首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
O-GlcNAcylation is a reversible co-/post-translational modification involved in a multitude of cellular processes. The addition and removal of the O-GlcNAc modification is controlled by two conserved enzymes, O-GlcNAc transferase (OGT) and O-GlcNAc hydrolase (OGA). Mutations in OGT have recently been discovered to cause a novel Congenital Disorder of Glycosylation (OGT-CDG) that is characterized by intellectual disability. The mechanisms by which OGT-CDG mutations affect cognition remain unclear. We manipulated O-GlcNAc transferase and O-GlcNAc hydrolase activity in Drosophila and demonstrate an important role of O-GlcNAcylation in habituation learning and synaptic development at the larval neuromuscular junction. Introduction of patient-specific missense mutations into Drosophila O-GlcNAc transferase using CRISPR/Cas9 gene editing leads to deficits in locomotor function and habituation learning. The habituation deficit can be corrected by blocking O-GlcNAc hydrolysis, indicating that OGT-CDG mutations affect cognition-relevant habituation via reduced protein O-GlcNAcylation. This study establishes a critical role for O-GlcNAc cycling and disrupted O-GlcNAc transferase activity in cognitive dysfunction, and suggests that blocking O-GlcNAc hydrolysis is a potential strategy to treat OGT-CDG.  相似文献   

2.
Y Liu  X Li  Y Yu  J Shi  Z Liang  X Run  Y Li  CL Dai  I Grundke-Iqbal  K Iqbal  F Liu  CX Gong 《PloS one》2012,7(8):e43724
O-GlcNAcylation is a common posttranslational modification of nucleocytoplasmic proteins by β-N-acetylglucosamine (GlcNAc). The dynamic addition and removal of O-GlcNAc groups to and from proteins are catalyzed by O-linked N-acetylglucosamine transferase (O-GlcNAc transferase, OGT) and β-N-acetylglucosaminidase (O-GlcNAcase, OGA), respectively. O-GlcNAcylation often modulates protein phosphorylation and regulates several cellular signaling and functions, especially in the brain. However, its developmental regulation is not well known. Here, we studied protein O-GlcNAcylation, OGT, and OGA in the rat brain at various ages from embryonic day 15 to the age of 2 years. We found a gradual decline of global protein O-GlcNAcylation during developmental stages and adulthood. This decline correlated positively to the total protein phosphorylation at serine residues, but not at threonine residues. The expression of OGT and OGA isoforms was regulated differently at various ages. Immunohistochemical studies revealed ubiquitous distribution of O-GlcNAcylation at all ages. Strong immunostaining of O-GlcNAc, OGT, and OGA was observed mostly in neuronal cell bodies and processes, further suggesting the role of O-GlcNAc modification of neuronal proteins in the brain. These studies provide fundamental knowledge of age-dependent protein modification by O-GlcNAc and will help guide future studies on the role of O-GlcNAcylation in the mammalian brain.  相似文献   

3.
Protein O-GlcNAcylation is proceeded by O-linked GlcNAc transferase (OGT) in nucleocytoplasm and is involved in many biological processes although its physiological role is not clearly defined. To identify the functional significance of O-GlcNAcylation, we investigated heat stress effects on protein O-GlcNAcylation. Here, we found that protein O-GlcNAcylation was significantly increased in vivo during acute heat stress in mammalian cells and simultaneously, the enhanced protein O-GlcNAcylation was closely associated with cell survival in hyperthermia. Our results demonstrate that hyperthermal cytotoxicity may considerably be facilitated under the condition of insufficient level of protein O-GlcNAcylation inside cells. Furthermore, OGT reaction might be crucial for triggering thermotolerance to recover hyperthermal sensitivity without particular induction of heat shock proteins (hsps). Thus, we propose that OGT can respond rapidly to heat stress through the enhancement of nucleocytoplasmic protein O-GlcNAcylation for a rescue from the early phase of hyperthermal cytotoxicity.  相似文献   

4.
Hundreds of proteins in the nervous system are modified by the monosaccharide O-GlcNAc. A single protein is often O-GlcNAcylated on several amino acids and the modification of a single site can play a crucial role for the function of the protein. Despite its complexity, only two enzymes add and remove O-GlcNAc from proteins, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Global and local regulation of these enzymes make it possible for O-GlcNAc to coordinate multiple cellular functions at the same time as regulating specific pathways independently from each other. If O-GlcNAcylation is disrupted, metabolic disorder or intellectual disability may ensue, depending on what neurons are affected. O-GlcNAc's promise as a clinical target for developing drugs against neurodegenerative diseases has been recognized for many years. Recent literature puts O-GlcNAc in the forefront among mechanisms that can help us better understand how neuronal circuits integrate diverse incoming stimuli such as fluctuations in nutrient supply, metabolic hormones, neuronal activity and cellular stress. Here the functions of O-GlcNAc in the nervous system are reviewed.  相似文献   

