首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To obtain more insight into the regulation of terpenoid indole alkaloid (TIA) biosynthesis in Catharanthus roseus (L.) G. Don cell cultures and particularly to identify possible rate limiting steps, a transgenic cell line over-expressing tryptophan decarboxylase (Tdc), and thus having a high level of tryptamine, was fed with various amounts of precursors (tryptophan, tryptamine, loganin and secologanin) in different time schedules and analyzed for TIA production. When these precursors were added to this culture it was found that the optimal time for supplying the precursors was at inoculation of the cells into the production medium. Alkaloid accumulation by line T22 was enhanced by addition of loganin or secologanin; however, the secologanin feeding was less effective. Tryptamine or tryptophan alone had no effect on TIA accumulation. The over-expression of Tdc causes this cell line to produce quite large quantities of alkaloids after feeding loganin or secologanin. However, in combination with tryptophan or tryptamine, feeding of these precursors resulted in an even further increase of alkaloid accumulation and under optimal conditions line T22 accumulated around 1200 micromol l(-1) of TIAs whereas the control cultures accumulated less than 10 micromol l(-1) TIAs.  相似文献   

2.
3.
In addition to the known iridoid glucosides loganin, sweroside and cantleyoside, Dipsacus sylvestris has provided 4 novel bis-iridoid glucosides named sylvestrosides I–IV, composed of swerosidic acid, secologanic acid, loganin and loganin aglucone. Sylvestroside I, II and III have been fully characterized by chemical conversions and by 13C NMR spectroscopy. A probable formula for sylvestroside IV is presented.  相似文献   

4.
The molecular characterization of CYP72A1 from Catharanthus roseus (Madagascar periwinkle) was described nearly a decade ago, but the enzyme function remained unknown. We now show by in situ hybridization and immunohistochemistry that the expression in immature leaves is epidermis-specific. It thus follows the pattern previously established for early enzymes in the pathway to indole alkaloids, suggesting that CYP72A1 may be involved in their biosynthesis. The early reactions in that pathway, i.e. from geraniol to strictosidine, contain several candidates for P450 activities. We investigated in this work two reactions, the conversion of 7-deoxyloganin to loganin (deoxyloganin 7-hydroxylase, DL7H) and the oxidative ring cleavage converting loganin into secologanin (secologanin synthase, SLS). The action of DL7H has not been demonstrated in vitro previously, and SLS has only recently been identified as P450 activity in one other plant. We show for the first time that both enzyme activities are present in microsomes from C. roseus cell cultures. We then tested whether CYP72A1 expressed in E. coli as a translational fusion with the C. roseus P450 reductase (P450Red) has one or both of these activities. The results show that CYP72A1 converts loganin into secologanin.  相似文献   

5.
The transgenic S1 cell line of Catharanthus roseus (L.) G. Don has been used to study possible rate limiting steps in the terpenoid indole alkaloid (TIA) biosynthesis. Line S1 carries a recombinant, over-expressed version of the endogenous Str gene which encodes strictosidine synthase (STR; EC 4.3.3.2). STR catalyzes the stereospecific condensation of tryptamine and secologanin to strictosidine. Various concentrations and combinations of biosynthetic indole precursors L-tryptophan, tryptamine, and iridoid precursors loganin and secologanin were added to the cell suspension cultures of line S1. The largest TIA accumulation occurred when the precursor was supplied at the time of inoculation of the cells into the production medium. Line S1 could supply tryptamine endogenously up to 0.8 mM loganin feeding. The enhancement of the accumulation of TIAs by addition of loganin indicates a limitation in the terpenoid pathway. Supplying tryptamine or tryptophan along with the iridoid precursors resulted in even further increase of alkaloid accumulation. Under optimal conditions, cultures of line S1 accumulated about 600 mol l–1 of TIAs. Also, the conversion of strictosidine into other TIAs further down the pathway seems to be a limiting step. Considering the mass balance of the intermediates fed and TIAs recovered, several yet unknown pathways must be involved in channeling away intermediates from the TIA pathway and in the breakdown of the TIAs. Our results suggest that high rates of tryptamine synthesis can still take place under conditions of low TDC activity and the flux towards tryptamine is induced by loganin feeding. However, accumulation of tryptamine seems to reduce the flux through feedback inhibition.  相似文献   

