首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diffraction of x-rays from living cells, isolated nuclei, and metaphase chromosomes gives rise to several major low angle reflections characteristic of a highly conserved pattern of nucleosome packing within the chromatin fibers. We answer three questions about the x-ray data: Which reflections are characteristic of chromosomes in vivo? How can these reflections be preserved in vitro? What chromosome structures give rise to the reflections? Our consistent observation of diffraction peaks at 11.0, 6.0, 3.8, 2.7 and 2.1 nm from a variety of living cells, isolated nuclei, and metaphase chromosomes establishes these periodicities as characteristic of eukaryotic chromosomes in vivo. In addition, a 30-40- nm peak is observed from all somatic cells that have substantial amounts of condensed chromatin, and a weak 18-nm reflection is observed from nucleated erythrocytes. These observations provide a standard for judging the structural integrity of isolated nuclei, chromosomes, and chromatin, and thus resolve long standing controversy about the “tru” nature of chromosome diffraction. All of the reflection seen in vivo can be preserved in vitro provided that the proper ionic conditions are maintained. Our results show clearly that the 30-40-nm maximum is a packing reflection. The packing we observe in vivo is directly correlated to the side-by-side arrangement of 20- 30-nm fibers observed in thin sections of fixed and dehydrated cells and isolated chromosomes. This confirms that such packing is present in living cells and is not merely an artifact of electron microscopy. As expected, the packing reflection is shifted to longer spacings when the fibers are spread apart by reducing the concentration of divalent cations in vitro. Because the 18-, 11.0-, 6.0-, 3.8-, 2.7-, and 2.1-nm reflections are not affected by the decondensation caused by removal of divalent cations, these periodicities must reflect the internal structure of the chromaticn fibers.  相似文献   

2.
We have used neutron diffraction to study chromatin structure in interphase nuclei and metaphase chromosomes as a function of decreasing ion concentration. Aliquots of a suspension of rat liver nuclei prepared in a polyamine-free buffer were washed in buffers of 1/3, 1/6 and 1/12 if the original concentration of monovalent and divalent cations (40 mM KCl; 20 mM NaCl; 1.2 mM MgCl2). After the first dilution step (1/1 to 1/3), only small changes occurred in the diffraction pattern. They can be interpreted by a loosening of the original structure, i.e. by the formation of isolated buffer-filled spaces with an overall size of the order of 35-45 nm. Drastic changes in the diffraction pattern were observed, however, when the nuclei were washed in the more diluted buffers (1/6 and 1/12). The profiles of the distances distribution functions indicate the formation of supranucleosomal particles with an overall diameter of 40-50 nm. The compact chromatin structure disassembled directly into these fundamental structural units. Structural transformations in the Chinese hamster ovary metaphase chromosomes were induced by diminishing the Ca2+ ion concentration of the buffer from originally 3.0 mM to 0.3 mM and/or by increasing the pH value of the buffer from originally 7.0 up to 8.0. The neutron diffraction patterns remained essentially unchanged during these treatments, i.e. the decondensation of the chromosomes as observed in the light microscope is not accompanied by disassembly at the ultrastructural level between 2 nm and 150 nm.  相似文献   

3.
Higher-order chromatin fibers (200--300 A in diameter) are reproducibly released from nuclei after lysis in the absence of formalin and/or detergent. Electron microscope analysis of these fibers shows that they are composed of a continuous array of closely apposed nucleosomes which display several distinct packing patterns. Analysis of the organization of nucleosomes within these arrays and their distribution along long stretches of chromatin suggest that the basic 100-A chromatin fiber is not packed into discrete superbeads and is not folded into a uniform solenoid within the native 250-A fiber. Furthermore, because similar higher-order fibers have been visualized in metaphase chromosomes, the existence of this fiber class appears to be independent of the degree of in vivo chromatin condensation.  相似文献   

4.
The dissociation curves of histone H1 from chromatin in interphase and metaphase nuclei from Physarum polycephalum have been determined using CaCl2 as dissociating agent. H1 is less strongly bound to metaphase chromosomes than to interphase chromatin. However, no differences could be detected in the binding of Hl to early S, late S or G2 phase chromatin. The number of CaCl2 molecules involved in binding one H1 molecule to chromatin was reduced from 5 in interphase to 4 in metaphase. The non-electrostatic contribution to the free-energy of binding was small in both cases. A comparison of the binding properties of H1 to sheared chromatin, native chromatin and metaphase chromosomes suggests that the electrostatic binding functions of H1 are completely satisfied within the nucleosome and that further electrostatic interactions are not involved in folding the nucleosomal fibre into the 300 A "solenoid" or the more tightly folded metaphase chromosome.  相似文献   

