首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Summary The Zn contents of twenty-nine alluvial soils from Egypt were chemically fractionated into: water soluble+exchangeable, weakly bound to inorganic sites, organically bound, occluded as free oxide material, and residual mainly in the mineral structure. On the average these fractions constituted about 0.01, 1.20, 28.6, 21.5 and 45.5% of the total soil Zn respectively which averaged 76.25 ppm. Significant correlations were obtained between each individual Zn-fraction and some soil variable.Zinc adsorption isotherms were developed for seven soils suspended in dilute ZnCl2 solution in the presence of either 0.05M CaCl2 solution (Specific adsorption) or deionized water (Total adsorption). The Langmuir constants (adsorption maximum and bonding energy) were calculated. The average value of specific adsorption maximum was 1.94 mg Zn/g soil and of total adsorption maxima was 11.54 mg Zn/g soil. Correlation analysis showed that CEC, free Fe2O3 and clay content were the dominant soil variables contributing towards specific Zn adsorption. The (Zn) (OH)2 ion concentration products in the solutions when Zn adsorption corresponded to the Langmuir adsorption maxima were 0.92×10–17 in the specific adsorption treatment, and 1.35×10–15 in the total adsorption treatment. These values are within the solubility range of Zn (OH)2 and ZnCO3. The values of Langmuir bonding energy constants showed that Zn was more strongly adsorbed by low carbonate or carbonate-free soils than by carbonate-rich soils.  相似文献   

2.
Phosphate fertilization reduces zinc adsorption by calcareous soils   总被引:1,自引:0,他引:1  
Saeed  M. 《Plant and Soil》1977,48(3):641-649
Summary Zinc adsorption isotherms were constructed for three calcereous soils which varied in carbonate contents, texture, and past history of phosphate fertilization. The equilibrium conditions were 25°C, 0.01 M CaCl2 and 6 days.Higher phosphate fertilization of the soils reduced Zn adsorption. The effect of P was more in the soil with lower carbonate content which suggested that soil carbonates played a dominant role in the Zn adsorption characteristics of the soils.The adsorption data conformed to the Langmuir equation. Constants (k and b) calculated from the Langmuir isotherm showed that bonding energies (k) were inversely related to extractable P; i.e. higher Zn adsorption was associated with lower bonding energy. The Zn adsorption maxima (b) were higher for the soils with higher calcium carbonate equivalent.Adsorbed Zn was extracted with a single extraction of 0.005 M DTPA. The recovery was 91 percent for the Tandojam soil, 82 percent for the Tarnab soil, and 63 percent for the Kala shah Kaku soil, indicating that most of the adsorbed Zn is not irreversibly fixed by the soils and can be utilized by plant during growth.The results suggest that P-induced Zn deficiency could not be ascribed to precipitation of Zn as insoluble Zn-P compounds in soils. The increased Zn solubility with P fertilization is the evidence that P-Zn interaction does not reside in the growing medium external to plant.The work is part of Ph.D. thesis submitted to the University of Hawaii, Honolulu, U.S.A.  相似文献   

3.
Solubility of metal in contaminated soils is a key factor which controls the phytoavailability and toxic effects of metals on soil environment. The chemical equilibria of metal ions between soil solution and solid phases govern the solubility of metals in soil. Hence, an attempt was made to identify the probable solid phases (minerals), which govern the solubility of Zn2+ and Cd2+ in zinc smelter effluent-irrigated soils. Estimation of free ion activities of Zn2+ (pZn2+) and Cd2+ (pCd2+) by Baker soil test indicated that metal ion activities were higher in smelter effluent-irrigated soils as compared to that in tubewell water-irrigated soils. Identification of solid phases further reveals that free ion activity of Zn2+ and Cd2+ in soil highly contaminated with Zn and Cd due to long-term irrigation with zinc smelter effluent is limited by the solubility of willemite (Zn2SiO4) in equilibrium with quartz and octavite (CdCO3), respectively. However, in case of tubewell water-irrigated soil, franklinite (ZnFe2O4) in equilibrium with soil-Fe and exchangeable Cd are likely to govern the activity of Zn2+ and Cd2+ in soil solution, respectively. Formation of highly soluble minerals namely, willemite and octavite indicates the potential ecological risk of Zn and Cd, respectively in smelter effluent irrigated soil.  相似文献   