6.
A chemical investigation of the roots of Triosteum pinnatifidum led to the isolation of 10 iridoids, elucidated as triohimas A–C, naucledal, secologanin dimethyl acetal, grandifloroside, sweroside, loganin, vogeloside and (E)-aldosecologanin. Most of the compounds were derived from loganin or secologanin with a glucose moiety at C-1 position. The results indicate a close relationship between the two genera Triosteum and Lonicera, and support the viewpoint that the iridoids derived from loganin or secologanin could be the chemotaxonomic markers of the Caprifoliaceae family.  相似文献   

7.
In a Catharanthus roseus cell line accumulating secologanin, time-course studies on the uptake of loganin and the in vivo conversion to secologanin were performed. Four-day-old cells converted 100% of the fed loganin to secologanin within 24 hours, showing that this step is unlikely to be limiting for alkaloid accumulation. Thirteen-day-old cells also took up loganin, but only about 25% was recovered as secologanin. A saturation in the uptake of loganin and in the conversion of loganin into secologanin was observed after feeding increasing amounts of loganin. Elicitation by cellulase and pectinase decreased the cellular contents of secologanin and strictosidine whereas it increased the tryptamine content. In addition, the uptake of loganin in elicited cells was blocked. In vitro assays with protein extracts of elicited Catharanthus roseus cells indicated the activation of secologanin degrading enzyme(s). Feeding of tryptophan did not result in any increase in alkaloid contents, despite its complete uptake. Tryptamine feeding led to increased strictosidine contents, but ajmalicine levels remained unchanged. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
A radioimmunoassay technique has been developed for the quantitative measurement of loganin in crude extracts from both fresh and dried material of whole plants and cultivated plant cells. The assay makes use of 6′-carboxyloganin which is rendered immunogenic through linkage to bovine serum albumin. The tracer molecule was synthesized via periodate opening of the glucose moiety of loganin and subsequent reduction with sodium borotritide of high specific activity. The rabbit antibodies had a high affinity (Ka = 1.6 × 1091/mol) for loganin and permitted the detection of as little as 0.1 ng per 0.05 ml of sample. The antiserum was highly specific for loganin and its aglycone, with only 10-hydroxyloganin and 7-epi-loganin showing a substantial cross reactivity. A number of cell cultures of the Caprifoliaceae were tested for their ability to transform added loganin to secologanin. By labelled precursor feeding experiments members of the genera Weigelia, Lonicera, Hydrangea and Symphoricarpus were found to open the cyclopentane ring of loganin. The time course of the biotransformation of loganin was monitored using radioimmunoassays for both loganin and secologanin and cell cultures of Lonicera tatarica as biological material.  相似文献   

9.
Twp new secoiridoid glucosides, abeliosides A and B, were isolated along with cantleyoside and sylvestroside II from Abelia grandiflora. On the basis of spectral and chemical evidence, these new glucosides were identified as esters of secologanic acid with an iridoid lactone which may arise from loganin. Cantleyoside was also isolated from A. spathulata and A. serrata.  相似文献   

10.
A cell suspension culture of Tabernaemontana elegans lost its ability to produce alkaloids after a prolonged period of subculture. To determine whether it was still capable of performing the later steps of the alkaloid biosynthetic pathway, the culture was fed with tryptamine and loganin. The precursors and alkaloids were determined in the biomass and in the medium during a growth cycle. In this culture, an increase in the amount of serotonin was found in the biomass after feeding of tryptamine and loganin. Secologanin was detected in small amounts but strictosidine was not. Therefore, a limitation in alkaloid formation in this T. elegans cell line occured in the formation of secologanin from loganin. After feeding of secologanin alone, strictosidine, 10-hydroxy strictosidine, strictosidinic acid and two other indole alkaloids, as yet unidentified, were formed. However, the alkaloids originally produced by this cell line were not found. As the biosynthesis is impaired at several steps, it seems that the loss of productivity is more likely to be to a change on the level of the regulation of the pathway, than due to the loss of the capacity to express an individual biosynthetic gene of the pathway.  相似文献   

11.
12.
Incubation of maize branching enzyme, mBEI and mBEII, with 100 μM diethylpyrocarbonate (DEPC) rapidly inactivated the enzymes. Treatment of the DEPC-inactivated enzymes with 100–500 mM hydroxylamine restored the enzyme activities. Spectroscopic data indicated that the inactivation of BE with DEPC was the result of histidine modification. The addition of the substrate amylose or amylopectin retarded the enzyme inactivation by DEPC, suggesting that the histidine residues are important for substrate binding. In maize BEII, conserved histidine residues are in catalytic regions 1 (His320) and 4 (His508). His320 and His508 were individually replaced by Ala via site-directed mutagenesis to probe their role in catalysis. Expression of these mutants inE. coli showed a significant decrease of the activity and the mutant enzymes hadK m values 10 times higher than the wild type. Therefore, residues His320 and His508 do play an important role in substrate binding.  相似文献   