5.
The lengths of the DNA molecules of eukaryotic genomes are much greater than the dimensions of the metaphase chromosomes in which they are contained during mitosis. From this observation it has been generally assumed that the linear packing ratio of DNA is an adequate measure of the degree of DNA compaction. This review summarizes the evidence suggesting that the local concentration of DNA is more appropriate than the linear packing ratio for the study of chromatin condensation. The DNA concentrations corresponding to most of the models proposed for the 30-40 nm chromatin fiber are not high enough for the construction of metaphase chromosomes. The interdigitated solenoid model has a higher density because of the stacking of nucleosomes in secondary helices and, after further folding into chromatids, it yields a final concentration of DNA that approaches the experimental value found for condensed chromosomes. Since recent results have shown that metaphase chromosomes contain high concentrations of the chromatin packing ions Mg2+ and Ca2+, it is discussed that dynamic rather than rigid models are required to explain the condensation of the extended fibers observed in the absence of these cations. Finally, considering the different lines of evidence demonstrating the stacking of nucleosomes in different chromatin complexes, it is suggested that the face-to-face interactions between nucleosomes may be the driving force for the formation of higher order structures with a high local concentration of DNA.  相似文献   

6.
杭绮  毛树坚 《动物学研究》1993,14(4):367-373
以草鱼ZC7901细胞株为材料,观察鱼类细胞从间期染色质到中期染色体的包装过程。主要通过(1)分裂期与间期细胞融合,诱导染色体早熟凝集;(2)染色体“伸长”处理;(3)培养细胞的低渗处理;(4)染色质辅展等方法,制作染色体标本,进行扫描和透射电镜观察。观察表明,鱼类染色质的基本结构与哺乳类细胞相同,也是直径约10nm的核丝。染色体的色装有两种形式:一种是多级螺旋化形成直径约300nm的染色单体,  相似文献   

7.
Mitotic metaphase chromosomes of cold-treated Triturus cristatus show a characteristic pattern of constrictions, most of which lie close, though not immediately adjacent, to the centromeres. The chromatin in these cold-induced constrictions stains intensely with Giemsa. Cold-treated spermatogonia show spiral structure throughout the metaphase chromatids; the packing of chromatin fibrils is much tighter in the constricted regions than elsewhere, and the gyres in the constricted regions are narrower and of shorter pitch.  相似文献   

8.
Burakov VV  Chentsov IuS 《Tsitologiia》2002,44(10):988-995
This paper deals with the ultrastructure and behavior of interphase chromatin and metaphase chromosomes of L-197 culture cells under experimental conditions, which help to reveal the chromonemal level of chromosomal structure after the treatment of living cells with 0.1% Triton X-100 and 3 mM CaCl2. In these conditions, the chromonemata can be seen as dense chromatin fibers with thickness about 100 nm. Such chromosomes, whose chromonemal substructure after the treatment with hypotonic solution (10 mM Tris-HCl), look like loose chromosomal bodies composed of elementary 30 nm DNP fibrils. On the other hand, if chromosomes, in which chromonemal levels were revealed by 3 mM CaCl2, were treated with etidium bromide and then illuminated by light with length wave about 460 nm, no chromosomal decondensation in hypotonic conditions is observed. Chromonemata in chromosomes stabilized by light retain their density and dimensions. It is very important that chromonemata in stabilizated chromatin of metaphase chromosome keep specific connections between themselves and also general trend in their composition inside the chromosome. Thus, we have found conditions for observation of chromonemal elements in metaphase chromosome, providing the possibility for future three-dimensional investigation of chromonema packing in mitotic chromosomes.  相似文献   

