microm in the absence and approximately 105 microm in the presence of Na+. Ca2+ binding to the protease domain of APC does not affect K(m) but increases the k(cat) approximately 10-fold, and Na+ further increases this k(cat) approximately 3-fold and decreases the K(m) value approximately 3.7-fold. In agreement with the K(m) data, sodium-occupied APC has approximately 4-fold increased affinity in binding to p-aminobenzamidine (S1 probe). Crystallographically, the Ca2+ site in APC is similar to that in trypsin, and the Na+ site is similar to that in factor Xa but not thrombin. Collectively, the Na+ site is thermodynamically linked to the S1 site as well as to the protease domain Ca2+ site, whereas the Ca2+ site is only linked to the Na+ site. The significance of these findings is that under physiologic conditions, most of the APC will exist in Na2+-APC-Ca2+ form, which has 110-fold increased proteolytic activity.  相似文献   

3.
Previous investigations of the filamentous network in eukaryotic cells have been based on observations by electron and fluorescence microscopy. In order to examined, in more detail, the interconnection of the various components of th filamentous network, we have treated Ehrlich ascites tumour cells with Triton X-100 in the presence of Mg++, disassembled the detergent-resistant, residual cell structure with Tris-EDTA and subjected the postnuclear supernatant to sucrose density gradient equilibrium centrifugation. Using this technique we are able to demonstrate 1) the association of the major part of intermediate-sized filament protein (vimentin) with unfolded ribosomal subunits, 2) the nearly identical sedimentation behavior of the boundary lamina and actin, and a minor part of the intermediate-sized filament protein respectively, and 3) the association of a Ca++-dependent protease specific for vimentin intermediate-sized filament protein with the Triton X-100 resistant, residual cell structure. Furthermore, we are able to confirm, by labelling intact Ehrlich ascites tumour cells with [3H] concanavalin A and recovering radioactivity in the lighter sucrose gradient fractions, that the detergent-resistant boundary lamina is derived from the plasma membrane. The presence of coated vesicles in Triton X-100-treated cells as well as of coated pits in the derived membrane point at the same origin of the boundary lamina. The results of the fractionation study are correlated with structures observed by electron microscopy of ultrathin sections of the intact filamentous network.  相似文献   

4.
Novel mechanism of intracellular calcium release in pituitary cells   总被引:7,自引:0,他引:7  
In sea urchin eggs an enzymatic metabolite of beta-NAD+, called cyclic ADP-ribose (cADPR), is as potent and powerful a releaser of sequestered intracellular Ca2+ as is inositol 1,4,5-trisphosphate (IP3). The enzyme that synthesizes cADPR is present in several vertebrate animal tissues, but the Ca(2+)-releasing activity of cADPR has not been described in mammalian cells. We report here that incubation of beta-NAD+ with cell-free extracts of several rat tissues (including pituitary gland) generates a product which releases intracellular Ca2+ stores in permeabilized rat pituitary GH4C1 cells. This product has the biological characteristics of cADPR (it acts after depletion of the IP3 stores and after blockade of the IP3 receptor by heparin). The response is mimicked, in a concentration-dependent manner, by authentic cADPR and is desensitized by prior incubation with cADPR. We conclude that cADPR is not only synthesized by certain mammalian cells but also acts in such cells to release compartmentalized intracellular Ca2+ by a mechanism that differs from that used by IP3. Therefore, cADPR may serve, in addition to IP3, as a second messenger for intracellular Ca2+ mobilization in mammalian cells.  相似文献   

5.
The presence and distribution of vimentin, a subunit of intermediate filaments, in the neural lobe and in the pars intermedia of the cat, rabbit and rat pituitary glands were investigated immunocytochemically. In the pars intermedia, our study revealed the presence of vimentin in glial-like cells located between glandular secretory cells of the three species and in the cells of the marginal layer of the cat and rat hypophyseal cleft. In the neural lobe of the cat and rabbit pituitary glands, there was a large amount of cell processes and immunoreactive pituicytes. In contrast, in the rat neural lobe, few pituicytes exhibited immunoreactivity, and these were located principally in the posterior region near the pituitary stalk. The significance of immunoreactive vimentin in these cells is discussed.  相似文献   

