首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The standard method used to calculate the ankle joint power contains deficiencies when applied to dynamic elastic response prosthetic feet. The standard model, using rotational power and inverse dynamics, assumes a fixed joint center and cannot account for energy storage, dissipation, and return. This study compared the standard method with new analysis models. First, assumptions of inverse dynamics were avoided by directly measuring ankle forces and moments. Second, the ankle center of rotation was corrected by including translational power terms. Analysis with below-knee amputees revealed that the conventional method overestimates ankle forces and moments as well as prosthesis energy storage and return. Results for efficiency of energy return were varied. Large differences between models indicate the standard method may have serious inadequacies in the analysis of certain prosthetic feet. This research is the first application of the new models to prosthetic feet, and suggests the need for additional research in gait analysis with energy-storing prostheses.  相似文献   

2.
The effect of dissipative mechanical loads on spastic gait has been studied, to evaluate the feasibility of using mechanically damped orthoses to effect functional improvements in the gait of spastic patients. This concept is based on a hypothesis citing uninhibited, velocity-dependent stretch reflexes as a possible causal factor in spastic gait abnormalities, such as equinus and back-kneeing. In order to screen potential experimental subjects and to quantify velocity-dependent reflex behaviour, ankle rotation experiments and filmed gait analysis were performed. The results supported the existence of a velocity threshold. Orthosis simulation experiments were performed with one spastic subject, using a wearable, computer-controlled, electromechanical, below-knee orthosis simulator to apply a variety of damping loads to the ankle as the subject walked. Results indicated that appropriate damping can improve local joint kinematics. The damping causes a reduction in muscle stretch velocity which apparently results in reduced spastic reflex activity.  相似文献   

3.
Unilateral, below-knee amputees have altered gait mechanics, which can significantly affect their mobility. Below-knee amputees lose the functional use of the ankle muscles, which are critical during walking to provide body support, forward propulsion, leg-swing initiation and mediolateral balance. Thus, either muscles must compensate or the prosthesis must provide the functional tasks normally provided by the ankle muscles. Three-dimensional (3D) forward dynamics simulations of amputee and non-amputee walking were generated to identify muscle and prosthesis contributions to amputee walking mechanics, including the subtasks of body support, forward propulsion, leg-swing initiation and mediolateral balance. Results showed that the prosthesis provided body support in the absence of the ankle muscles. The prosthesis contributed to braking from early to mid-stance and propulsion in late stance. The prosthesis also functioned like the uniarticular soleus muscle by transferring energy from the residual leg to the trunk to provide trunk propulsion. The residual-leg vasti and rectus femoris reduced their contributions to braking in early stance, which mitigated braking from the prosthesis during this period. The prosthesis did not replace the function of the gastrocnemius, which normally generates energy to the leg to initiate swing. As a result, lower overall energy was delivered to the residual leg. The prosthesis also acted to accelerate the body laterally in the absence of the ankle muscles. These results provide further insight into muscle and prosthesis function in below-knee amputee walking and can help guide rehabilitation methods and device designs to improve amputee mobility.  相似文献   

4.
Unilateral, below-knee amputees have an increased risk of falling compared to non-amputees. The regulation of whole-body angular momentum is important for preventing falls, but little is known about how amputees regulate angular momentum during walking. This study analyzed three-dimensional, whole-body angular momentum at four walking speeds in 12 amputees and 10 non-amputees. The range of angular momentum in all planes significantly decreased with increasing walking speed for both groups. However, the range of frontal-plane angular momentum was greater in amputees compared to non-amputees at the first three walking speeds. This range was correlated with a reduced second vertical ground reaction force peak in both the intact and residual legs. In the sagittal plane, the amputee range of angular momentum in the first half of the residual leg gait cycle was significantly larger than in the non-amputees at the three highest speeds. In the second half of the gait cycle, the range of sagittal-plane angular momentum was significantly smaller in amputees compared to the non-amputees at all speeds. Correlation analyses suggested that the greater range of angular momentum in the first half of the amputee gait cycle is associated with reduced residual leg braking and that the smaller range of angular momentum in the second half of the gait cycle is associated with reduced residual leg propulsion. Thus, reducing residual leg braking appears to be a compensatory mechanism to help regulate sagittal-plane angular momentum over the gait cycle, but may lead to an increased risk of falling.  相似文献   