9.
Nucleosomes in metaphase chromosomes.   总被引:4,自引:2,他引:2       下载免费PDF全文
Previous studies of the structure of metaphase chromosomes have relied heavily on electron micrography and have revealed the existence of a 10-nm unit fiber that is thought to generate the native 23-30-nm fiber by higher order folding. The structural relationship of these metaphase fibers to the interphase fiber remains obscure. Recent studies on the digestion of interphase chromatin have revealed the existence of a regularly repeating subunit of DNA and histone, the nucleosome that generates the appearance of 10-nm beads connected by a short fiber of DNA seen on electron micrographs. It was therefore of interest to probe the structure of the metaphase chromosome for the presence of nucleosomal subunits. To this end metaphase chromosomes were prepared from colchicine-arrested cultures of mouse L-cells and were subjected to digestion with stayphylococcal nuclease. Comparison of the early and limit digestion products of metaphase chromosomes with those obtained from interphase nuclei indicates that although significant morphologic changes occur within the chromatin fiber during mitosis, the basic subunit structure of the chromatin fiber is retained by the mitotic chromosome.  相似文献   

10.
11.
The three-dimensional organization of the enormously long DNA molecules packaged within metaphase chromosomes has been one of the most elusive problems in structural biology. Chromosomal DNA is associated with histones and different structural models consider that the resulting long chromatin fibers are folded forming loops or more irregular three-dimensional networks. Here, we report that fragments of chromatin fibers obtained from human metaphase chromosomes digested with micrococcal nuclease associate spontaneously forming multilaminar platelike structures. These self-assembled structures are identical to the thin plates found previously in partially denatured chromosomes. Under metaphase ionic conditions, the fragments that are initially folded forming the typical 30-nm chromatin fibers are untwisted and incorporated into growing plates. Large plates can be self-assembled from very short chromatin fragments, indicating that metaphase chromatin has a high tendency to generate plates even when there are many discontinuities in the DNA chain. Self-assembly at 37°C favors the formation of thick plates having many layers. All these results demonstrate conclusively that metaphase chromatin has the intrinsic capacity to self-organize as a multilayered planar structure. A chromosome structure consistent of many stacked layers of planar chromatin avoids random entanglement of DNA, and gives compactness and a high physical consistency to chromatids.  相似文献   

12.
Calreticulin (CRT) is a multifunctional Ca(2+)-binding protein that mainly functions in the endoplasmic reticulum as a molecular chaperone for newly synthesized proteins. Recently we reported the protein composition of human metaphase chromosomes (Uchiyama et al., 2004), which included CRT. Here we describe new characteristics of CRT in vitro as well as its localization on the surface of metaphase chromosomes in vivo. CRT was detected in the chromosomal fraction by Western blotting and its binding partners were identified as core and linker histones by ligand overlay assay. Surface plasmon resonance sensor analyses revealed that CRT is bound to chromatin fibers. Moreover, we found that CRT has both supercoiling activity, which assists core histone assembly into chromatin fibers, and binding ability to histone H2A/H2B dimers and histone H3/H4 tetramers. Unlike the chromosome scaffold proteins, indirect immunofluorescent staining revealed that CRT is located on the surface of metaphase chromosomes. These results suggest that CRT plays a role which involves chromatin dynamics on the surface of mitotic chromosomes.  相似文献   

13.
Neutron and X-ray small angle scattering techniques have been applied to study chromatin structure inside different types of cell nuclei. Scattering from genetically inactive chicken erythrocyte nuclei exhibits a maximum at Q = 0.1-0.15 nm-1 which cannot be observed by studying isolated chromatin derived from the same kind of cells. In highly active transcribing rat liver nuclei such a nuclear pattern is absent. The radius of gyration of isolated "superbeads" was determined. It is discussed whether the characteristic maximum of the nuclei originates from this superstructural organisation of chromatin. Rat liver nuclei were fractionated on sucrose gradients in order to determine whether the absence of the extra maximum in scattering profiles of these nuclei is due to overlapping effects of different chromatin organisation in the various cell types of the liver. As compared to unfractionated nuclei no strong deviations in the scattering profiles of the fractions could be observed. Erythrocyte nuclei were dialysed in buffers differing in the ionic strength of monovalent cations. The typical maximum from the nuclei is shifted from 60 nm (very low salt concentration) to about 35 nm (physiological ionic strength) and is linearly proportional to the decreasing radius of the nuclei. In conclusion, chromatin structure inside the nucleus has a scattering maximum due to an ordered packing of the fibres which is absent in nuclei with high genetic activity.  相似文献   