6.
The polarized distribution of Na+,K+-ATPase plays a paramount physiological role, because either directly or through coupling with co- and countertransporters, it is responsible for the net movement of, for example, glucose, amino acids, Ca2+, K+, Cl-, and CO3H- across the whole epithelium. We report here that the beta-subunit is a key factor in the polarized distribution of this enzyme. 1) Madin-Darby canine kidney (MDCK) cells (epithelial from dog kidney) express the Na+,K+-ATPase over the lateral side, but not on the basal and apical domains, as if the contact with a neighboring cell were crucial for the specific membrane location of this enzyme. 2) MDCK cells cocultured with other epithelial types (derived from human, cat, dog, pig, monkey, rabbit, mouse, hamster, and rat) express the enzyme in all (100%) homotypic MDCK/MDCK borders but rarely in heterotypic ones. 3) Although MDCK cells never express Na+,K+-ATPase at contacts with Chinese hamster ovary (CHO) cells, they do when CHO cells are transfected with beta1-subunit from the dog kidney (CHO-beta). 4) This may be attributed to the adhesive property of the beta1-subunit, because an aggregation assay using CHO (mock-transfected) and CHO-beta cells shows that the expression of dog beta1-subunit in the plasma membrane does increase adhesiveness. 5) This adhesiveness does not involve adherens or tight junctions. 6) Transfection of beta1-subunit forces CHO-beta cells to coexpress endogenous alpha-subunit. Together, our results indicate that MDCK cells express Na+,K+-ATPase at a given border provided the contacting cell expresses the dog beta1-subunit. The cell-cell interaction thus established would suffice to account for the polarized expression and positioning of Na+,K+-ATPase in epithelial cells.  相似文献   

7.
The regulatory properties of the Ca2+-sensitive intramitochondrial enzymes (pyruvate dehydrogenase phosphate phosphatase, NAD+-isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase) in extracts of rat kidney mitochondria were found to be essentially similar to those described previously for other mammalian tissues; in particular each enzyme could be activated severalfold by Ca2+ with half-maximal effects (K0.5 values) of about 1 microM and effective ranges of approx. 0.1-10 microM Ca2+. In intact mitochondria prepared from whole rat kidneys incubated in a KCl-based medium containing respiratory substrates, the amount of active, nonphosphorylated pyruvate dehydrogenase could be increased severalfold by increases in extramitochondrial [Ca2+]; these effects could be blocked by ruthenium red. Similarly, Ca2+-dependent activations of NAD+-isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase could be demonstrated in intact, fully coupled, rat kidney mitochondria by either following O2 uptake (in the presence of ADP) and NAD(P)H reduction (in the absence of ADP) on presentation of non-saturating concentrations of either threo-Ds-isocitrate or 2-oxoglutarate, respectively, under appropriate conditions, or for the latter enzyme only, also by following 14CO2 production from 2-oxo[1-14C]glutarate (in the absence or presence of ADP). Effects of Na+ (as a promoter of egress) and Mg2+ (as an inhibitor of uptake) on Ca2+-transport by rat kidney mitochondria could be readily demonstrated by assaying for the Ca2+-sensitive properties of the intramitochondrial Ca2+-sensitive dehydrogenases within intact rat kidney mitochondria. In the presence of physiological concentrations of Na+ (10 mM) and Mg2+ (2 mM), activation of the enzymes was achieved by increases in extramitochondrial [Ca2+] within the expected physiological range (0.05-5 microM) and with apparent K0.5 values in the approximate range of 300-500 nM. The implications of these results on the role of the Ca2+-transport system of kidney mitochondria are discussed.  相似文献   