5.
6.
We have demonstrated previously that a wide array of stress signals induces O-GlcNAc transferase (OGT) expression and increases O-GlcNAcylation of many intracellular proteins, a response that is critical for cell survival. Here, we describe a mechanism by which glucose deprivation induces OGT expression and activity in Neuro-2a neuroblastoma cells. Glucose deprivation increases OGT mRNA and protein expression in an AMP-activated protein kinase-dependent manner, whereas OGT enzymatic activity is regulated in a p38 MAPK-dependent manner. OGT is not phosphorylated by p38, but rather it interacts directly with p38 through its C terminus; this interaction increases with p38 activation during glucose deprivation. Surprisingly, the catalytic activity of OGT, as measured toward peptide substrates, is not altered by glucose deprivation. Instead, p38 regulates OGT activity within the cell by recruiting it to specific targets, including neurofilament H. Neurofilament H is O-GlcNAcylated during glucose deprivation in a p38-dependent manner. Interestingly, neurofilament H solubility is increased by glucose deprivation in an O-GlcNAc-dependent manner, suggesting that O-GlcNAcylation of neurofilament H regulates its disassembly from filaments. Not only do these data help to reveal how OGT is regulated by stress, but these findings also describe a possible mechanism by which defective brain glucose metabolism, as found in aging and ischemia, may directly affect axonal structure.  相似文献   

7.
O-GlcNAcylation is a novel regulator of lung and colon cancer malignancy   总被引:1,自引:0,他引:1  
O-GlcNAc is a monosaccharide attached to serine or threonine hydroxyl moieties on numerous nuclear and cytoplasmic proteins; O-GlcNAcylation is dynamically regulated by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Although recent studies have shown that O-GlcNAcylation plays essential roles in breast cancer progression, it is also necessary to know whether O-GlcNAcylation is involved in other types of human cancer. In this study, O-GlcNAcylation levels and the expressions of OGT and OGA in human lung and colon cancer tissues were examined by immunohistochemistry analysis. We found that O-GlcNAcylation as well as OGT expression was significantly elevated in the cancer tissues compared with that in the corresponding adjacent tissues. Additionally, the roles of O-GlcNAcylation in the malignancy of lung and colon cancer were investigated in vitro. The results showed that O-GlcNAcylation markedly enhanced the anchorage-independent growth of lung and colon cancer cells; O-GlcNAcylation could also enhance lung and colon cancer invasion in a context-dependent manner. All together, this study suggests that O-GlcNAcylation might play important roles in lung and colon cancer formation and progression, and may be a valuable target for diagnosis and therapy of cancer.  相似文献   

8.
O-Linked N-acetylglucosaminylation (O-GlcNAcylation) (or O-linked N-acetylglucosamine (O-GlcNAc)) is an abundant and reversible glycosylation type found within the cytosolic and the nuclear compartments. We have described previously the sudden O-GlcNAcylation increase occurring during the Xenopus laevis oocyte G(2)/M transition, and we have demonstrated that the inhibition of O-GlcNAc-transferase (OGT) blocked this process, showing that the O-GlcNAcylation dynamism interferes with the cell cycle progression. In this work, we identified proteins that are O-GlcNAc-modified during the G(2)/M transition. Because of a low expression of O-GlcNAcylation in Xenopus oocyte, classical enrichment of O-GlcNAc-bearing proteins using O-GlcNAc-directed antibodies or wheat germ agglutinin lectin affinity were hard to apply, albeit these techniques allowed the identification of actin and erk2. Therefore, another strategy based on an in vitro enzymatic labeling of O-GlcNAc residues with azido-GalNAc followed by a chemical addition of a biotin alkyne probe and by enrichment of the tagged proteins on avidin beads was used. Bound proteins were analyzed by nano-LC-nano-ESI-MS/MS allowing for the identification of an average of 20 X. laevis oocyte O-GlcNAcylated proteins. In addition to actin and beta-tubulin, we identified metabolic/functional proteins such as PP2A, proliferating cell nuclear antigen, transitional endoplasmic reticulum ATPase, aldolase, lactate dehydrogenase, and ribosomal proteins. This labeling allowed for the mapping of a major O-GlcNAcylation site within the 318-324 region of beta-actin. Furthermore immunofluorescence microscopy enabled the direct visualization of O-GlcNAcylation and OGT on the meiotic spindle as well as the observation that chromosomally bound proteins were enriched in O-GlcNAc and OGT. The biological relevance of this post-translational modification both on microtubules and on chromosomes remains to be determined. However, the mapping of the O-GlcNAcylation sites will help to underline the function of this post-translational modification on each identified protein and will provide a better understanding of O-GlcNAcylation in the control of the cell cycle.  相似文献   