5.
The feet and gaits of many camels Camelus dromedarius were studied and filmed in Mauritania, Africa. The camel has a digitigrade stance, large feet to support the animal in soft sand, and soles of flexible pads that step readily onto small stones where necessary. The walking stride is long and slow, with the body supported for much of each stride on the two right or two left legs. The pattern of supporting legs was significantly different in slow compared to fast walking camels, and in young compared to adult camels and compared to adults pulling water at the wells. There was no difference in pattern in one individual's walk, when it was either loaded or unloaded. The angles that the leg bones made with each other and with the horizon are depicted for the walk and the pace. The camel is the only animal which paces often and never trots. The pace is an unstable gait only suitable for flat terrain such as that in deserts. It may have evolved from the pace-like walk which is by far the dominant gait in this animal, which spends most of each day walking from plant to plant browsing or grazing. The pace is not used by all camelids, as one author has claimed. The pace and the gallop were only used by the camels at wells, when the animals were chased from the water by men.  相似文献   

6.
Mechanical energy expenditure during level walking was evaluated and graphed for two unilateral, below-knee amputees over time and a range of adjustments of the flexion-extension alignment angle. The resulting mechanical energy surfaces were then least-squared fitted with an analytical function that was linear in time and quadratic in flexion-extension alignment angle. The least-squares analysis showed that there was a flexion-extension adjustment that minimized the mechanical energy expenditure and that this optimal adjustment was very close to the design point set by certified prosthetists.  相似文献   

7.
研究和讨论贵州贞丰龙场中三叠统关岭组中发现的一系列足迹。通过与贞丰县牛场足迹进行比较,利用现场采制的石膏拓模以及胶片描图,绘制单个足迹和一系列足迹的图形,并测出步蝠角和趾间角等角度。参照国际上流行的计算方法,利用足迹学的知识对现场足迹进行分析,初步得出造迹动物形态和运动状态的一些特征。同时,通过牛场、龙场两地足迹趾尖印痕的对比,着重讨论手兽在运动时脚掌着地和发力的挣点,从而阐述该造迹动物的一些运动习性。文中还将研究的足迹与恐龙进行简单对比,期待以后对手兽更深入的研究能够更好地认识恐龙的出现。  相似文献   

8.
This study represents a functional analysis of the human foot complex based on in-vivo gait measurements, finite element (FE) modeling and biological coupling theory, with the objective of achieving a comprehensive understanding of the impact attenuation and energy absorption functions of the human foot complex. A simplified heel pad FE model comprising reticular fiber structure and fat cells was constructed based on the foot pad Magnetic Resonance (MR) images. The model was then used to investigate the foot pad behaviors under impact during locomotion. Three-dimensional (3D) gait measurement and a 3D FE foot model comprising 29 bones, 85 ligaments and the plantar soft tissues were used to investigate the foot arch and plantar fascia deformations in mid-stance phase. The heel pad simulation results show that the pad model with fat cells (coupling model) has much stronger capacity in impact attenuation and energy storage than the model without fat cells (structure model). Furthermore, the FE simulation reproduced the deformations of the foot arch structure and the plantar fascia extension observed in the gait measurements, which reinforces the postulation that the foot arch structure also plays an important role in energy absorption during locomotion. Finally, the coupling mechanism of the human foot functions in impact attenuation and energy absorption was proposed.  相似文献   