4.
Summary Phosphorus adsor tion isotherms were constructed for six Latosols and one calcareous soil from Hawaii which differed greatly in their phosphorus adsorption capacities. Equilibration was in 0.01M CaCl2 at 25°C for 6 or 8 days. P adsorption properties of the soils were characterised employing the linear form of Langmuir's equation and also by calculating the amount of P adsorbed between equilibrium concentrations of 0.25 to 0.35 ppm (estimates of P buffering capacities), following the procedure of Oaanne and Shaw13. The isotherms of all the soils were found to fit the Langmuir equation at low equilibrium concentrations (< 5 ppm) and the P adsorption maxima ranged from 520 to 10 500 ppm. The buffering capacity estimates correlated closely (r = 0.950) with the adsorption maxima of soils. However, in two soils, the estimates were much lower than expected from their adsorption maxima.Millet (Pennisetum typhoides) was grown in these soils in pots, at 6 phosphorus levels corresponding to 6 equilibrium concentrations chosen from the phosphorus adsorption isotherms. Equilibrium concentrations at maximum growth of millet (Cmax) in Latosols varied inversely with the adsorption maxima of the soils. The relationship between these two parameters was expressed by the equation CmaX = a,b–k, where Cmax = equilibrium P concentration at maximum growth of millet, b = P adsorption maximum and a and k are constants. Quantitative expression of the constants are useful as they enable predictions of CmaX for a particular crop from the phosphorus adsorption maximum. This relation was found to hold also for the data on limed acid soils published by Woodruff and Kamprath20.A part of the Ph.D. Thesis approved by the University of Hawaii, Honolulu, Hawaii, U.S.A. (1971).  相似文献   

5.
Removal of heavy metals (Pb2+, Zn2+) from aqueous solution by dried biomass of Spirulina sp. was investigated. Spirulina rapidly adsorbed appreciable amount of lead and zinc from the aqueous solutions within 15 min of initial contact with the metal solution and exhibited high sequestration of lead and zinc at low equilibrium concentrations. The specific adsorption of both Pb2+ and Zn2+ increased at low concentration and decreased when biomass concentration exceeded 0.1 g l−1. The binding of lead followed Freundlich model of kinetics where as zinc supported Langmuir isotherm for adsorption with their r 2 values of 0.9659 and 0.8723 respectively. The adsorption was strongly pH dependent as the maximum lead biosorption occurred at pH 4 and 10 whereas Zn2+ adsorption was at pH 8 and 10.  相似文献   

6.
In this study, the adsorption behavior of Cd ions by rhizosphere soil (RS) and non-rhizosphere soil (NS) originated from mulberry field was investigated. The Langmuir, Freundlich and the Dubinin–Radushkevich (D-R) equations were used to evaluate the type and efficiency of Cd adsorption. The RS was characterized by lower pH but the higher content of soil organic matter and cation exchange capacity (CEC) as compared to NS. Also, the maximum adsorption of Cd2+ for RS (5.87 mg/g) was slightly bigger than that for NS (5.36 mg/g). In Freundlich isotherm, the Kf of the adsorption of Cd2+ to surface of the RS components was higher than that of the NS, indicating stronger attraction between Cd2+ and components of the RS. According to the D-R model, the adsorption of Cd2+ by both soils was dominated by ion exchange phenomena. These results indicated that mulberry roots modified physical and chemical properties of the RS under field conditions, which also affected the Cd sorption efficiency by soil components during laboratory experiments. Current knowledge of the Cd2+ sorption processes in the rhizosphere of mulberry may be important if these trees are planted for use in phytoremediation of Cd contaminated soils.  相似文献   