9.
O-GlcNAcylation is a dynamic, reversible, post-translational modification that regulates many cellular processes. O-GlcNAc transferase (OGT) is the sole enzyme transferring N-acetylglucosamine from uridine diphosphate (UDP)-GlcNAc to selected serine/threonine residues of cytoplasm and nucleus proteins. Aberrant of OGT activity is associated with several diseases, suggesting OGT as a novel therapeutic target. In this study, we created a new enzyme linked immunosorbent assays (ELISA)-based method for detection of OGT activity. First, casein kinase II (CKII), a well-known OGT substrate, was coated onto ELISA plate. Second, the GlcNAc transferred by OGT from UDP-GlcNAc to CKII was detected using an antibody to O-GlcNAc and then the horseradish peroxidase (HRP)-labeled secondary antibody. At last, 3,3′,5,5′-tetramethylbenzidine (TMB), the substrate of HRP, was used to detect the O-GlcNAcylation level of CKII which reflected the activity of OGT. Based on a series of optimization experiments, the RL2 antibody was selected for O-GlcNAc detection and the concentrations of CKII, OGT, and UDP-GlcNAc were determined in this study. ST045849, a commercial OGT inhibitor, was used to verify the functionality of the system. Altogether, this study showed a method that could be applied to detect OGT activity and screen OGT inhibitors.  相似文献   

10.
11.
Phosphorylation of the microtubule-associated Tau protein plays a major role in the regulation of its activity of tubulin polymerization and/or stabilization of microtubule assembly. A dysregulation of the phosphorylation/dephosphorylation balance leading to the hyperphosphorylation of Tau proteins in neurons is thought to favor their aggregation into insoluble filaments. This in turn might underlie neuronal death as encountered in many neurodegenerative disorders, including Alzheimer's disease. Another post-translational modification, the O-linked β-N-acetylglucosaminylation (O-GlcNAcylation), controls the phosphorylation state of Tau, although the precise mechanism is not known. Moreover, analytical difficulties have hampered the precise localization of the O-GlcNAc sites on Tau, except for the S400 site that was very recently identified on the basis of ETD-FT-MS. Here, we identify three O-GlcNAc sites by screening a library of small peptides sampling the proline-rich, the microtubule-associated repeats and the carboxy-terminal domains of Tau as potential substrates for the O-β-N-acetylglucosaminyltransferase (OGT). The in vitro activity of the nucleocytoplasmic OGT was assessed by tandem mass spectrometry and NMR spectroscopy. Using phosphorylated peptides, we establish the relationship between phosphate and O-GlcNAc incorporation at these sites. Phosphorylation of neighboring residues S396 and S404 was found to decrease significantly S400 O-GlcNAcylation. Reciprocally, S400 O-GlcNAcylation reduces S404 phosphorylation by the CDK2/cyclinA3 kinase and interrupts the GSK3β-mediated sequential phosphorylation process.  相似文献   

12.
We have previously shown that diabetogenic antibiotic streptozotocin (STZ), an analog of N-acetylglucosamine (GlcNAc), inhibits the enzyme O-GlcNAc-selective N-acetyl-beta-d-glucosaminidase (O-GlcNAcase) which is responsible for the removal of O-GlcNAc from proteins. Alloxan, another beta-cell toxin is a uracil analog. Since the O-GlcNAc transferase (OGT) uses UDP-GlcNAc as a substrate, we investigated whether alloxan might interfere with the process of protein O-glycosylation by blocking OGT, a very abundant enzyme in beta-cells. In isolated pancreatic islets, alloxan almost completely blocked both glucosamine-induced and STZ-induced protein O-GlcNAcylation, suggesting that alloxan indeed was inhibiting (OGT). In order to show definitively that alloxan was inhibiting OGT activity, recombinant OGT was incubated with 0-10 mM alloxan, and OGT activity was measured directly by quantitating UDP-[(3)H]-GlcNAc incorporation into the recombinant protein substrate, nucleoporin p62. Under these conditions, OGT activity was completely inhibited by 1 mM alloxan with half-maximal inhibition achieved at a concentration of 0.1 mM alloxan. Together, these data demonstrate that alloxan is an inhibitor of OGT, and as such, is the first OGT inhibitor described.  相似文献   

