首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DEP domain containing 1(DEPDC1) is involved in the tumorigenesis of a variety of cancers. But its role in tumorigenesis of lung adenocarcinoma (LUAD) is not fully understood. Here, we investigated the role and the underlying mechanisms of DEPDC1 in the development of LUAD. The expression and prognostic values of DEPDC1 in LUAD were analysed by using the data from public databases. Gene enrichment in TCGA LUAD was analysed using GSEA software with the pre‐defined gene sets. Cell proliferation, migration and invasion of A549 cells were examined with colony formation, Transwell and wound healing assays. The function of DEPDC1 in autophagy and RAS‐ERK1/2 signalling was determined with Western blot assay upon DEPDC1 knockdown and/or overexpression in A549, HCC827 and H1993 cells. The results demonstrated that DEPDC1 expression was up‐regulated in LUAD tissues, and its high expression was correlated with unfavourable prognosis. The data also showed that DEPDC1 knockdown impaired proliferation, migration and invasion of A549 cells. Most notably, the results showed that DEPDC1 up‐regulated RAS expression and thus enhanced ERK1/2 activity, through which DEPDC1 could inhibit autophagy. In conclusion, our study revealed that DEPDC1 is up‐regulated in LUAD tissues and plays an oncogenic role in LUAD, and that DEPDC1 inhibits autophagy through the RAS‐ERK1/2 signalling in A549, HCC827 and H1993 cells.  相似文献   

2.
Nedaplatin, a cisplatin analog, was developed to reduce the toxicity of cisplatin, whereas it can be cross-resistant with cisplatin in some circumstances. This study aimed to investigate the role of autophagy in nedaplatin induced cell death in cisplatin-resistant nasopharyngeal carcinoma cells. Here, we showed that HNE1/DDP and CNE2/DDP cells were resistant to nedaplatin-induced cell death with reduced apoptotic activity. Nedaplatin treatment resulted in autophagosome accumulation and increased expression of LC3-II, indicating the induction of autophagy by nedaplatin in HNE1/DDP and CNE2/DDP cells. Inhibition of autophagy by Bafilomycin A1 (Baf A1) and 3-Methyladenine (3-MA) remarkably enhanced the antitumor efficacy of nedaplatin in HNE1/DDP and CNE2/DDP cells, suggesting that the resistance to nedaplatin-induced cell death was caused by enhanced autophagy in nedaplatin-resistant NPC cells. Additionally, Baf A1 enhanced reactive oxygen species (ROS) generation and apoptosis induced by nedaplatin in HNE1/DDP cells. Mechanistically, nedaplatin treatment caused activation of ERK1/2 and suppression of Akt/mTOR signaling pathways. While inhibition of ERK1/2 by MEK1/2 inhibitor, U0126, could reduce the expression of LC3-II in nedaplatin-resistant NPC cells. Furthermore, suppression of ROS could inhibit nedaplatin-induced ERK activation in HNE1/DDP cells, indicating that ROS and ERK were involved in nedaplatin-induced autophagy. Together, these findings suggested that autophagy played a cytoprotective role in nedaplatin-induced cytotoxicity of HNE1/DDP and CNE2/DDP cells. Furthermore, our results highlighted a potential approach to restore the sensitivity of cisplatin-resistant nasopharyngeal cancer cells to nedaplatin in combination with autophagy inhibitors.  相似文献   

3.

Objectives

Our previous in vitro study showed that 5‐(3, 4, 5‐trimethoxybenzoyl)‐4‐methyl‐2‐(p‐tolyl) imidazol (BZML) is a novel colchicine binding site inhibitor with potent anti‐cancer activity against apoptosis resistance in A549/Taxol cells through mitotic catastrophe (MC). However, the mechanisms underlying apoptosis resistance in A549/Taxol cells remain unknown. To clarify these mechanisms, in the present study, we investigated the molecular mechanisms of apoptosis and autophagy, which are closely associated with MC in BZML‐treated A549 and A549/Taxol cells.