8.
Ca2+-ATPase was isolated from plasma membranes of Ehrlich ascites mammary carcinoma cells by means of calmodulin affinity chromatography. The purification procedure included removal of endogenous calmodulin from a Triton X-100 solubilizate of the membranes by DEAE ion-exchange chromatography as an essential step. With respect to its molecular mass, activation by calmodulin, Ca2+-dependent phosphorylation and highly sensitive inhibition by orthovanadate, the purified enzyme resembles the Ca2+-ATPase of erythrocyte membranes. In contrast to the strong calmodulin dependence of the isolated enzyme the Ca2+-ATPase in native Ehrlich ascites carcinoma cell membranes cannot be remarkably stimulated by added calmodulin. It is suggested that the membrane-bound Ca2+-ATPase in the presence of Ca2+ is activated by interaction with endogenously bound calmodulin.  相似文献   

9.
We have separated and characterized a Ca2+- and calmodulin-insensitive cyclic nucleotide phosphodiesterase from rat liver supernatant as well as an analogous enzyme from HTC hepatoma cells. Chromatography of rat liver supernatant on DEAE-cellulose in the presence and subsequently in the absence of 0.1 mM-CaCl2 resulted in the separation of two distinct phosphodiesterase activities, both of which preferentially hydrolysed cyclic GMP rather than cyclic AMP. One enzyme, E-Ib, was activated in the presence of Ca2+ and calmodulin, and the other, E-Ia, was not. The E-Ia enzyme, which did not bind to calmodulin-Sepharose, had Mr 325 000 and displayed anomalous kinetic behaviour [Km (cyclic GMP) 1.2 microM; Km (cyclic AMP) 15.4 microM]. The E-Ib enzyme, which bound to calmodulin-Sepharose in the presence of Ca2+, had Mr 150 000 and exhibited Michaelis-Menten kinetics for hydrolysis of cyclic GMP [Km (basal) 6.5 microM; Km (activated) 12.0 microM]. E-Ia activity was diminished by incubation with alpha-chymotrypsin and was unaffected by the action of a rat kidney lysosomal proteinase. Partial hydrolysis of E-Ib enzyme by alpha-chymotrypsin or the kidney proteinase resulted in irreversible activation of the enzyme. The E-I enzyme isolated from HTC hepatoma cells was similar to the rat liver E-Ia enzyme in many respects. Its apparent Mr was 325 000. Its activity was unaffected by calmodulin in the presence of Ca2+ or by incubation with the kidney proteinase, and was decreased by digestion with alpha-chymotrypsin. Unlike the liver E-Ia enzyme, however, the hepatoma enzyme exhibited normal kinetic behaviour, with Km (cyclic GMP) 3.2 microM. Although HTC cells contain two other phosphodiesterases analogous to those in rat liver and a calmodulin-like activator of phosphodiesterase, no calmodulin-sensitive phosphodiesterase was detected.  相似文献   

