首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Samples of two calcareous soils from central Iraq were amended with 2, 6 and 10 mg g−1 soil of agriculturegrade sulphur and incubated for 4, 8 and 12 weeks at 30°C and 70% water-holding capacity. At the end of each incubation period, soils were analyzed for sulphate, CaCO3 and CaSO4. The sulphate content of the soils increased, whereas the CaCO3 content decreased, with increasing S levels and incubation time. The gypsum formed was in proportion to the sulphur oxidised and the calcium released from CaCO3.  相似文献   

2.
Summary Self-diffusion coefficients of zinc and iron were determined in acid soil of Palampur and alluvial soil of Ludhiana under varying pH, CaCO3, moisture, carrier and phosphorus levels. Increase in pH caused tremendous reductions in self-diffusion coefficients (Da) of both zinc and iron in soil. The selfdiffusion coefficients of both these elements were drastically reduced as a result of CaCO3 application. The Da values of zinc and iron increased with the decrease in moisture tension and increase in carrier and phosphorus levels. The decrease in Da values were associated with increase in capacity factor.  相似文献   

3.
Six years of hydrogeochemical monitoring in a small, mixed-hardwood forest in the eastern part of the Netherlands provided a large number of analytical data on precipitation, throughfall, stemflow, soil solution at different depths, groundwater and of soil and leaf litter samples. Nutrient cycling in the forest ecosystem was studied with emphasis on Ca cycling in four soils differing in the amount and depth of occurrence of calcium carbonate. Ca cycling was significantly higher in one soil that was calcareous throughout (soil D) than in three soils with calcium carbonate at increasing depth (A, B and C resp.). There were no obvious differences in Ca cycling between the three soils A, B and C, however. There was no evidence that trees were able to transfer significant amounts of easily available Ca from the deeper parts of the rootzone to the soil surface by biocycling.  相似文献   

4.
温度对不同粘粒含量稻田土壤有机碳矿化的影响   总被引:16,自引:0,他引:16  
模拟了亚热带地区3种不同粘粒含量的水稻土(砂壤土、壤粘土、粉粘土)在5种温度(10、15、20、25和30℃)下的有机碳(SOC)矿化特征,分析SOC矿化对温度变化的响应.结果表明:在160d的培养期内,温度对3种水稻土SOC矿化量的影响有一定差异,30℃时砂壤土、壤粘土和粉粘土SOC矿化量分别是10℃时的3.5、5.2和4.7倍.在较低温度(≤20℃)下,SOC矿化速度较低且相对稳定;在较高温度(≥25℃)下,前期SOC矿化速度较高,随着培养时间的延长逐渐降低,并趋于稳定.3种水稻土SOC矿化的温度系数(Q10)随培养时间出现波动,砂壤土的Q10平均值最低,为1.92,壤粘土和粉粘土的Q10平均值较接近,分别为2.37和2.32;3种土壤矿化速率常数(k)与温度呈极显著的指数相关(P<0.01).3种水稻土有机碳矿化对温度变化的响应敏感度依次为壤粘土>粉粘土>砂壤土.  相似文献   

5.
Phosphate fertilization reduces zinc adsorption by calcareous soils   总被引:1,自引:0,他引:1  
Saeed  M. 《Plant and Soil》1977,48(3):641-649
Summary Zinc adsorption isotherms were constructed for three calcereous soils which varied in carbonate contents, texture, and past history of phosphate fertilization. The equilibrium conditions were 25°C, 0.01 M CaCl2 and 6 days.Higher phosphate fertilization of the soils reduced Zn adsorption. The effect of P was more in the soil with lower carbonate content which suggested that soil carbonates played a dominant role in the Zn adsorption characteristics of the soils.The adsorption data conformed to the Langmuir equation. Constants (k and b) calculated from the Langmuir isotherm showed that bonding energies (k) were inversely related to extractable P; i.e. higher Zn adsorption was associated with lower bonding energy. The Zn adsorption maxima (b) were higher for the soils with higher calcium carbonate equivalent.Adsorbed Zn was extracted with a single extraction of 0.005 M DTPA. The recovery was 91 percent for the Tandojam soil, 82 percent for the Tarnab soil, and 63 percent for the Kala shah Kaku soil, indicating that most of the adsorbed Zn is not irreversibly fixed by the soils and can be utilized by plant during growth.The results suggest that P-induced Zn deficiency could not be ascribed to precipitation of Zn as insoluble Zn-P compounds in soils. The increased Zn solubility with P fertilization is the evidence that P-Zn interaction does not reside in the growing medium external to plant.The work is part of Ph.D. thesis submitted to the University of Hawaii, Honolulu, U.S.A.  相似文献   