7.
Cadmium (Cd) is a critical environmental chemical in which sorption reactions control its entry into soil solution. The aim of the present study was to evaluate Cd sorption characteristics of some soils of the northern part of Iran with a wide range of physicochemical properties. Duplicates of each sample were equilibrated with solutions containing 5 to 500 mg Cd L?1 with 0.01 M CaCl2 as background solution. The quantity of Cd retention was calculated as the difference between initial and equilibrated Cd concentration. Sorption isotherms including Freundlich, Langmuir, Temkin, Dubinin-Radushkevich, and Redlich-Peterson were used to evaluate the behavior of Cd sorption. Cadmium sorption data were well fitted to Langmuir, Freundlich, and Redlich-Peterson isotherms. The constant of Freundlich equation (kF ) and adsorption maxima (bL ) of Langmuir equation were related to pH and cation exchange capacity (CEC). The maximum buffering capacity (Kd ) was significantly correlated with pH (R2 = 0.52, p ≤ 0.001) and calcium carbonate equivalent (CCE) (R2 = 0.63, p ≤ 0.001). Redlich-Peterson constants (kRP and aRP ) were significantly correlated with pH (R2 kRP = 0.30, p ≤ 0.007) and (R2 aRP = 0.27, p ≤ 0.012). It seemed that pH, CEC, and CCE were the main soil properties regulating Cd retention behavior of the studied soils.  相似文献   

8.
Industrial wastewaters contain various heavy metal components and therefore threaten aquatic bodies. Heavy metals can be adsorbed by living or non‐living biomass. Submerged aquatic plants can be used for the removal of heavy metals. This paper exhibits the comparison of the adsorption properties of two aquatic plants Myriophyllum spicatum and Ceratophyllum demersum for lead, zinc, and copper. The data obtained from batch studies conformed well to the Langmuir Model. Maximum adsorption capacities (qmax) were obtained for both plant species and each metal. The maximum adsorption capacities (qmax) achieved with M. spicatum were 10.37 mg/g for Cu2+, and 15.59 mg/g for Zn2+ as well as 46.49 mg/g for Pb2+ and with C. demersum they were 6.17 mg/g for Cu2+, 13.98 mg/g for Zn2+ and 44.8 mg/g for Pb2+. It was found that M. spicatum has a better adsorption capacity than C. demersum for each metal tested. Gibbs free energy and the specific surface area based on the qmax values were also determined for each metal.  相似文献   

9.
《Process Biochemistry》1999,34(1):77-85
Oscillatoria anguistissima showed a very high capacity for Zn2+ biosorption (641 mg g−1 dry biomass at a residual concentration of 129·2 ppm) from solution and was comparable to the commmercial ion-exchange resin IRA-400C. Zn2+ biosorption was rapid, pH dependent and temperature independent phenomenon. Zn2+ adsorption followed both Langmuir and Freundlich models. The specific uptake (mg g−1 dry biomass) of metal decreased with increase in biomass concentration. Pretreatment of biomass did not significantly affect the biosorption capacity of O. anguistissima. The biosorption of zinc by O. anguistissima was an ion-exchange phenomenon as a large concentration of magnesium ions were released during zinc adsorption. The zinc bound to the biomass could be effectively stripped using EDTA (10 mM) and the biomass was effectively used for multiple sorption–desorption cycles with in-between charging of the biomass with tap water washings. The native biomass could also efficiently remove zinc from effluents obtained from Indian mining industries.  相似文献   

10.
Summary The clay fraction separated from an alluvial Egyptian soil and montmorillonite clay mineral were equilibrated with CaCl2 or NaCl solution then treated with humic acid isolated from composted clover straw to obtain different clay systems: Ca-clay, Ca-clay-HA, Na-clay, Na-clay-HA, Ca-mont and Ca-mont-HA. These clays as well as seven soil samples were reacted with different amounts of labelled65ZnCl2,65ZnEDTA and65ZnDTPA. The effectiveness of these Zn-sources for maintaining soluble Zn2+ ions in the equilibrium solution was the greatest for ZnDTPA and the lowest for ZnCl2. Ca-clay provided greater Zn sorption capacity than Na-clay, and complexing the clay with humic acid depressed its capacity for Zn sorption. At the pH of the clay-systems (pH=6.5), the possibilities of Zn(OH)2 formation were reduced especially in the presence of Zn-chelates. Reactions of65ZnE DTA and65ZnDTPA with the seven soils produced higher levels of soluble Zn2+ ions in the equilibrium solution rather than65ZnCl2 meanwhile ZnDTPA was more effective than ZnEDTA. The calculated Zn(OH)2 ion product in the solution of ZnCl2-soil systems indicated the precipitation of Zn as Zn(OH)2. However, this was not valid in the Zn-chelates-soil systems. The results also revealed the role of soil carbonate, organic matter and soil texture as soil variables affecting Zn sorption by natural soils.  相似文献   