9.
Children with cerebral palsy (CP) expend more energy to walk compared to typically-developing peers. One of the most prevalent gait patterns among children with CP, crouch gait, is often singled out as especially exhausting. The dynamics of crouch gait increase external flexion moments and the demand on extensor muscles. This elevated demand is thought to dramatically increase energy expenditure. However, the impact of crouch severity on energy expenditure has not been investigated among children with CP. We evaluated oxygen consumption and gait kinematics for 573 children with bilateral CP. The average net nondimensional oxygen consumption during gait of the children with CP (0.18 ± 0.06) was 2.9 times that of speed-matched typically-developing peers. Crouch severity was only modestly related to oxygen consumption, with measures of knee flexion angle during gait explaining only 5–20% of the variability in oxygen consumption. While knee moment and muscle activity were moderately to strongly correlated with crouch severity (r2 = 0.13–0.73), these variables were only weakly correlated with oxygen consumption (r2 = 0.02–0.04). Thus, although the dynamics of crouch gait increased muscle demand, these effects did not directly result in elevated energy expenditure. In clinical gait analysis, assumptions about an individual’s energy expenditure should not be based upon kinematics or kinetics alone. Identifying patient-specific factors that contribute to increased energy expenditure may provide new pathways to improve gait for children with CP.  相似文献   

10.
Svalbard rock ptarmigans were walked and run upon a treadmill and their energy expenditure measured using respirometry. The ptarmigan used three different gaits: a walking gait at slow speeds (less than or equal to 0.75 m s(-1)), grounded running at intermediate speeds (0.75 m s(-1) < U < 1.67 m s(-1)) and aerial running at high speeds (greater than or equal to 1.67 m s(-1)). Changes of gait were associated with reductions in the gross cost of transport (COT; J kg(-1) m(-1)), providing the first evidence for energy savings with gait change in a small crouched-postured vertebrate. In addition, for the first time (excluding humans) a decrease in absolute metabolic energy expenditure (rate of O(2) consumption) in aerial running when compared with grounded running was identified. The COT versus U curve varies between species and the COT was cheaper during aerial running than grounded running, posing the question of why grounded running should be used at all. Existing explanations (e.g. stability during running over rocky terrain) amount to just so stories with no current evidence to support them. It may be that grounded running is just an artefact of treadmill studies. Research investigating the speeds used by animals in the field is sorely needed.  相似文献   

11.
The plantarflexor, hip extensor and hip flexor muscle groups contribute by their concentric action to generate most of the energy during level gait in healthy subjects. The goal of the present study was to determine, during the main energy generation phases, the relative demand of these three groups in 14 healthy subjects walking at four cadences (self-selected, 60, 80 and 120 steps/min). The muscular utilization ratio (MUR), that compares the net joint moment obtained during gait to the maximal potential moment (MPM) at each percentage of the gait cycle, was used to estimate the mechanical relative demand. The MPM values were obtained by regression equations developed from torque data measured with a Biodex dynamometric system. The results showed that the peak MURs increased with gait cadence. The peak values were not significantly different between sides for all cadences despite mean absolute lateral differences ranging from 7% to 10%. The mean peak MURs of both sides ranged from 51.3% to 62.6%, from 20.7% to 49.9% and from 14.9% to 42.5%, for the plantarflexors, hip flexors and hip extensors, respectively. Highly significant associations were found between the MURs and net moments (numerator of the MUR ratio), with Pearson coefficients (r) superior to 0.80 for all muscles groups. The association between the MURs and the maximal potential moments (denominator of MUR ratio) was lower (0.01相似文献   

12.
Shoe soles are possible vectors for infectious diseases. Although studies have been performed to assess the prevalence of infectious pathogens on shoe soles and decontamination techniques, no systematic review has ever occurred. The aim of this study was to perform a systematic review of the literature to determine the prevalence of infectious agents on shoe bottoms and possible decontamination strategies. Three electronic bibliographic databases were searched using a predefined search strategy evaluating prevalence of infectious pathogens on shoe bottoms and decontamination strategies. Quality assessment was performed independently by two reviews with disagreements resolved by consensus. Thirteen studies were identified that supported the hypothesis that shoe soles are a vector for infectious pathogens. Methicillin‐resistant Staphylococcus aureus, Clostridium difficile and multidrug‐resistant Gram‐negative species among other pathogens were documented on shoe bottoms in the health care setting, in the community and among food workers. Fifteen studies were identified that investigated decontamination strategies for shoe soles. A number of decontamination strategies have been studied of which none have been shown to be consistently successful at disinfecting shoe soles. In conclusion, a high prevalence of microbiological pathogens was identified from shoe soles studied in the health care, community and animal worker setting. An effective decontamination strategy for shoe soles was not identified. Studies are needed to assess the potential for contaminated shoes to contribute to the transmission of infectious pathogens.  相似文献   