Methods

Xenograft NSCLC models induced by A549 and A549/Taxol cells were used to evaluate the efficacy of BZML in vivo. The activation of the mitochondrial apoptotic pathway was assessed using JC‐1 staining, Annexin V‐FITC/PI double‐staining, a caspase‐9 fluorescence metric assay kit and western blot. The different functional forms of autophagy were distinguished by determining the impact of autophagy inhibition on drug sensitivity.

Results

Our data showed that BZML also exhibited desirable anti‐cancer activity against drug‐resistant NSCLC in vivo. Moreover, BZML caused ROS generation and MMP loss followed by the release of cytochrome c from mitochondria to cytosol in both A549 and A549/Taxol cells. However, the ROS‐mediated apoptotic pathway involving the mitochondria that is induced by BZML was only fully activated in A549 cells but not in A549/Taxol cells. Importantly, we found that autophagy acted as a non‐protective type of autophagy during BZML‐induced apoptosis in A549 cells, whereas it acted as a type of cytoprotective autophagy against BZML‐induced MC in A549/Taxol cells.

Conclusions

Our data suggest that the anti‐apoptosis property of A549/Taxol cells originates from a defect in activation of the mitochondrial apoptotic pathway, and autophagy inhibitors can potentiate BZML‐induced MC to overcome resistance to mitochondrial apoptosis.
  相似文献   

4.
Our understanding of coding gene functions in lung cancer leads to the development of multiple generations of targeted drugs. Noncoding RNAs, including circular RNAs (circRNAs), have been demonstrated to play a vital role in tumorigenesis. Uncovering the functions of circRNAs in tumorigenesis and their underlying regulatory mechanisms may shed new light on the development of novel diagnostic and therapeutic strategies for human cancer. Here we report the important role of circFAT1 in lung adenocarcinoma (LUAD) progression and the potential impact of circFAT1 on LUAD treatment. We found that circFAT1 was one of the top expressed circRNAs in A549 cells by circRNA-seq and was significantly upregulated in human LUAD tissues. Multiple cellular assays with A549 and PC9 LAUD cell lines under both gain-of-function and loss-of-function conditions demonstrated that circFAT1 promoted proliferation of LUAD cells in vitro and in vivo. At molecular level, circFAT1 sequestered miR-7 to upregulate IRS2, which in turn regulated downstream ERK1/2 phosphorylation and CCND1 expression, ultimately promoting tumor progression. In addition, we showed that DDP treatment was much more effective in circFAT1 knockdown tumor cells in vitro and in a xenograft tumor model. Our results indicate that circFAT1 promote tumorigenesis in LUAD through sequestering miR-7, consequently upregulating IRS2-ERK1/2-mediated CCND1 expression, and can be a valuable therapeutic target and an important parameter for precision treatment in LUAD patients.  相似文献   

5.
The aim of this study was to investigate the effect of long noncoding RNA (lncRNA) urogenital carcinoma antigen 1 (UCA1) on drug resistance in A549/DDP cell and explore its underlying mechanism. The inhibition rate and IC 50 of DDP were detected in A549 and A549/DDP cells by 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide assay. The expression of lncRNA UCA1 was measured in A549 and A549/DDP cells by quantitative real-time polymerase chain reaction. The expressions of N-cadherin, E-cadherin, vimentin, and Snail were detected in A549 and A549/DDP cells by Western blot analysis. Results showed that the IC 50 of DDP was 16.20 ± 2.27 μmol/L and 69.72 ± 4.83 μmol/L in A549 and A549/ DDP cells, respectively. Compared with the A549 group, the expressions of N-cadherin, vimentin, and Snail was significantly upregulated in A549/DDP group, but E-cadherin was significantly downregulated. Compared with the shCon group, the abundance of N-cadherin, vimentin, and Snail was significantly downregulated in short hairpin RNA UCA1 (shUCA1) group, while E-cadherin was significantly upregulated. Cell migration and invasion were significantly suppressed and IC 50 was reversed to 16.20 ± 2.27 μmol/L in the shUCA1 group. Silencing lncRNA UCA1 inhibited the migration and invasion of A549/DDP cells and reversed the resistance of A549/DDP cells to DDP. The mechanism might be related to downregulation of epithelial-mesenchymal transition, which will provide a new direction for the treatment of non–small-cell lung cancer with cisplatin.  相似文献   