10.
Rat liver cytosol has low hydrolytic activity against [3H]methylcasein at neutrality, but activity increases greatly on addition of various compounds such as poly-L-lysine, N-ethylmaleimide, and sodium dodecyl sulfate, suggesting that it contains latent proteolytic activity. The latent enzyme was found to be stabilized in the presence of 20% glycerol and to be activated by addition of poly-L-lysine. The latent enzyme was purified from a crude extract of rat liver to apparent homogeneity in the presence of 20% glycerol by conventional chromatographic techniques. The purified enzyme showed endoproteolytic activity toward various proteins when it was activated by the compounds listed above. It preferentially degraded N-substituted tripeptide substrates with a basic amino acid at the carboxyl terminus, as well as peptides containing neutral hydrophobic amino acids. It did not require activation for these peptidase activities, in contrast to its activity toward large proteins. Interestingly, a proteinase and a trypsin-like and a chymotrypsin-like peptidase activity could not be separated by customary chromatographic methods but were distinguishable by their sensitivities to various inhibitors, activators, and covalent modifiers, suggesting that the enzyme has three distinct active sites within a single protein. The enzyme seems to be a seryl endopeptidase showing maximal activity at neutral and weakly alkaline pH values. Thus, the enzyme is a unique protease with latent multifunctional catalytic sites. The distribution of the protease in soluble extracts of various rat tissues and cells was examined quantitatively by an enzyme immunoassay. The enzyme level was highest in liver and also in spleen, stomach, lung, small intestine, and kidney, but was low in heart, diaphragm, skeletal muscle, brain, and skin. The concentrations of enzyme in some established cell lines including hepatoma and rat kidney cells were comparable to that in normal liver hepatocytes. The enzyme was found mainly in the cytosol fraction, although a small amount was associated with microsomal membranes, suggesting that it is an extralysosomal protease. Immunohistochemical staining of the liver and skeletal muscles showed that the protease is distributed diffusely in panlobular hepatocytes with slight centrilobar predominance and is present in Kupffer cells, vascular endothelial cells, and bile duct epithelial cells in the liver and also diffusely in the intermyofibrillar spaces and vascular endothelial cells in skeletal muscle. The quantitative data obtained in the present study indicate the presence of the protease in the cytosol fraction of all rat tissues.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Protein kinase C (PKC) regulates numerous T cell functions and is present in abundance in normal human T cells and certain T cell lines. Although crude Triton X-100 soluble material obtained from T cell pellets contains minimal PKC activity, DEAE chromatography revealed that 12 to 37% of cellular PKC was membrane associated, probably due to removal of an inhibitor through column chromatography. As in other tissues, PKC from lymphoid tissue was phospholipid and Ca2+ dependent and diolein reduced the Ca2+ requirements for enzyme activity. Hydroxylapatite chromatography revealed that T cells possess two major peaks of PKC activity. Although, the enzyme in these peaks had similar m.w. and identical iso-electric mobility, the proteins differed with respect to their autophosphorylation sites and immunoreactivity toward an isoform specific antibody. Furthermore, differences in their activities in the presence of phospholipid, diolein, and limiting amounts of Ca2+ imply that these isoforms may be differentially activated. We discuss optimal conditions for activation of PKC and its isoforms for study of T lymphocyte cellular function.  相似文献   

12.
1. The effect of NH4+, Pi and K+ on phosphofructokinase from muscle and nervous tissues of a large number of animals was investigated. The activation of the enzyme from lobster abdominal muscle by NH4+ was increased synergistically by the presence of Pi or SO4(2-). In the absence of K+, NH4+ plus Pi markedly activated phosphofructokinase from all tissues studied. In the presence of 100 mM-K+, NH4+ plus Pi activated phosphofructokinase from nervous tissue and muscle of invertebrates and the enzyme from brain of vertebrates, but there was no effect of NH4+ plus Pi on the enzyme from the muscles of vertebrates. Nonetheless, NH4+ plus Pi increased the activity of vertebrate muscle phosphofructokinase in the presence of 50 mM-K+ at inhibitory concentrations of ATP, i.e. these ions de-inhibited the enzyme. In the absence of NH4+ plus Pi, K+ activated phosphofructokinase from vertebrate tissues at non-inhibitory ATP concentrations, but the effect was less marked with the enzyme from invertebrate tissues. Indeed, high concentrations of K+ (greater than 50 mM) caused inhibition of invertebrate tissue phosphofructokinase. Of the other alkali-metal ions tested, only Rb+ activated phosphofructokinase from lobster abdominal muscle and rat heart muscle. 2. The properties of lobster abdominal-muscle phosphofructokinase were studied in detail. This muscle was chosen as representative of invertebrate muscle because large quantities of tissue could be obtained from one animal and the enzyme was considerably more stable in tissue extracts than in extracts of insect flight muscle. In general, the properties of the enzyme from this tissue were similar to those of the enzyme from many other tissues: ATP concentrations above an optimum value inhibited the enzyme and this inhibition was decreased by raising the fructose 6-phosphate or the AMP concentration. In particular, NH4+ plus Pi activated the enzyme at noninhibitory concentrations of ATP and they also relieved ATP inhibition (see above). 3. It is suggested that increases in the concentration of NH4+ and Pi, under conditions of increased ATP utilization in certain muscles and/or nervous tissue, may play a part in the stimulation of glycolysis through the effects on phosphofructokinase (the effect may be a direct activation and/or a relief of ATP inhibition). Changes in the concentration of NH4+ and Pi are consistent with this theory in nervous tissue and the anaerobic type of muscles. The role of AMP deaminase in production of NH4+ from AMP in these tissues is discussed in relation to the control of glycolysis.  相似文献   