11.
It is estimated that nearly 50% of the world''s population is at risk of zinc (Zn) deficiency. The challenge is therefore to increase the Zn content in edible plant parts in order to improve the nutritional value of staple foods. We recently reported the identification and characterization of three barley genes encoding zinc transport proteins belonging to the ZIP protein family. These proteins are believed to be involved in cellular uptake of Zn2+. In this addendum, the Zn2+ transport capacity of ZIP proteins isolated from barley roots was investigated in response to various pH levels. We show that a lowering of pH induces a better growth at low Zn2+ concentrations of yeast cells expressing ZIP proteins. However, no significant change in transport capacity (Vmax) could be observed for HvIRT1, whereas lowering of pH from 5.5 to 4.2 increased the Vmax value with 64% for HvZIP5. These results indicate that proton activity has an important role in regulating the Zn2+ transport capacity of Zn2+ specific ZIP transport proteins. This information will increase the understanding of ZIP proteins and facilitate engineering of genotypes able to grow efficiently on marginal soils.Key words: ZIP proteins, barley, zinc transport, pH  相似文献   

12.
Summary The Cu++ retaining power of the three soils used in our experiments was found to be of the order: alkali soil > black soil > red soil. The alkali soil retained the applied Cu++ in basic copper carbonate and hydroxide forms due to its high carbonate (soluble + insoluble) and high pH values, and the red soil retained the least amount of Cu++ because of its low pH value and negligible carbonate content, whilst the black soil, being fairly rich in CaCO3, organic matter and suitable pH, occupied an intermediate position.When the original samples were treated with H2O2, H2O2 + HCl or were ignited at 600°C for 1 hour the retention of applied Cu++ decreased more or less as a result of destruction of organic matter, carbonate and dehydration of sesquioxides leaving an inert material.Saturation of original soils with H+ (by HCl) resulted in lower Cu++-retention, whilst the conversion of H-soils to Ca++-soils showed a higher Cu++-retention but never approached the amount of Cu retained by original soils. This is due to lowering of pH of the samples, removal of carbonates as well as due to antagonistic effect of H+-ions. A greater percentage of the Cu++ retained by these samples exists in the exchangeable forms in comparison to original soils.It has also been observed that addition of CaCO3, at the rate of 1 to 2 per cent (to the hydrogen samples) resulted in a precipitation of practically all the applied Cu++ and non-existence of exchangeable forms of Cu++.  相似文献   