6.
Changes of membrane lipids in cisplatin-sensitive A549 and cisplatin-resistant A549/DDP cells during the apoptotic process induced by a clinical dose of cisplatin (30 μM) were detected by 1H and 31P-NMR spectroscopy and by membrane fluidity measurement. The apoptotic phenotypes of the two cell lines were monitored with flow cytometry. The assays of apoptosis showed that significant apoptotic characteristics of the A549 cells were induced when the cells were cultured for 24 hours after treatment with cisplatin, while no apoptotic characteristic could be detected for the resistant A549/DDP cells even after 48 hours. The results of 1H-NMR spectroscopy demonstrated that the CH2/CH3 and Glu/Ct ratios of the membrane of A549 cells increased significantly, but those in A549/DDP cell membranes decreased. In addition, the Chol/CH3 and Eth/Ct ratios decreased for the former but increased for the latter cells under the same conditions. 31P-NMR spectroscopy indicated levels of phosphomonoesters (PME) and ATP decreased in A549 but increased in A549/DDP cells after being treated with cisplatin. These results were supported with the data obtained from 1H-NMR measurements. The results clearly indicated that components and properties of membrane phospholipids of the two cell lines were significantly different during the apoptotic process when they were treated with a clinical dose of cisplatin. Plasma membrane fluidity changes during cisplatin treatment as detected with the fluorescence probe TMA-DPH also indicate marked difference between the two cell lines. We provided evidence that there are significant differences in plasma membrane changes during treatment of cisplatin sensitive A549 and resistant A549/DDP cells.  相似文献   

7.
We investigated the reversal effect of afatinib (AFT) on activity of adriamycin (ADR) in A549T cells and clarified the related molecular mechanisms. A549T cells overexpressing P‐glycoprotein (P‐gp) were resistant to anticancer drug ADR. AFT significantly increased the antitumor activity of ADR in A549T cells. AFT increased the intracellular concentration of ADR by inhibiting the function and expression of P‐gp at mRNA and protein levels in A549T cells. Additionally, the reversal effect of AFT on P‐gp mediated multidrug resistance (MDR) might be related to the inhibition of PI3K/Akt pathway. Cotreatment with AFT and ADR could enhance ADR‐induced apoptosis and autophagy in A549T cells. Meanwhile, the co‐treatment significantly induced cell apoptosis and autophagy accompanied by increased expression of cleaved caspase‐3, PARP, LC3B‐II, and beclin 1. Apoptosis inhibitors had no significant effect on cell activity, while autophagy inhibitors decreased cell viability, suggesting that autophagy may be a self protective mechanism of cell survival in the absence of chemotherapy drugs. Interestingly, when combined with AFT and ADR, inhibition of apoptosis and/or autophagy could enhance cell viability. These results indicated that in addition to inhibit P‐gp, ADR‐induced apoptosis, and autophagy promoted by AFT contributed to the antiproliferation effect of combined AFT and ADR on A549T cells. These findings provide evidence that AFT combined ADR may achieve a better therapeutic effect to lung cancer in clinic. J. Cell. Biochem. 119: 414–423, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   