13.
A Ca2+-dependent protease I), which hydrolyzes casein at Ca2+ concentrations lower than the 10(-5) M range, is purified roughly 4000-fold from the soluble fraction of rat brain. This protease is able to activate Ca2+-activated, phospholipid-dependent protein kinase (protein kinase C) by limited proteolysis analogously to the previously known Ca2+-dependent analogously to the previously known Ca2+-dependent protease (Ca2+ protease II) which is active at the millimolar range of Ca2+ (Inoue, M., Kishimoto, A., Takai, Y., and Nishizuka, Y. (1977) J. Biol. Chem. 252, 7610-7616). The protein kinase fragment thus produced shows a molecular weight of about 5.1 X 10(4), and is significantly smaller than native protein kinase C (Mr = 7.7 X 10(4). Although protein kinase C may be normally activated in a reversible manner by the simultaneous presence of phospholipid and diacylglycerol at Ca2+ concentrations less than 10(-6) M, this enzyme fragment is fully active without any lipid fractions and independent of Ca2+. The limited proteolysis of protein kinase C is markedly enhanced in the velocity by the addition of phospholipid and diacylglycerol, which are both required for the reversible activation of the enzyme. However, casein hydrolysis by this protease is not affected by phospholipid and diacylglycerol. Available evidence suggests that, at lower concentrations of this divalent cation, Ca2+ protease I reacts preferentially with the active form of protein kinase C which is associated with membrane, and converts it to the permanently active form. In contrast, the inactive form of protein kinase C, which is free of membrane phospholipid, does not appear to be very susceptible to the proteolytic attack. It remains unknown, however, whether this mechanism of irreversible activation of protein kinase C does operate in physiological processes. It is noted that Ca2+ protease II, which is active at higher concentrations of Ca2+, proteolytically activates protein kinase C irrespective of the presence and absence of phospholipid and diacylglycerol.  相似文献   

14.
We studied a chloride (Cl-) conductance activated by calcium (Ca2+) in normal rat lactotrophs and compared its activation during TRH stimulation in normal rat lactotrophs and in GH3 tumoral lactosomatotrophs cells, using the whole-cell configuration of the patch-clamp technique. The Cl- specificity of the conductance was assessed by manipulation of internal and external Cl- concentrations. The reversal potentials were in agreement with those predicted by the Nernst equation. Ca2+ ionophore A23187 and membrane depolarizations activated the Cl- conductance. However, a feedback effect of Cl- gradient modifications on Ca2+ movements was also observed in normal lactotrophs. In the latter, TRH (100 nM) mobilization of intracellular Ca2+ activated this Cl- conductance together with the potassium (K+) conductance when both ions were present in the intracellular medium (IM) or alone when K+ was absent. Chloride conductance was not activated in the GH3 cells, where mobilization of intracellular Ca2+ by TRH (100 nM) activated only Ca2(+)-dependent K+ conductance. It seems likely that the activation of Cl- conductance in these two different cell types involves different mechanisms.  相似文献   