13.
O-Linked N-acetylglucosamine (O-GlcNAc) is a post-translational modification of proteins that functions as a nutrient sensing mechanism. Here we report on regulation of O-GlcNAcylation over a broad range of glucose concentrations. We have discovered a significant induction of O-GlcNAc modification of a limited number of proteins under conditions of glucose deprivation. Beginning 12 h after treatment, glucose-deprived human hepatocellular carcinoma (HepG2) cells demonstrate a 7.8-fold increase in total O-GlcNAc modification compared with cells cultured in normal glucose (5 mm; p = 0.008). Some of the targets of glucose deprivation-induced O-GlcNAcylation are distinct from those modified in response to high glucose (20 mm) or glucosamine (10 mm) treatment, suggesting differential targeting with glucose deprivation and glucose excess. O-GlcNAcylation of glycogen synthase is significantly increased with glucose deprivation, and this O-GlcNAc increase contributes to a 60% decrease (p = 0.004) in glycogen synthase activity. Increased O-GlcNAc modification is not mediated by increased UDP-GlcNAc, the rate-limiting substrate for O-GlcNAcylation. Rather, the mRNA for nucleocytoplasmic O-linked N-acetylglucosaminyltransferase (OGT) increases 3.4-fold within 6 h of glucose deprivation (p = 0.006). Within 12 h, OGT protein increases 1.7-fold (p = 0.01) compared with normal glucose-treated cells. In addition, 12-h glucose deprivation leads to a 49% decrease in O-GlcNAcase protein levels (p = 0.03). We conclude that increased O-GlcNAc modification stimulated by glucose deprivation results from increased OGT and decreased O-GlcNAcase levels and that these changes affect cell metabolism, thus inactivating glycogen synthase.  相似文献   

14.
3T3-L1 adipocytes develop insulin-resistant glucose transport upon preincubation with high (25 mM) glucose, provided that insulin (0.6 nM) is included, Akt activation is impaired, and high glucose and insulin act synergistically. Considerable evidence suggests that increased glucose flux via the hexosamine biosynthesis pathway enhances the O-GlcNAc modification (O-GlcNAcylation) of some critical protein(s) that may contribute to insulin resistance. However, whether enhanced protein O-GlcNAcylation is necessary for the development of insulin resistance is unknown. We used two strategies to test this hypothesis. The first strategy was the overexpression of O-GlcNAcase, which removes O-GlcNAc from Ser/Thr of proteins. Cells were infected with O-GlcNAcase-expressing adenovirus (or empty virus) 5 days before they were submitted to protocols that elicit (or not) insulin resistance. O-GlcNAcase was highly expressed and functional as assessed by Western blot, O-GlcNAcase assay, and marked reduction of O-GlcNAcylated proteins. The activity was mainly cytosolic. The second strategy was the expression of O-GlcNAc transferase (OGT) being markedly reduced by transfection of OGT siRNA, resulting in an approximately 90% decrease of nuclear and cytosolic OGT protein expression and similar reduction in O-GlcNAcylated proteins. Nontargeting siRNA had no effect. Preincubation in high glucose with low-dose insulin decreased the acute insulin response of glucose transport by at least 50% and impaired Akt activation. None of these parameters were affected by overexpression of O-GlcNAcase or by OGT knockout. Excess O-GlcNAcylation is one of many factors that can cause insulin resistance. It does not seem to be required for the development of glucose/insulin-induced insulin resistance of glucose transport and Akt activation in 3T3-L1 adipocytes.  相似文献   