8.
9.
Therapies for lung adenocarcinoma (LUAD) are mainly limited by drug resistance, metastasis or recurrence related to cancer stem cells (CSCs) with high proliferation and self-renewing. This research validated that miR-31 was over-expressed in LUAD by the analysis of generous clinical samples data. And the results of clinical data analysis showed that high expression of miR-31 was more common in patients with worse prognosis. The genes differentially expressed in LUAD tissues compared with normal tissues and A549CD133+ cells (LUAD CSCs) compared with A549 cells were separately screened from Gene Expression Profiling Interactive Analysis and GEO datasets. The target genes that may play a role in the regulation of lung adenocarcinoma was screened by comparison between the differential genes and the target genes of miR-31. The functional enrichment analysis of GO Biological Processes showed that the expression of target genes related to cell proliferation was increased, while the expression of target genes related to cell invasion and metastasis was decreased in LUAD tissues and A549CD133+ cells. The results suggested that miR-31 may have a significant inhibitory effect on the differentiation, invasion, metastasis and adhesion of LUAD CSCs, which was verified in vivo and in vitro experiments. Knock down of miR-31 accelerated xenograft tumor growth and liver metastasis in vivo. Likewise, the carcinogenicity, invasion and metastasis of A549CD133+ CSCs were promoted after miR-31 knockdown. The study validated that miR-31 was up regulated in LUAD and its expression may affect the survival time of patients with lung adenocarcinoma, which indicated that miR-31 may have potential value for diagnosis and prognosis of LUAD. However, the inhibitory effect of miR-31 on tumorigenesis, invasion and metastasis of lung adenocarcinoma CSCs suggested its complexity in the regulation of lung adenocarcinoma, which may be related to its extensive regulation of various target genes.  相似文献   

10.
The incidence of lung cancer is increasing worldwide. Although great progress in lung cancer treatment has been made, the clinical outcome is still unsatisfactory. Tripartite motif (TRIM)-containing proteins has been shown to be closely related to tumor progression. However, the function of TRIM46 in lung cancer is largely unknown. Here, TRIM46 amplification was found in lung adenocarcinoma (LUAD) tissues and TRIM46 amplification was significantly associated with a poor survival rate. Overexpression of wild type TRIM46 increased the proliferation of LUAD cells and glycolysis, promoted xenografts growth, and enhanced cisplatin (DDP) resistance of LUAD cells via increased ubiquitination of pleckstrin homology domain leucine-rich repeat protein phosphatase 2 (PHLPP2) and upregulation of p-AKT. In contrast, overexpression of RING-mutant TRIM46 did not show any effects, suggesting the function of TRIM46 was dependent on the E3 ligase activity. Furthermore, we found that TRIM46 promoted LUAD cell proliferation and DDP resistance by enhancing glycolysis. PHLPP2 overexpression reversed the effects of TRIM46 overexpression. Amplification of TRIM46 also promoted LUAD growth and enhanced its DDP resistance in a patient-derived xenograft (PDX) model. In conclusion, our data highlight the importance of TRIM46/PHLPP2/AKT signaling in lung cancer and provide new insights into therapeutic strategies for lung cancer.Subject terms: Cancer, Biomarkers  相似文献   

11.
Lung cancer remains one of the most common malignancies and the leading cause of cancer-related death worldwide. Forkhead box protein A1 (FOXA1) is a pioneer factor amplified in lung adenocarcinoma (LUAD). However, its role in LUAD remains elusive. In this study, we found that expression of FOXA1 enhanced LUAD cell survival in nutrients deprived conditions through inhibiting autophagic cell death (ACD). FOXA1 bound to the imprinting control region of insulin-like growth factor 2 (IGF2) and interacted with DNA methyltransferase 1 (DNMT1), leading to initiation of DNMT1-mediated loss of imprinting (LOI) of IGF2 and autocrine of IGF2. Blockage of IGF2 and its downstream insulin-like growth factor 1 receptor (IGF1R) abolished the protective effect of FOXA1 on LUAD cells in nutrients deprived conditions. Furthermore, FOXA1 suppressed the expression of the lysosomal enzyme glucocerebrosidase 1 (GBA1), a positive mediator of ACD, through ubiquitination of GBA1 enhanced by IGF2. Notably, FOXA1 expression in A549 cells reduced the efficacy of the anti-angiogenic drug nintedanib to inhibit xenograft tumor growth, whereas a combination of nintedanib with IGF1R inhibitor linsitinib or mTORC1 inhibitor rapamycin enhanced tumor control. Clinically, high expression level of FOXA1 protein was associated with unfavorable prognosis in LUAD patients of advanced stage who received bevacizumab treatment. Our findings uncovered a previously unrecognized role of FOXA1 in mediating loss of imprinting of IGF2, which confer LUAD cells enhanced survival ability against nutrients deprivation through suppressing autophagic cell death.Subject terms: Non-small-cell lung cancer, Targeted therapies  相似文献   