14.
Superpacking of chromatin and the surface features of metaphase chromosomes have been studied by SiO replication of wet, unstained, and unfixed specimens in an exceedingly thin (≤ 1 nm) aqueous layer, keeping them wet. Hydrophilic Formvar substrates allow controlled thinning of the aqueous layer covering the wet specimens. Whole mounts of chromatin and chromosomes were prepared by applying a microsurface spreading method to swollen nuclei and mitotic cells at metaphase. The highest level of nucleosome folding of the inactive chromatin in chicken erythrocytes and rat liver nuclei is basically a second-order superhelical organization (width 150–200 nm, pitch distance 50–150 nm) of the elementary nucleosome filament. In unfavorable environments (as determined by ionic agents, fixative, and dehydrating agents) this superstructure collapses into chains of superbeads and beads. Formalin (10%) apparently attacks at discrete sites of chromatin, which are then separated into superbeads. The latter consist of 4–6 nucleosomes and seemingly correspond to successive turns of an original solenoidal coil (width 30–35 nm), which forms the superhelical organization. When this organization is unfolded, eg, in 1–2 mM EDTA, DNAse-sensitive filaments (diameter 1.7 nm) are seen to be wrapped around the nucleosomes. The wet chromosomes in each metaphase spread are held to each other by smooth microtubular fibers, 20–30 nm in diameter. Before they enter into a chromsome, these fibers branch into 9–13 protofilaments, each 5 nm wide. The chromosome surface contains a dense distribution of subunits about 10–25 nm in diameter. This size distribution corresponds to that of nucleosomes and their superbeads. Distinct from this beaded chromosome surface are several smooth, 23–30-nm-diameter fibers, which are longitudinal at the centromere and seem to continue into the chromatid structure. The surface replicas of dried chromosomes do not show these features, which are revealed only in wet chromosomes.  相似文献   

15.
Daban JR 《Biochemistry》2000,39(14):3861-3866
The local concentration of DNA in metaphase chromosomes of different organisms has been determined in several laboratories. The average of these measurements is 0.17 g/mL. In the first level of chromosome condensation, DNA is wrapped around histones forming nucleosomes. This organization limits the DNA concentration in nucleosomes to 0. 3-0.4 g/mL. Furthermore, in the structural models suggested in different laboratories for the 30-40 nm chromatin fiber, the estimated DNA concentration is significantly reduced; it ranges from 0.04 to 0.27 g/mL. The DNA concentration is further reduced when the fiber is folded into the successive higher order structures suggested in different models for metaphase chromosomes; the estimated minimum decrease of DNA concentration represents an additional 40%. These observations suggest that most of the models proposed for the 30-40 nm chromatin fiber are not dense enough for the construction of metaphase chromosomes. In contrast, it is well-known that the linear packing ratio increases dramatically in each level of DNA folding in chromosomes. Thus, the consideration of the linear packing ratio is not enough for the study of chromatin condensation; the constraint resulting from the actual DNA concentration in metaphase chromosomes must be considered for the construction of models for condensed chromatin.  相似文献   

16.
牛肾细胞染色体中染色质纤维的包装及RNP的分布   总被引:4,自引:1,他引:3  
罗艺  刘凌云 《遗传学报》1996,23(5):351-356
应用培养的牛肾(BK)细胞及分离的BK细胞染色体做常规透射电镜样品,经表面舒展技术和临界点干燥制备BK细胞染色体的扫描电镜样品,并结合电镜细胞化学研究了BK染色质纤维的包装及核糖核蛋白(RNP)的分布。观察到BK染色体具有多级双股螺旋结构。在染色体横切面中,可见染色体中央有一低电子密度的无染色质区,该区内有大量RNP物质。在染色质区RNP较少,分布在染色质纤维间,与中央轴区的RNP相连续,表明RNP在染色体中呈不均匀分布。  相似文献   