6.
Manganese studies in some soils with a high organic matter content   总被引:1,自引:0,他引:1  
Summary The total and available forms of manganese in high organic matter content soils are reported. Most of the manganese is retained in an unavailable form either by organic matterper se or by some components of organic matter and, as a result, the available forms are extremely low and fall below the critical limits. Retention studies indicate that, exchange processes in the soil are more responsible for the retention of added manganese than redox processes. Organic matter as such does not quantitatively represent the component or components that influence the manganese retentive capacity of the soil. There is an indication to suggest that, if most of the total manganese is in organic form then fixation of added manganese various inversely with total manganese content.  相似文献   

7.
The objective of this study was to estimate the water repellency of post-boggy soils in north-eastern Poland. Potential water repellency was determined based on the water drop penetration time (WDPT) test and the molarity of an ethanol droplet (MED) test. A total of 276 soil samples with a varied organic carbon (OC) content, ranging from trace amounts in sandy subsoils to 44.4% in organic soils, were analyzed. The investigated material represents peat-muck soils (Eutri-Sapric Histsols) and muck-like soils (Arenic Gleysols, Areni-Humic Gleysols, Gleyic Arenosols). The mineral matter of the analyzed soils comprised loose sand. The obtained results indicate that peat soil formations are marked by higher potential water repellency than muck soil formations. The highest WDPT values (16 390 s) were reported in respect of an alder peat sample with 41.9% OC content, collected at a depth of 55–60 cm. In the group of muck soils, a sample with 36.7% OC content, collected at a depth of 15–20 cm, was marked by the highest water repellency (WDPT 10 492 s). The water repellency of the studied soils is dependent on organic matter content, and it is manifested only when organic matter content is higher than 20%. Soils with OC content of up to 12% show low water repellency or are hydrophilic. Organic soil formations (>12% OC) are characterized by a varied degree of water repellency, but WDPT values in excess of 2000 s are reported only in respect of soils containing more than 35% OC. A significant positive correlation between the content of organic matter, organic carbon, total nitrogen and water repellency was observed in the entire studied population (n = 276). A significant positive correlation was also found between WDPT values and the C:N ratio, while a significant negative correlation was reported in respect of .  相似文献   

8.
水溶性有机质对土壤吸附菲的影响   总被引:5,自引:1,他引:5  
研究了来源于稻草腐熟物的外源水溶性有机质(DOM)和土壤本身固有的内源DOM对有机碳含量不同的3种土壤吸附菲的影响.结果表明,不同处理土壤对菲的吸附曲线均为线性,其吸附系数(Kd)与土壤有机碳含量(foc)正相关.去除内源DOM后,黄棕壤、红粘田和黑土吸附菲的Kd值增加了7.08%~21.4%,增加量(ΔKd)和增加幅度与foc正相关,表明土壤中存在的内源DOM抑制土壤对菲的吸附.而外源DOM对土壤吸附菲的影响与其浓度密切相关.在供试浓度范围(0~106 mg DOC·L-1)内,红粘田吸附菲的Kd值随加入外源DOM浓度的提高先增大后减小.外源DOM浓度为28 mg DOC·L-1时,红粘田吸附菲的Kd值增加了19.5%;而当外源DOM浓度≥52 mg DOC·L-1时,则明显抑制菲的吸附.内源和外源DOM对土壤吸附菲的影响,主要与DOM和菲在溶液中的结合作用、在土壤中的累积吸附效应等有关.  相似文献   

9.
Summary The uptake of239Pu and241Am from different clay mineral-organic matter-sand mixtures simulating contrasting soil types was examined in growth chamber experiments. The mixtures represented various combinations of organic matter (0, 5 and 10%), kaolinite (11 type) and montomorillonite (21 type) clay minerals, each at the levels of 5, 10 and 25%, and purified quartz sand (as filler).Results indicated a marked reduction in uptake of both239Pu and241Am with increase in organic matter as well as clay content of the mixtures. The Pu Concentration Ratios (CRs) ranged from (2.5–7.0)×10–3 in the case of kaolinite-organic matter mixtures, and from (0.9–5.5)×10–3 in the case of montmorillonite-organic matter mixtures. The corresponding values of Am Concentration Ratios (CRs) obtained were (1.9–725.4)×10–3 in the case of kaolinite-organic matter mixtures, and between (0.7–3.5)×10–3 for the montmorillonite-organic matter mixtures.Reduction in the uptake of241Am with increasing clay content was more pronounced in the montmorillonite clay-organic matter mixtures as compared to that in the case of kaolinite-organic matter mixtures. While similar qualitative reduction in239Pu CRs with increasing clay content was observed, the reduction was less marked than in the case of241Am. The values for Am CRs were higher than the corresponding Pu CRs in kaolinite based mixtures whereas in the case of montmorillonite-organic matter mixtures Pu CRs exceeded the Am CRs.Increasing organic matter content and its interaction with both kaolinite and montmorillonite clay minerals were found to be equally effective in reducing the uptake of239Pu as well as241Am by plants.  相似文献   