13.
12-Oxophytodienoate reductase 3 (OPR3) is a FMN-dependent oxidoreductase that catalyzes the reduction of the cyclopentenone (9S,13S)-12-oxophytodienoate [(9S,13S)-OPDA] to the corresponding cyclopentanone in the biosynthesis of the plant hormone jasmonic acid. In vitro, however, OPR3 reduces the jasmonic acid precursor (9S,13S)-OPDA as well as the enantiomeric (9R,13R)-OPDA, while its isozyme OPR1 is highly selective, accepting only (9R,13R)-OPDA as a substrate. To uncover the molecular determinants of this remarkable enantioselectivity, we determined the crystal structures of OPR1 and OPR3 in complex with the ligand p-hydroxybenzaldehyde. Structural comparison with the OPR1:(9R,13R)-OPDA complex and further biochemical and mutational analyses revealed that two active-site residues, Tyr78 and Tyr246 in OPR1 and Phe74 and His244 in OPR3, are critical for substrate filtering. The relatively smaller OPR3 residues allow formation of a wider substrate binding pocket that is less enantio-restrictive. Substitution of Phe74 and His244 by the corresponding OPR1 tyrosines resulted in an OPR3 mutant showing enhanced, OPR1-like substrate selectivity. Moreover, sequence analysis of the OPR family supports the filtering function of Tyr78 and Tyr246 and allows predictions with respect to substrate specificity and biological function of thus far uncharacterized OPR isozymes. The discovered structural features may also be relevant for other stereoselective proteins and guide the rational design of stereospecific enzymes for biotechnological applications.  相似文献   

14.
We have used a transgenic cell line of Catharanthus roseus (L.) G. Don to study the relative importance of the supply of biosynthetic precursors for the synthesis of terpenoid indole alkaloids. Line S10 carries a recombinant, constitutively overexpressed version of the endogenous strictosidine synthase (Str) gene. Various concentrations and combinations of the substrate tryptamine and of loganin, the immediate precursor of secologanin, were added to suspension cultures of S10. Our results indicate that high rates of tryptamine synthesis can take place under conditions of low tryptophan decarboxylase activity, and that high rates of strictosidine synthesis are possible in the presence of a small tryptamine pool. It appears that the utilization of tryptamine for alkaloid biosynthesis enhances metabolic flux through the indole pathway. However, a deficiency in the supply of either the iridoid or the indole precursor can limit flux through the step catalyzed by strictosidine synthase. Precursor utilization for the synthesis of strictosidine depends on the availability of the cosubstrate; the relative abundance of these precursors is a cell-line-specific trait that reflects the metabolic status of the cultures.  相似文献   

15.
16.
The cytochrome P450 enzyme geraniol 10-hydroxylase plays an important role in the biosynthesis of terpenoid indole alkaloids in suspension cultures of Catharanthus roseus. The activity of this enzyme was induced by the treatment of cells with phenobarbital, and inhibited by treatment with ketoconazole. The alkaloid accumulation increased after phenobarbital treatment whereas it decreased after ketoconazole treatment. Phenobarbital and ketoconazole did not affect the in vivo conversion rate of loganin to secologanin, a reaction proposed to be catalyzed by a cytochrome P450 enzyme.  相似文献   