15.
The properties of a Ca2+ activated adenosine triphosphatase shown to be present in homogenates of purified rat peritoneal mast cells were investigated. The enzyme was activated by Ca2+, Mg2+, and to a lesser extent by Mn2+ and Co2+. Ca2+ alone was necessary for full activity and the further addition of Mg2+ did not have any effect. The chelating agents EGTA (ethanedioxybis(ethylamine)tetra-acetate) and EDTA completely inhibited the reaction. The pH optimum was 7.8. Reduced glutathione, cysteine, dithiothreitol, N-ethylmaleimide, urea, ADP, NaF, increasing ionic strength and Triton X-100 all inhibited the reaction. On subcellular fractionation of mast-cell homogenates by density-gradient centrifugation, the distribution of Ca2+ activated adenosine triphosphatase resembled that of 5'-nucleotidase, but differed from that of the other markers used, suggesting localization in the plasma membrane. Further experiments indicated that the enzyme is present on the external surface of the plasma membrane.  相似文献   

16.
VanderElst  IE; Datti  A 《Glycobiology》1998,8(7):731-740
The distribution of the Golgi enzyme beta1, 6-N- acetylglucosaminyltransferase (core 2 GlcNAc-T for short) has been investigated in several tissue and cell systems by combining the potentials of a polyclonal antibody and a novel, sensitive fluorescent enzyme assay. In normal rat tissues, levels of the protein were found to vary and as a general trend did not correlate with enzyme activities. Additionally, we observed tissue-specific core 2 GlcNAc-T forms of various size: 75 kDa (liver), 70 kDa (spleen), 60 kDA (heart), and 50 kDa (heart and lung). These forms might arise from differential protein modifications; alternatively, the smaller form may be a product of proteolytic cleavage, given the presence of a catalytically inactive 50 kDa species in rat serum. Chinese hamster ovary (CHO), MDAY-D2, PSA- 5E, and PYS-2 cell lines consistently displayed a 70 kDa enzyme. When induced to retrodifferentiate in the presence of butyrate + cholera toxin, CHO cells exhibited a 21-fold increase in enzyme activity, while protein levels remained constant. A similar trend was observed in the embryonal endoderm cell lines PSA-5E and PYS-2, where an approximately 100-fold difference in core 2 GlcNAc-T activity was found notwithstanding unchanged amounts of the protein and identical mRNA levels, as evidenced by RT-PCR. In contrast, levels of core 2 GlcNAc-T activity in MDAY-D2 cells correlated well with protein expression. Taken together, these observations demonstrate that core 2 GlcNAc-T expression may be subjected to multiple mechanisms of regulation and suggest that in at least some instances (i.e., PSA-5E and PYS-2 cells) expression may be regulated exclusively via posttranslational mechanism(s) of control.   相似文献   

17.
Calmodulin was covalently modified with 10-(1-propionyloxysuccinimide)-2-trifluoromethylphenothiazine++ + to stoichiometries between 0 and 2 mol/mol in the presence of Ca2+. The modified calmodulins, oleic acid, and trypsin were assayed for their ability to activate pea plant NAD kinase, bovine brain 3',5'-cAMP phosphodiesterase, and human erythrocyte Ca2+-ATPase. All modified calmodulins activated both phosphodiesterase and Ca2+-ATPase; at the highest concentration assayed, calmodulin modified with 2 mol of reagent/mol activated phosphodiesterase and Ca2+-ATPase to 53% and 100%, respectively, of the activation obtained with unmodified calmodulin. However, higher concentrations of the modified calmodulins were required to observe the same activation; at least 900-fold and 100-fold higher concentrations were required for the two enzymes, respectively. NAD kinase was not activated by any calmodulin labeled to a stoichiometry greater than 1 mol/mol even when a concentration equal to 17,000 times the apparent dissociation constant of calmodulin for NAD kinase was assayed. Therefore, the modified protein (and not some fraction resistant to labeling) is active toward the mammalian enzymes but inactive toward plant NAD kinase. The different response of the three enzymes to the chemical modification suggests that the enzymes may utilize different binding domains on calmodulin. NAD kinase also was not activated by other known activators of the two mammalian enzymes, namely lipids and limited proteolysis. In parallel experiments using the same agents on each enzyme, NAD kinase was the only enzyme of the three that was not activated by oleic acid and several other lipids or by limited trypsin digestion. These results show that NAD kinase possesses several attributes which would not be predicted by current models of the mechanism of activation of enzymes by calmodulin.  相似文献   