10.
J. F. Dormaar 《Plant and Soil》1970,33(1-3):729-732
Summary 1. Acriflavine adsorption capacities of humic substances are not easy to interpret since factors such as acid pretreatment, strength of extractant, and time and temperature of extraction all affect the data. It is thus difficult to establish with this technique whether qualitative differences exist between organic matter formed under different plant associations. 2. Acriflavine sorption capacity of the acid-precipitable humus extracted may be a measure of the efficiency of humus carbon extraction as related to the organo-mineral complexes in the soil since it correlates negatively with the clay content of the samples. 3. Acriflavine adsorption values of the acid-precipitable humus of the aeolian soils are likely to represent true or total sorption capacities of this fraction in these soils, because the clay content of these soils is low and thus extraction of those sites responsible for the acriflavine sorption reaction will be more complete.  相似文献   

11.
Soil organic matter and clays represent an important hinderance for bioremediation technologies, as they may cause a retardation in the biological removal of hydrophobic pollutants. To overcome this limitation it is necessary to understand how these two soil constituents influence biodegradation. The results herein reported suggest that the bioavailability of phenanthrene in soils is affected not only by sorption to the organic matter or clays, but also by the interaction of phenanthrene with humic fractions-clay complexes.  相似文献   

12.
In the present study effect of fluoride contamination of soil and litter by an aluminium factory on the organic matter content of soil is investigated. It was found that increase in fluoride content of litter and soil causes accumulation of organic matter content in the surface soil. It is suggested that the presence of fluoride in the litter and soil decreases the growth and activity of micro-organisms resulting in greater accumulation of organic matter in the soil.  相似文献   

13.
The object of the present investigation was to study the fungal decomposition of organic matter from different sources, added to the saline soils. The organic matter added was in the form of fresh cuttings of two salt tolerant harbaceous plants namelyDiplachne fusca (Kallar grass) andSesbania aculeata (Dhancha). In addition to these treatments, farm yard manure and press mud (waste of sugar industry) were also used as a source of organic matter. Twelve combinations of these treatments were studied. A number of fungi were isolated from differently treated saline soils incubated at 30 °C. Among the fungi isolatedAspergillus spp. andFusarium solani had the highest frequency of occurrence. The relative cellulolytic ability of 10 fungal species was also estimated.Alternaria humicola andNigrospora sp. were found to be the most cellulolytic among the fungi isolated. The decrease in organic matter due to microbial decomposition was found to be most rapid during first two weeks of incubation. Among the treatments with one organic matter source, press mud produced maximum humus equal to 0.28 %. The pH and electrical conductivity increased slightly due to the closed system where no leaching took place.  相似文献   

14.
Dynamics of organic matter in soils   总被引:11,自引:0,他引:11  
E. A. Paul 《Plant and Soil》1984,76(1-3):275-285
Summary Dynamics of C, N, S, and to some extent P are expressed by a knowledge of the size and turnover rates of plant constituents such as soluble C and N components, cellulose and hemicellulose, and lignin. Soil organic matter constituents include: the microbial biomass as determined chemically or microscopically, non-biomass active components determined by isotopic dilution, stabilized N constituents for which good techniques are not yet available, and resistant or old C and associated N determined by carbon dating. The processes involved in the nutrient transformations and transfers are reasonably well understood. The control mechanisms require further elucidation to be able to extrapolate from the laboratory to the field, and between field sites. Major control mechanisms requiring further insight include the effects of C availability on transformations of C and N. The other control for which every little is known is that of spatial compartmentalization. Compartmentalization ranges from landscape or management sequences to pedogenic layers, rhizosphere-mycorrhizal effects, clay-sesquioxide surfaces, aggregation, localized enzymes, and microbial effects such as membrane boundaries. Control mechanisms for concurrent mineralization-immobilization, the stabilization of microbial products, and the relative role of the biomass as a catalyst rather than as a source-sink for nutrients, must be understood. There is potential for combining a knowledge of microbial production and turnover with that of the roles of the soil organic active fraction as a temporary storehouse for nutrients. This, in conjunction with management techniques such as zero tillage and crop rotation, should make it possible to better utilize soil and fertilizer N, especially in areas of the world where the cost of nutrients is high relative to the value of the crop grown.Introductory lecture  相似文献   