13.
14.
Two agriculturally important species of rhizobia, Rhizobium leguminosarum biovar viciae (pea rhizobia) and R. leguminosarum bv. trifolii (white clover rhizobia), were enumerated in soils of a long-term field experiment to which sewage sludges contaminated predominantly with Zn or Cu, or Zn plus Cu, were added in the past. In addition to total soil Zn and Cu concentrations, soil pore water soluble Zn and free Zn2+, and soluble Cu concentrations are reported. Pea and white clover rhizobia were greatly reduced in soils containing ≥200 mg Zn kg-1, and soil pore water soluble Zn and free Zn2+ concentrations ≥7 and ≥3 mg l-1, respectively, in soils of pH 5.9–6. Copper also reduced rhizobial numbers, but only at high total soil concentrations (>250 mg kg-1) and not to the same extent as Zn. Yields of field grown peas decreased significantly as total soil Zn, soil pore water soluble Zn and free Zn+2 increased (R2 = 0.79, 0.75 and 0.75, respectively; P < 0.001). A 50% reduction in seed yield occurred at a total soil Zn concentration of about 290 mg kg-1, in soils of pH 5.9–6. The corresponding soil pore water soluble Zn and free Zn2+ concentrations were about 9 and 4 mg l-1, respectively. Pea seed yields were not significantly correlated with total soil Cu (R2 = 0.33) or soil pore water soluble Cu (R2 = 0.39). Yield reductions were due to a combination of greatly reduced numbers of free-living rhizobia in the soil due to Zn toxicity, thus indirectly affecting N2-fixation, and Zn phytotoxicity. These effects were exacerbated in slightly acidic soils due to increased solubility of Zn, and to some extent Cu, and an increase in the free Zn2+ fraction in soil pore water. The current United Kingdom, German and United States limits for Zn and Cu in soils are discussed in view of the current study. None of these limits are based on toxicity thresholds in soil pore water, which may have wider validity for different soil types and at different pH values than total soil concentrations. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
Summary Chronic exposure to aflatoxins (AFTs) below the LD50 can result in reduced weight gain, hepatocellular necrosis and bile duct cell proliferation. Here, we report whether dietary zinc (Zn2+) protects against both aflatoxicosis and precancer in male weanling hamsters fed either 14.6 mg/kg AFTs, 3000 mg/kg zinc carbonate, or both for 17 weeks. The AFTs (either alone or with Zn2+) reduced weight gains but not feed consumption. Whereas controls possessed 172.7±21.7 mg/100 ml plasma glucose, the AFTs and Zn2+ groups had 132.1±19.5 and 122.7 mg/100 ml, respectively. For plasma cholesterol, the AFTs plus Zn2+ group's was 26.5±4.3 compared to 32.3±3.0, 31.5±4.8 and 36.0±2.1 mg/100 ml for control, Zn2+ and AFTs groups, respectively. The latter exhibited bile duct cell hyperplasia, focal liver necrosis and hemorrhage but the AFTs plus Zn2+ group's livers had less damage. Meglahepatocytes indicated precancerous changes. These data suggest a trend toward Zn2+-induced reduction for AFTs-promoted liver damage.  相似文献   

16.
The zinc (Zn) supply increases the fruit yield of Citrus trees that are grown, especially in the highly weathered soils of the tropics due to the inherently low nutrient availability in the soil solution. Leaf sprays containing micronutrients are commonly applied to orchards, even though the nutrient supply via soil could be of practical value. This study aimed to evaluate the effect of Zn fertilizers that are applied to the soil surface on absorption and partitioning of the nutrient by citrus trees. A greenhouse experiment was conducted with one-year-old sweet orange trees. The plants were grown in soils with different textures (18.1 or 64.4% clay) that received 1.8 g Zn per plant, in the form of either ZnO or ZnSO4 enriched with the stable isotope 68Zn. Zinc fertilization increased the availability of the nutrient in the soil and the content in the orange trees. Greater responses were obtained when ZnSO4 was applied to the sandy loam soil due to its lower specific metal adsorption compared to that of the clay soil. The trunk and branches accumulated the most fertilizer-derived Zn (Zndff) and thus represent the major reserve organ for this nutrient in the plant. The trees recovered up to 4% of the applied Zndff. Despite this relative low recovery, the Zn requirement of the trees was met with the selected treatment based on the total leaf nutrient content and increased Cu/Zn-SOD activity in the leaves. We conclude that the efficiency of Zn fertilizers depends on the fertilizer source and the soil texture, which must be taken into account by guidelines for fruit crop fertilization via soil, in substitution or complementation of traditional foliar sprays.  相似文献   

17.
Bacterial systems have evolved a number of mechanisms, both active and passive, to manage toxic concentrations of heavy metals in their environment. The present study is aimed at describing the zinc resistance mechanism in a rhizospheric isolate, Pseudomonas fluorescens strain Psd. The strain was able to sustain an external Zn2+ concentration of up to 5 mM in the medium. The strategy for metal management by the strain was found to be extracellular biosorption with a possible role of exopolysaccharides in metal accumulation. The attainment of equilibrium in biosorption reaction was found to be dependent on initial Zn2+ concentration, with the reaction reaching equilibrium faster (50 min) at high initial Zn2+ concentration. Biosorption kinetics of the process was adjusted to pseudo-first order rate equation. With the help of Langmuir and Freundlich adsorption isotherms, it was established that Zn2+ biosorption by the bacterium is a thermodynamically favourable process.  相似文献   