12.
Lung cancer has a relatively poor prognosis with a low survival rate and drugs that target other cell death mechanism like autophagy may help improving current therapeutic strategy. This study investigated the anti-proliferative effect of Licarin A (LCA) from Myristica fragrans in non-small cell lung cancer cell lines—A549, NCI-H23, NCI-H520 and NCI-H460. LCA inhibited proliferation of all the four cell lines in a dose and time dependent manner with minimum IC50 of 20.03?±?3.12, 22.19?±?1.37 µM in NCI-H23 and A549 cells respectively. Hence NCI-H23 and A549 cells were used to assess the ability LCA to induce autophagy and apoptosis. LCA treatment caused G1 arrest, increase in Beclin 1, LC3II levels and degradation of p62 indicating activation of autophagy in both NCI-H23 and A549 cells. In addition, LCA mediated apoptotic cell death was confirmed by MMP loss, increased ROS, cleaved PARP and decreased pro-caspase3. To understand the role of LCA induced autophagy and its association with apoptosis, cells were analysed following treatment with a late autophagy inhibitor-chloroquine and also after Beclin 1 siRNA transfection. Data indicated that inhibition of autophagy resulted in reduced anti-proliferative as well as pro-apoptotic ability of LCA. These findings confirmed that LCA brought about autophagy dependent apoptosis in non-small cell lung cancer cells and hence it may serve as a potential drug candidate for non-small cell lung cancer therapy.  相似文献   

13.
Autophagy modulation has been considered as a potential therapeutic strategy for lung diseases. The PI3K-Akt-mTOR pathway may be one of the main targets for regulation of autophagy. We previously reported that a PI3 K/mTOR dual inhibitor PF-04691502 suppressed hepatoma cells growth in vitro. However, it is still unclear whether PF-04691502 induces autophagy and its roles in DNA damage and cell death in human lung cancer cells. In this study, we investigate the effects of PF-04691502 on the autophagy and its correlation with cell apoptosis and DNA damage in non-small-cell lung cancer (NSCLC) cell lines. PF-04691502 efficiently inhibited the phosphorylation of Akt and showed dose-dependent cytotoxicity in A549 and H1299 cells. PF-04691502 also triggered apoptosis and the cleavage of caspase-3 and PARP. Phosphorylated histone H2AX (γ-H2AX), a hallmark of DNA damage response, was dramatically induced by PF-04691502 treatment. By exposure to PF-04691502, A549 cells acquired a senescent-like phenotype with an increase in the level of β-galactosidase. Furthermore, PF-04691502 enhanced the expression of LC3-II in a concentration-dependent manner. More interestingly, effects of PF-04691502 on toxicity and DNA damage were remarkably increased by co-treatment with an autophagy inhibitor, chloroquine (CQ), in human lung cancer cells. These data suggest that a strategy of blocking autophagy to enhance the activity of PI3 K/mTOR inhibitors warrants further attention in treatment of NSCLC cells.  相似文献   