15.
Hyperglycemia augments flux through the hexosamine biosynthetic pathway and subsequent O-linkage of single β-N-acetyl-d-glucosamine moieties to serine and threonine residues on cytoplasmic and nuclear proteins (O-GlcNAcylation). Perturbations in this posttranslational modification have been proposed to promote glomerular matrix accumulation in diabetic nephropathy, but clear evidence and mechanism are lacking. We tested the hypothesis that O-GlcNAcylation enhances profibrotic signaling in rat mesangial cells. An adenovirus expressing shRNA directed against O-GlcNAc transferase (OGT) markedly reduced basal and high-glucose-stimulated O-GlcNAcylation. Interestingly, O-GlcNAc depletion prevented high-glucose-induced p38 mitogen-activated protein kinase (MAPK) and c-Jun NH(2)-terminal kinase phosphorylation. Downstream of p38, O-GlcNAc controlled the expression of plasminogen activator inhibitor-1, fibronectin, and transforming growth factor-β, important factors in matrix accumulation in diabetic nephropathy. Treating mesangial cells with thiamet-G, a highly selective inhibitor of O-GlcNAc-specific hexosaminidase (O-GlcNAcase), increased O-GlcNAcylation and p38 phosphorylation. The high-glucose-stimulated kinase activity of apoptosis signal-regulating kinase 1 (ASK1), an upstream MAPK kinase kinase for p38 that is negatively regulated by Akt, was inhibited by OGT shRNA. Akt Thr(308) and Ser(473) phosphorylation were enhanced following OGT shRNA expression in high-glucose-exposed mesangial cells, but high-glucose-induced p38 phosphorylation was not attenuated by OGT shRNA in cells pretreated with the phosphatidylinositol 3-kinase inhibitor LY-294002. OGT shRNA also reduced high-glucose-stimulated reactive oxygen species (ROS) formation. In contrast, diminished O-GlcNAcylation caused elevated ERK phosphorylation and PKCδ membrane translocation. Thus, O-GlcNAcylation is coupled to profibrotic p38 MAPK signaling by high glucose in part through Akt and possibly through ROS.  相似文献   

16.
O-GlcNAc是一种广泛存在于蛋白质丝/苏氨酸残基上的动态、可逆的蛋白翻译后修饰,它广泛分布在细胞浆和细胞核中,参与调节多种细胞途径。研究表明蛋白的O-GlcNAc糖基化与神经退行性疾病、糖尿病和癌症等疾病相关。在体内,O-GlcNAc动态修饰由N-乙酰氨基葡萄糖转移酶(OGT)和N-乙酰氨基葡萄糖苷酶(OGA)协同完成。近年来,OGT逐渐成为糖生物学领域的研究热点,在其结构、作用机制及晶体学方面取得了快速发展。  相似文献   

17.
18.
19.
The potential role of the posttranslational modification of proteins with O-linked N-acetyl-β-d-glucosamine (O-GlcNAc) in the pathogenesis of Alzheimer disease (AD) has been studied extensively, yet the exact function of O-GlcNAc in AD remains elusive. O-GlcNAc cycling is facilitated by only two highly conserved enzymes: O-GlcNAc transferase (OGT) catalyzes the addition, while O-GlcNAcase (OGA) catalyzes the removal of GlcNAc from proteins. Studies analyzing global O-GlcNAc levels in AD brain have produced inconsistent results and the reasons for altered O-GlcNAcylation in AD are still poorly understood. In this study, we show a 1.2-fold increase in cytosolic protein O-GlcNAc modification in AD brain when compared to age-matched controls. Interestingly, O-GlcNAc changes seem to be attributable to differential modification of a few individual proteins. While our finding of augmented O-GlcNAcylation concurs with some reports, it is contrary to others demonstrating decreased O-GlcNAc levels in AD brain. These conflicting results emphasize the need for further studies providing conclusive evidence on the subject of O-GlcNAcylation in AD. We further demonstrate that, while OGT protein levels are unaffected in AD, OGA protein levels are significantly decreased to 75% of those in control samples. In addition, augmented protein O-GlcNAc modification correlates to decreased OGA protein levels in AD subjects. While OGA inhibitors are already being tested for AD treatment, our results provide a strong indication that the general subject of O-GlcNAcylation and specifically its regulation by OGA and OGT in AD need further investigation to conclusively elucidate its potential role in AD pathogenesis and treatment.  相似文献   

20.
A major cause of hyperglycemia in diabetic patients is inappropriate hepatic gluconeogenesis. PGC-1α is a master regulator of gluconeogenesis, and its activity is controlled by various posttranslational modifications. A small portion of glucose metabolizes through the hexosamine biosynthetic pathway, which leads to O-linked β-N-acetylglucosamine (O-GlcNAc) modification of cytoplasmic and nuclear proteins. Using a proteomic approach, we identified a broad variety of proteins associated with O-GlcNAc transferase (OGT), among which host cell factor C1 (HCF-1) is highly abundant. HCF-1 recruits OGT to O-GlcNAcylate PGC-1α, and O-GlcNAcylation facilitates the binding of the deubiquitinase BAP1, thus protecting PGC-1α from degradation and promoting gluconeogenesis. Glucose availability modulates gluconeogenesis through the regulation of PGC-1α O-GlcNAcylation and stability by the OGT/HCF-1 complex. Hepatic knockdown of OGT and HCF-1 improves glucose homeostasis in diabetic mice. These findings define the OGT/HCF-1 complex as a glucose sensor and key regulator of gluconeogenesis, shedding light on new strategies for treating diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号