18.
Phosphorus characteristics correlate with soil fertility of albic luvisols   总被引:3,自引:0,他引:3  
The information on phosphorus (P) characteristics of albic luvisols and their effect on plant P uptake is limited. Twelve soils representing typical albic luvisols were collected from farmland of four regions in northeast China, each with various levels of soil fertility. Phosphorus fractions, P adsorption and P supply capacity of the soils were analysed and were correlated with soil fertility and plant P nutrition. Total P in these soils ranged from 0.62–0.91 g kg–1, and comprised 37–51% organic P, and 49–63% in inorganic forms among which the percentage of occluded P was the greatest, followed by Fe-P, Ca-P, Al-P and loosely bound P was the lowest (<1%). Whereas the % of organic P was not clearly affected by fertility, the % of occluded P increased with fertility. By contrast, both % and contents of other P forms decreased with decreasing soil fertility. Soil P adsorption maxima calculated from Langmuir isotherm ranged from 484 to 912 mg kg–1. Soils with low fertility had the strongest P adsorption, and those with medium fertility had the weakest in all collection regions. The supply capacity of P was positively related to soil fertility. Plant growth correlated positively with P forms with available P correlating best, followed by Fe-P and P supply capacity. Organic C correlated with available P, Fe-P, total P, Al-P and P supply capacity but not with organic P. The results suggest that though the albic luvisols contained high total P, they had low P availability, and P application is required for optimal crop production on these soils.  相似文献   

19.
A zinc-resistant bacterium, Brevibacterium sp. strain HZM-1 which shows a high Zn2+-adsorbing capacity, was isolated from the soil of an abandoned zinc mine. Kinetic analyses showed that Zn2+ binding to HZM-1 cells follows Langmuir isotherm kinetics with a maximum metal capacity of 0.64 mmol/g dry cells and an apparent metal dissociation constant of 0.34 mM. The observed metal-binding capacity was one of the highest values among those reported for known microbial Zn2+ biosorbents. The cells could also adsorb heavy metal ions such as Cu2+. HZM-1 cells could remove relatively low levels of the Zn2+ ion (0.1 mM), even in the presence of large excess amounts (total concentration, 10 mM) of alkali and alkali earth metal ions. Bound Zn2+ ions could be efficiently desorbed by treating the cells with 10 mM HCl or 10 mM EDTA, and the Zn2+-adsorbing capacity of the cells was fully restored by treatment of the desorbed cells with 0.1 M NaOH. Thus, HZM-1 cells can serve as an excellent biosorbent for removal of Zn2+ from natural environments. The cells could grow in the presence of significant concentrations of ZnCl2 (at least up to 15 mM) and thus is potentially applicable to in situ bioremediation of Zn2+-contaminated aqueous systems. Received: 1 February 2000 / Received revision: 31 March 2000 / Accepted: 1 May 2000  相似文献   

20.
Release of Zn2+ from presynaptic glutamatergic terminals has long been considered the principle challenge necessitating the existence of zinc homeostatic proteins (ZHP) in the mammalian nervous system. It is now known that neural cells also possess an intracellular zinc pool, termed here [Zn2+]i, which functions in a cell signaling context. A major challenge is characterizing the interaction of these two populations of zinc ions. To assess the relationship of this Zn2+ pool to cellular ZHP production, we employed immunofluorescence and immunoblot analysis to compare the expression of ZHP's ZnT‐1 and MT‐I/II in olfactory bulb and hippocampus of wild‐type and ZnT‐3 KO mice, which lack synaptic Zn2+. In both areas, the respective distribution and concentration of ZnT‐1 and MT‐I/II were identical in ZnT‐3 KO and control animals. We subsequently examined ZHP content in ZnT‐3 KO and WT mice treated with a membrane‐permeable Zn2+ chelator. In both olfactory bulb and hippocampus of the KO mice, the ZHP content was significantly reduced 15 h after chelation of [Zn2+]i compared to WT controls. Our findings support the conclusion that ZHP expression is regulated by crosstalk between synaptic and intracellular pools of Zn2+. J. Cell. Physiol. 224: 567–574, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号