14.
BackgroundLung cancer is responsible for the majority of cancer deaths in the world. We found a significant increase of STAMBPL1 expression in lung adenocarcinoma (LUAD) tissues and cells. However, its mechanism has not been clarified.MethodsLUAD tissues and adjacent normal tissues were collected from 62 patients treated in the First Affiliated Hospital of Wenzhou Medical University from August 2018 to August 2021. In vivo, the clinical data and STAMBPL1 expression of 62 patients with LUAD were analyzed by qPCR. In vitro, cell experiments were carried out after STAMBPL1 knockdown in A549 and H1299 cells to determine cell growth, migration rate, evasiveness, colony-forming ability, and apoptosis. Gene sequencing was used to explore the expression of various genes in A549 and H1299 cells to verify that DHRS2 was up-regulated after STAMBPL1 knockdown; cell experiments further detected the role of the DHRS2 gene after DHRS2 overexpression in A549 and H1299 cells. A rescue experiment was conducted to certify that STAMBPL1 promotes NSCLC progression by regulating DHRS2 expression.ResultsAfter STAMBPL1 knockdown by siRNA. Migration, invasion, colony formation, and proliferation of siRNA groups were suppressed than those of NC groups in A549 and H1299 cells, while the cell apoptosis rate of siRNA groups increased significantly. By using gene-sequence analysis, we found that the expression level of the DHRS2 gene was up-regulated in STAMBPL1 siRNA groups, compared with STAMBPL1 NC (negative control) groups in A549 and H1299, which was verified by qPCR and WB. Further experiments showed that the DHRS2 OE group was suppressed in cell proliferation, migration, and invasion in the A549 and H1299 cell lines compared to the DHRS2 NC group, while DHRS2 OE group was significantly enhanced in the cell apoptosis in the A549 and H1299 cell lines. According to the rescue experiment, cell proliferation, migration, and invasion of the STAMBPL1 SI+DHRS2 SI group were enhanced compared with the STAMBPL1 SI+DHRS2 NC group in A549 and H1299 cells, while the STAMBPL1 SI+DHRS2 OE group were further decreased.ConclusionsThe expression of STAMBPL1 mRNA is significantly up-regulated in LUAD, promoting the progression of LUAD by down-regulating the expression of DHRS2 and acting as a potential biomarker of LUAD.  相似文献   

15.
16.
《Epigenetics》2013,8(6):896-909
DNA methylation plays a critical role during the development of acquired chemoresistance. The aim of this study was to identify candidate DNA methylation drivers of cisplatin (DDP) resistance in non-small cell lung cancer (NSCLC). The A549/DDP cell line was established by continuous exposure of A549 cells to increasing concentrations of DDP. Gene expression and methylation profiling were determined by high-throughput microarrays. Relationship of methylation status and DDP response was validated in primary tumor cell culture and the Cancer Genome Atlas (TCGA) samples. Cell proliferation, apoptosis, cell cycle, and response to DDP were determined in vitro and in vivo. A total of 372 genes showed hypermethylation and downregulation in A549/DDP cells, and these genes were involved in most fundamental biological processes. Ten candidate genes (S100P, GDA, WISP2, LOXL1, TIMP4, ICAM1, CLMP, HSP8, GAS1, BMP2) were selected, and exhibited varying degrees of association with DDP resistance. Low dose combination of 5-aza-2′-deoxycytidine (5-Aza-dC) and trichostatin A (TSA) reversed drug resistance of A549/DDP cells in vitro and in vivo, along with demethylation and restoration of expression of candidate genes (GAS1, TIMP4, ICAM1 and WISP2). Forced expression of GAS1 in A549/DDP cells by gene transfection contributed to increased sensitivity to DDP, proliferation inhibition, cell cycle arrest, apoptosis enhancement, and in vivo growth retardation. Together, our study demonstrated that a panel of candidate genes downregulated by DNA methylation induced DDP resistance in NSCLC, and showed that epigenetic therapy resensitized cells to DDP.  相似文献   

17.

Background

Cisplatin is one of the most commonly used chemotherapy agent for lung cancer. The therapeutic efficacy of cisplatin is limited by the development of resistance.In this study, we test the effect of RNA interference (RNAi) targeting Fanconi anemia (FA)/BRCA pathway upstream genes on the sensitivity of cisplatin-sensitive (A549 and SK-MES-1) and -resistant (A549/DDP) lung cancer cells to cisplatin.