17.
Medium-chain fatty acids (C6–C10) have attracted much attention recently for their unique properties compared to their long-chain counterparts, including low melting points and relatively higher carbon conversion yield. Thioesterase enzymes, which can catalyze the hydrolysis of acyl-ACP (acyl carrier protein) to release free fatty acids (FAs), regulate both overall FA yields and acyl chain length distributions in bacterial and yeast fermentation cultures. These enzymes typically prefer longer chain substrates. Herein, seeking to increase bacterial production of MCFAs, we conducted structure-guided mutational screening of multiple residues in the substrate-binding pocket of the E. coli thioesterase enzyme ‘TesA. Confirming our hypothesis that enhancing substrate selectivity for medium-chain acyl substrates would promote overall MCFA production, we found that replacement of residues lining the bottom of the pocket with more hydrophobic residues strongly promoted the C8 substrate selectivity of ‘TesA. Specifically, two rounds of saturation mutagenesis led to the identification of the ‘TesARD−2 variant that exhibited a 133-fold increase in selectivity for the C8-ACP substrate as compared to C16-ACP substrate. Moreover, the recombinant expression of this variant in an E. coli strain with a blocked β-oxidation pathway led to a 1030% increase in the in vivo octanoic acid (C8) production titer. When this strain was fermented in a 5-L fed-batch bioreactor, it produced 2.7 g/L of free C8 (45%, molar fraction) and 7.9 g/L of total free FAs, which is the highest-to-date free C8 titer to date reported using the E. coli type II fatty acid synthetic pathway. Thus, reshaping the substrate binding pocket of a bacterial thioesterase enzyme by manipulating the hydrophobicity of multiple residues altered the substrate selectivity and therefore fatty acid product distributions in cells. Our study demonstrates the relevance of this strategy for increasing titers of industrially attractive MCFAs as fermentation products.  相似文献   

18.
From the dried roots of Neonauclea sessilifolia, two new chromone-secoiridoid glycosides, sessilifoside and 7"-O-beta-D-glucopyranosylsessilifoside, and three novel indole alkaloid glycosides, neonaucleosides A, B, and C, were isolated along with the main known glycosides, 5-hydroxy-2-methylchromone-7-O-beta-D-apiofuranosyl-(1-->6)-beta-D-glucopyranoside, sweroside, loganin, grandifloroside, and quinovic acid 3 beta-O-beta-D-quinovopyranoside-28-O-beta-D-glucopyranoside. The structures of these new glycosides were determined by spectroscopic and chemical means. Neonaucleoside A and its C-3 epimer were prepared from secologanin and tryptamine.  相似文献   

19.
Selected active site residues in substrate recognition sites (SRS) 1 and 5 of cytochrome P450 2C8 (CYP2C8) were mutated to the corresponding amino acids present in CYP2C9 to investigate the contribution of these positions to the unique substrate selectivity and regioselectivity of CYP2C8. The effects of mutations, singly and in combination, were assessed from changes in the kinetics of paclitaxel 6alpha-hydroxylation, a CYP2C8-specific pathway, and the tolylmethyl and ring hydroxylations of torsemide, a mixed CYP2C9/CYP2C8 substrate. Within SRS1, the single mutation S114F abolished paclitaxel 6alpha-hydroxylation, while the I113V substitution resulted in modest parallel reductions in K(m) and V(max). Mutations in SRS5 (viz., V362L, G365S, and V366L) reduced paclitaxel intrinsic clearance (V(max)/K(m)) by 88-100%. Torsemide is preferentially metabolized by CYP2C9, and it was anticipated that the mutations in CYP2C8 might increase activity. However, methyl and ring hydroxylation intrinsic clearances were either unchanged or decreased by the mutations, although hydroxylation regioselectivity was often altered relative to wild-type CYP2C8. The mutations significantly increased (28-968%) K(m) values for both torsemide methyl and ring hydroxylation but had variable effects on V(max). The effects of the combined mutations in SRS1, SRS5, and SRS1 plus SRS5 were generally consistent with the changes produced by the separate mutations. Mutation of CYP2C8 at position 359 (S359I), a site of genetic polymorphism in CYP2C9, resulted in relatively minor changes in paclitaxel- and torsemide-hydroxylase activities. The results are consistent with multiple substrate binding orientations within the CYP2C8 active site and a differential contribution of active site residues to paclitaxel and torsemide binding and turnover.  相似文献   

20.
Incubation of maize branching enzyme, mBEI and mBEII, with 100 μM diethylpyrocarbonate (DEPC) rapidly inactivated the enzymes. Treatment of the DEPC-inactivated enzymes with 100–500 mM hydroxylamine restored the enzyme activities. Spectroscopic data indicated that the inactivation of BE with DEPC was the result of histidine modification. The addition of the substrate amylose or amylopectin retarded the enzyme inactivation by DEPC, suggesting that the histidine residues are important for substrate binding. In maize BEII, conserved histidine residues are in catalytic regions 1 (His320) and 4 (His508). His320 and His508 were individually replaced by Ala via site-directed mutagenesis to probe their role in catalysis. Expression of these mutants inE. coli showed a significant decrease of the activity and the mutant enzymes hadK m values 10 times higher than the wild type. Therefore, residues His320 and His508 do play an important role in substrate binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号