17.
Nuclei transplanted into unactivated amphibian eggs are known to condense into metaphase chromosomes whereas those transplanted into activated eggs decondense and enlarge. We have made cell-free cytoplasmic preparations from Rana pipiens eggs which can induce demembranated Xenopus laevis sperm to undergo changes similar to those seen in intact eggs. Sperm chromatin which is incubated for 3 hr in unactivated egg preparations made using a buffer containing 3 mM EGTA is induced to form metaphase chromosomes. However, decondensed interphase nuclei are formed when chromatin is incubated in unactivated egg preparations made without EGTA as well as in activated egg preparations. When Ca2+ ions are added to unactivated egg preparations made with EGTA, the preparations lose the ability to induce metaphase chromosome formation and become capable of decondensing sperm chromatin. Once the ability to decondense chromatin has developed, either in unactivated or activated egg preparations, it cannot be suppressed by the addition of EGTA. However, decondensation of sperm chromatin in activated egg preparations can be suppressed by the addition of unactivated egg preparations made with EGTA. In this case, the incubated sperm chromatin is induced to form metaphase chromosomes. These results may indicate that the chromosome condensation activity of unactivated egg cytoplasm can be sustained in cell-free preparations when Ca2+ ion levels are kept low, but when Ca2+ ion levels increase this activity is lost and replaced by a new activity which can decondense chromatin. Since this change in cytoplasmic activities is comparable to that occurring in the intact egg following fertilization, these results suggest that Ca2+ ions play a crucial role during activation in altering the cytoplasmic activities which control nuclear behavior.  相似文献   

18.
In this study we addressed the question of whether scaffold structures produced from purified mitotic chromosomes are an artefact of dehistonization, and whether the integrity of the chromatin fibres is necessary for the maintenance of the well-known shape of mitotic chromosomes. Purified mitotic chromosomes from Friend erythroleukemia cells were treated either with increasing NaCl concentrations up to 500 mM, or with 6 M urea in the presence or absence of 10 mM 2-mercaptoethanol. The main criterion for the intactness of the overall chromosome shape as seen by electron microscopy was the characteristic X-or U-like appearance with clearly discernable chromatid axes. Histone H1 is known to be essential for the integrity of chromatin fibres. Its removal in sucrose gradients containing 500 mM NaCl did not lead to loss of the overall chromosome shape. However, treatment of chromosomes in sucrose gradients containing 10 mM 2-mercaptoethanol and 6 M urea led to loss of the structure probably due to dissociation (or denaturation) of shape-determining (scaffolding) components. Under these conditions most of the histones remained bound to the chromosomes, and the fibres in this chromatin material, after removal of excess urea and 2-mercaptoethanol, still showed condensation of the nucleosome filaments into the characteristic fibre structures upon increasing ionic strength. Our observations are compatible with the model that specific non-histone components, independently of histone-DNA interactions, organize or stabilize the structure of metaphase chromosomes.  相似文献   

19.
Histones, linker histones of the H1 family, their postsyntetic modifications, DNA-histone H1 interaction are reviewed. A question of protein change in spermatogenesis at the formation of inactive nucleus with high degree of DNA density is considered. Special attention was paid to sperm-specific histones of the H1 family of sperm cells. Their role in organization of high-order chromatin structure of sperm cells is discussed. Also, results of different studies on the structural organization of chromatin (nucleosomes, 30-nm fibers, chromatin loops and metaphase chromosomes) are discussed.  相似文献   

20.
The cation-induced refolding of the 100 A nucleosome filament into the 300 A filament has been studied over a wide range of concentrations of Na+, Mg2+, Co(NH3)3+6 and other cations. X-ray diffraction, electron microscopy and analytical ultracentrifugation have been used to determine the conditions under which the 300 A filament is formed. It is shown that cations induce chromatin refolding by acting as general DNA counterions. The concentration of any cation required to induce refolding is greatly dependent on the valence of that cation. Na+ (and, presumably, other monovalent cations) has dual effects: at high concentrations (greater than 45 to 65 mM) it stabilizes the 300 A filament state of chromatin; however, at low concentrations (less than approximately equal to 45 mM), when cations of higher valence are present and stabilizing the 300 A filament state, Na+ has the opposite effect, competing with the higher-valence cation for binding to the chromatin and destabilizing the 300 A filament state. It is shown that further addition of cations to chromatin in the 300 A filament state causes a further folding of the chromatin in which the sedimentation coefficient increases and the X-ray diffraction bands resulting from nucleosomal packing sharpen. This may reflect subtle structural changes within the 300 A filament, or it may reflect a shift in equilibrium constant for chromatin fluctuating between the 100 A and 300 A filament states. It is also shown that, with continued addition of cation, the 300 A filaments precipitate before any "endpoint" is reached in this further folding. The tendency of 300 A filaments to aggregate in vitro appears to be a built-in property, and may reflect the packing of 300 A filaments within metaphase chromosomes in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号