13.
Predictive modelling of human walking over a complete gait cycle   总被引:1,自引:0,他引:1  
  相似文献   

14.
Loss of mobility due to lower limb paralysis is a common result of thoracic level spinal cord injury. Functional electrical stimulation (FES) can restore primitive gait in the vicinity of a wheelchair by using electrical stimulation to generate muscle contractions. A new concept for FES-assisted gait is presented that combines electrical stimulation with an orthosis that contains a fluid power system to store and transfer energy during the gait cycle. The energy storage orthosis (ESO) can be driven through a complete gait cycle using only stimulation of the quadriceps muscles. The conceptual design of the ESO was completed and implemented in a dynamic simulation model and in a benchtop prototype for engineering measurements. No studies were conducted with human subjects. The results demonstrate the potential of the ESO concept for a feasible gait-assist system and the validity of the simulation model as a means for designing the system.  相似文献   

15.
Although humans have a large repertoire of potential movements, gait patterns tend to be stereotypical and appear to be selected according to optimality principles such as minimal energy. When applied to dynamic musculoskeletal models such optimality principles might be used to predict how a patient's gait adapts to mechanical interventions such as prosthetic devices or surgery. In this paper we study the effects of different performance criteria on predicted gait patterns using a 2D musculoskeletal model. The associated optimal control problem for a family of different cost functions was solved utilizing the direct collocation method. It was found that fatigue-like cost functions produced realistic gait, with stance phase knee flexion, as opposed to energy-related cost functions which avoided knee flexion during the stance phase. We conclude that fatigue minimization may be one of the primary optimality principles governing human gait.  相似文献   

16.
We retrospectively reviewed 61 cases of bilateral lower limb amputations in patients admitted to a regional amputee rehabilitation program. Of the 61 cases, 41 were analyzed as to functional outcome on discharge, at 1 month, and at 3 months; 20 were not included owing to transfers to acute care or loss to follow-up. There were 41 men and 20 women, the average age was 61.5 years, and 47 patients (77%) were discharged to home. There were 25 bilateral below-knee, 14 above-knee and below-knee, 12 bilateral above-knee, 5 below-knee and partial-foot, 3 above-knee and partial-foot, and 2 bilateral partial-foot amputations. The average length of stay for all levels was 24.2 days. Most of the patients at the time of discharge achieved a level of limited household walking with the exception of those with bilateral above-knee amputations. A significant improvement in function was noted for all patients at 3-month follow-up, with most patients achieving household ambulation level, but 10 remained independent at wheelchair level for mobility.  相似文献   

17.
The aim of this study was to investigate muscle?s energy patterns and spectral properties of diabetic neuropathic individuals during gait cycle using wavelet approach. Twenty-one diabetic patients diagnosed with peripheral neuropathy, and 21 non-diabetic individuals were assessed during the whole gait cycle. Activation patterns of vastus lateralis, medial gastrocnemius and tibialis anterior were studied by means of bipolar surface EMG. The signal?s energy and frequency were compared between groups using t-test. The energy was compared in each frequency band (7–542 Hz) using ANOVAs for repeated measures for each group and each muscle. The diabetic individuals displayed lower energies in lower frequency bands for all muscles and higher energies in higher frequency bands for the extensors? muscles. They also showed lower total energy of gastrocnemius and a higher total energy of vastus, considering the whole gait cycle. The overall results suggest a change in the neuromuscular strategy of the main extensor muscles of the lower limb of diabetic patients to compensate the ankle extensor deficit to propel the body forward and accomplish the walking task.  相似文献   