Result

Using small interfering RNA (siRNA), knockdown of FANCF, FANCL, or FANCD2 inhibited function of the FA/BRCA pathway in A549, A549/DDP and SK-MES-1 cells, and potentiated sensitivity of the three cells to cisplatin. The extent of proliferation inhibition induced by cisplatin after knockdown of FANCF and/or FANCL in A549/DDP cells was significantly greater than in A549 and SK-MES-1 cells, suggesting that depletion of FANCF and/or FANCL can reverse resistance of cisplatin-resistant lung cancer cells to cisplatin. Furthermore, knockdown of FANCL resulted in higher cisplatin sensitivity and dramatically elevated apoptosis rates compared with knockdown of FANCF in A549/DDP cells, indicating that FANCL play an important role in the repair of cisplatin-induced DNA damage.

Conclusion

Knockdown of FANCF, FANCL, or FANCD2 by RNAi could synergize the effect of cisplatin on suppressing cell proliferation in cisplatin-resistant lung cancer cells through inhibition of FA/BRCA pathway.  相似文献   

18.
miR-126在多种恶性肿瘤中存在表达下调并显示抑癌基因的功能,然而其在肿瘤敏感性中的作用仍不明确.为了探讨miR-126在非小细胞肺癌细胞A549对顺式铂氨(cis-diammine dichloroplatoum, cisplatin, CDDP)敏感性中的作用及可能机制,本研究用MTS法检测非小细胞肺癌细胞A549及其衍生的CDDP耐受细胞A549/DDP对CDDP的敏感性.结果表明,A549/DDP细胞对CDDP的耐受性是A549细胞的4.05倍(P=0.0078)|用qRT-PCR检测发现,相比于A549细胞,A549/DDP细胞中miR-126的表达下调了8.45倍(P=0.0063),而survivin和Bcl-2的表达明显上调|通过MTS、qRT-PCR及Western印迹实验发现,miR-126 mimics使A549/DDP细胞中miR-126的表达上调了12.63倍(P=0.0013),并明显增加A549/DDP细胞对CDDP的敏感性及下调survivin和Bcl-2的表达;相反,miR-126 inhibitor能明显增加A549细胞对CDDP的耐受性及增加survivin和Bcl-2的表达.本研究结果提示,miR-126在非小细胞肺癌CDDP耐受细胞中的表达下调,上调miR-126的表达能增加耐药细胞对CDDP的敏感性. miR-126是逆转肺癌CDDP耐受的可能潜在靶标.  相似文献   

19.
DNA methylation plays a critical role during the development of acquired chemoresistance. The aim of this study was to identify candidate DNA methylation drivers of cisplatin (DDP) resistance in non-small cell lung cancer (NSCLC). The A549/DDP cell line was established by continuous exposure of A549 cells to increasing concentrations of DDP. Gene expression and methylation profiling were determined by high-throughput microarrays. Relationship of methylation status and DDP response was validated in primary tumor cell culture and the Cancer Genome Atlas (TCGA) samples. Cell proliferation, apoptosis, cell cycle, and response to DDP were determined in vitro and in vivo. A total of 372 genes showed hypermethylation and downregulation in A549/DDP cells, and these genes were involved in most fundamental biological processes. Ten candidate genes (S100P, GDA, WISP2, LOXL1, TIMP4, ICAM1, CLMP, HSP8, GAS1, BMP2) were selected, and exhibited varying degrees of association with DDP resistance. Low dose combination of 5-aza-2′-deoxycytidine (5-Aza-dC) and trichostatin A (TSA) reversed drug resistance of A549/DDP cells in vitro and in vivo, along with demethylation and restoration of expression of candidate genes (GAS1, TIMP4, ICAM1 and WISP2). Forced expression of GAS1 in A549/DDP cells by gene transfection contributed to increased sensitivity to DDP, proliferation inhibition, cell cycle arrest, apoptosis enhancement, and in vivo growth retardation. Together, our study demonstrated that a panel of candidate genes downregulated by DNA methylation induced DDP resistance in NSCLC, and showed that epigenetic therapy resensitized cells to DDP.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号