18.
Guanylyl cyclase from bovine rod outer segments was solubilized using Triton X-100 and a high concentration of KCl, and its regulation was studied. The efficiency of solubilization was about 50-90% of total activity. When the Ca2+ content was lowered (less than 80 nM), guanylyl cyclase was activated about 2-fold. In the presence of higher concentrations of Ca2+ (greater than 140 nM), the activity was decreased. The regulation by Ca2+ was also demonstrated with solubilized preparations. In the presence of 186 nM Ca2+ which inhibited guanylyl cyclase, La3+ activated the enzyme about 2-fold, suggesting that the Ca2(+)-binding protein similar to other Ca2(+)-binding proteins associates with guanylyl cyclase regulation. Sodium nitroprusside and nitric oxide which are activators of soluble guanylyl cyclase in other tissues also activated the retinal guanylyl cyclase. Maximum activation by sodium nitroprusside was 20-fold using Mg2+ as a cofactor. Activation by nitric oxide and related compounds suggests that retinal guanylyl cyclase contains a heme prosthetic group that may participate in a novel regulatory mechanism for this enzyme.  相似文献   

19.
In this study we examined the presence and localization of nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) activity in the dental pulp, periodontal tissues and alveolar bone of the rat. The presence of NADPH-d activity was also examined in cat pulp. The rat histochemical analysis revealed the presence of prominent NADPH-d activity both in cells of the sub-odontoblastic cell layer and in the odontoblasts, in the root as well as in the coronal pulp regions. In the pulpal horns, odontoblasts often had long processes with a high level of labelling indicating NADPH-d activity extending through the predentin and dentin. Moreover, endothelial cells of pulpal blood vessels were positive for NADPH-d in both species. However, no clearcut examples were found of pulpal nerve fibres positive for NADPH-d in the rat or cat and denervation performed in rats did not alter the enzyme staining patterns. In the periodontal tissue, NADPH-d activity was localized to cells on the alveolar bone surface of the periodontal ligament and, in addition, alveolar bone marrow crypts were filled with intensely labelled cells. In the gingival papillae, NADPH-d activity was observed in the basal cell layer of the epithelium. Endothelial cells of periodontal and gingival blood vessels showing positive staining for NADPH-d were occasionally noted.  相似文献   

20.
1. On subcellular fractionation of rat brain homogenate, polyphosphoinositide phosphomonoesterase activity was greater in the cytosol than the membranous fractions. 2. The enzyme was purified from the cytosol by column chromatography on DEAE-cellulose, calcium phosphate gel and Sephadex G-100. 3. The final preparation of the enzyme showed a 430-fold purification over the whole homogenate and appeared to be homogeneous since it gave a single band on sodium dodecyl sulphate-polyacrylamide gel electrophoresis and on isoelectric focusing. The enzyme has a relatively low molecular weight and an isoelectric point of 6.8. 4. The phosphatase showed a high affinity for triphosphoinositide. Without added Mg2+, the Km was 25 muM and V was 33 mumol Pi released/min/mg protein. 5. The enzyme hydrolysed diphosphoinositide at a slower rate than triphosphoinositide. In the presence of 10 mM Mg2+, the Km values for triphosphoinositide and diphosphoinositide were 5 muM and 25 muM respectively and V was the same for each substrate. 6. Both Mg2+ and Ca2+ activated the enzyme. While Ca2+ produced maximum activation at 100 muM, a much higher concentration of Mg2+ (10 mM) was required to elicit comparable activation. The enzyme did not show an absolute requirement for Mg2+ or Ca2+ as it exhibited low activity in the presence of 0.5 mM EDTA or EGTA. 7. The phosphatase showed maximum activity between 7.4 and 7.6. A drop in pH to 7.0 activated it almost completely, whereas an increase in pH to 8.0 halved the activity. 7.0 activated it almost completely, whereas an increase in pH to 8.0 halved the activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号