18.
Many children with cerebral palsy walk in a crouch gait that progressively worsens over time, decreasing walking efficiency and leading to joint degeneration. This study examined the effect of crouched postures on the capacity of muscles to extend the hip and knee joints and the joint flexions induced by gravity during the single-limb stance phase of gait. We first characterized representative mild, moderate, and severe crouch gait kinematics based on a large group of subjects with cerebral palsy (N=316). We then used a three-dimensional model of the musculoskeletal system and its associated equations of motion to determine the effect of these crouched gait postures on (1) the capacity of individual muscles to extend the hip and knee joints, which we defined as the angular accelerations of the joints, towards extension, that resulted from applying a 1N muscle force to the model, and (2) the angular acceleration of the joints induced by gravity. Our analysis showed that the capacities of almost all the major hip and knee extensors were markedly reduced in a crouched gait posture, with the exception of the hamstrings muscle group, whose extension capacity was maintained in a crouched posture. Crouch gait also increased the flexion accelerations induced by gravity at the hip and knee throughout single-limb stance. These findings help explain the increased energy requirements and progressive nature of crouch gait in patients with cerebral palsy.  相似文献   

19.
This study examined the effects of reduced plantar cutaneous afferent feedback on predictive and feedback adaptive locomotor adjustments in dynamic stability during perturbed walking. Twenty-two matched participants divided between an experimental-group and a control-group performed a gait protocol, which included surface alterations to one covered exchangeable gangway-element (hard/soft). In the experimental-group, cutaneous sensation in both foot soles was reduced to the level of sensory peripheral neuropathy by means of intradermal injections of an anaesthetic solution, without affecting foot proprioception or muscles. The gait protocol consisted of baseline trials on a uniformly hard surface and an adaptation phase consisting of nineteen trials incorporating a soft gangway-element, interspersed with three trials using the hard surface-element (2nd, 8th and 19th). Dynamic stability was assessed by quantifying the margin of stability (MS), which was calculated as the difference between the base of support (BS) and the extrapolated centre of mass (CM). The horizontal velocity of the CM and its vertical projection in the anterior-posterior direction and the eigenfrequency of an inverted pendulum determine the extrapolated-CM. Both groups increased the BS at the recovery step in response to the first unexpected perturbation. These feedback corrections were used more extensively in the experimental-group, which led to a higher MS compared to the control-group, i.e. a more stable body-position. In the adaptation phase the MS returned to baseline similarly in both groups. In the trial on the hard surface directly after the first perturbation, both groups increased the MS at touchdown of the disturbed leg compared to baseline trials, indicating rapid predictive adjustments irrespective of plantar cutaneous input. Our findings demonstrate that the locomotor adaptational potential does not decrease due to the loss of plantar sensation.  相似文献   

20.
老化和风干处理对蚓粪微生物学性质和结构稳定性的影响   总被引:1,自引:0,他引:1  
朱玲  李辉信  刘宾  陈小云  胡锋 《生态学报》2007,27(1):120-127
蚓粪水稳性团聚体含量是结构稳定性表征之一,蚓粪中水稳性团聚体含量与其微生物学性质是紧密联系的,并且受到老化时问和有机质等因素的影响。国内将蚓粪水稳性团聚体含量与其微生物学性质联系,并结合施用不同有机物处理的研究很少见报道。研究通过室内短期培养试验,研究了在不同碳氮比有机物施用下蚓粪老化和风干处理对其微生物生物量、微生物活性和结构稳定性变化的影响。研究结果表明蚓粪经过老化处理后真菌数量、微生物生物量碳和微生物活性都显著降低。不同有机物的施用对蚓粪微生物学性质的影响主要表现在施用牛粪的处理中蚓粪细菌数量高于施用秸秆的处理,真菌数量相反。新鲜蚓粪经过老化处理后总的水稳性团聚体含量(〉0.053mm)增加,主要表现在水稳性大型大团聚体(〉2mm)含量增加,且在施用牛粪的处理中达到显著,可能是与牛粪比秸秆能分解产生更多的粘结物质有关。蚓粪的风于处理也显著增加各个处理中总水稳性团聚体含量,且风干后蚓粪中水稳性团聚体主要以微团聚体(0.25~0.053mm)形式存在。施用秸秆的处理中,新鲜蚓粪0.25~0.053mm粒级的水稳性团聚体含量显著高于施用牛粪的处理。经风干后,施用秸秆的处理0.25~0.053mm的水稳性团聚体含量显著低于施用牛粪的处理,而水稳性大型大团聚体含量显著高于施用牛粪的处理。蚓粪的不同粒级水稳性团聚体含量和蚓粪的生物学性质之间存在良好的相关性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号