15.
The retention of organic matter in soils   总被引:27,自引:8,他引:27  
The turnover of C in soils is controlled mainly by water regimes and temperature, but is modified by factors such as size and physicochemical properties of C additions in litter or root systems, distribution of C throughout the soil as root systems, or addition as litter, distribution of C within the soil matrix and its interaction with clay surfaces.Soil factors which retard mineralization of C in soils are identified from correlations of C contents of soils with other properties such as clay content and base status. The rate and extent of C mineralization depends on the chemistry of the added organic matter and interaction with clays of the microbial biomass and metabolites.The organomineral interactions are shown to depend on cation bridges involving mainly Ca in neutral to alkaline soils, Al in acid soils and adsorption of organic materials on iron oxide surfaces. The various organomineral interactions lead to aggregations of clay particles and organic materials, which stabilizes both soil structure and the carbon compounds within the aggregates.  相似文献   

16.
17.
Summary Estimates of nitrogen availability based on the nitrogen mineralisation potential,N 0, and the mineralisation rate constant,k, increased within the sequence, loamy sand, coarse sandy loam and loam, and were consistently higher in the high labile organic matter counterparts of the soils. There was a similar trend in the production of inorganic nitrogen at ambient temperatures. Under these conditions, an increase between mid-April and the end of May was followed by a trough in June and July and a second increase from early August to the end of September. Nitrogen production was generally higher where soil moisture was allowed to fluctuate widely in the available range, compared with a moisture regime near field capacity. Results of short-term incubations indicated that net mineralisation was minimal or negative in June and July.There was a significant relationship between values calculated fromN 0 andk and those obtained near field capacity in the second period of mineralisation when soil temperature was relatively constant, but not in the first period when soil temperature was rising.The time required for mineralisation of 50% ofN 0 indicated that less than half the potential value would become available in a normal temperature growing season.  相似文献   

18.
Influence of organic matter on some characteristics of aquatic soils   总被引:1,自引:1,他引:0  
  相似文献   

19.
The effects of dissolved organic matter (DOM), water soluble organic matter derived from sewage sludge, on the sorption of atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-trazine) by soils were studied using a batch equilibrium technique. Six paddy soils, chosen so as to have different organic carbon contents, were experimented in this investigation. Atrazine sorption isotherms on soils were described by the linear equation, and the distribution coefficients without DOM (Kd) or with DOM (Kd*) were obtained. Generally, the values of Kd*/Kd initially increased and decreased thereafter with increasing DOM concentrations of 0-60 mg DOC ·L-1 in soil-solution system form. Critical concentrations of DOM (DOMnp) were obtained where the value of Kd* was equal to Kd. The presence of DOM with concentrations lower than DOMnp promoted atrazine sorption on soils (Kd* > Kd), whereas the presence of DOM with concentrations higher than DOMnp tended to inhibit atrazine sorption (Kd* < Kd). Interestingly, DOMnp for  相似文献   

20.
为探讨不同生态治理小流域土壤性质的差异,本研究分别从坡向、坡位、区段和土层4个方面分析了人工刺槐林流域杨家沟(YJG)与封禁荒草地流域董庄沟(DZG)土壤有机质(SOM)、土壤容重(BD)和黏粒含量(CC)的空间分异.结果表明: YJG与DZG的SOM、BD、CC分别为12.78 g·kg-1、1.24 g·cm-3、19.2%与11.13 g·kg-1、1.21 g·cm-3、18.2%,前者均略高,但差异不显著.各指标均为东坡大于西坡;SOM和CC顺坡向下有增加趋势,BD变异最小;SOM由上游至下游呈增大趋势,BD和CC不断减小;由土表向下至60 cm土深,BD和CC不断增大,SOM不断减小.各指标的空间敏感性依次为CC>SOM>BD,空间因素的影响效用依次为土层>区段>坡向>坡位.上游CC、中游BD和CC在两流域间的差异显著,各指标对坡位、区段、土层的敏感性均为YJG<DZG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号