首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
磷、硫转运蛋白是大豆(Glycine max(L.)Merr.)体内磷、硫转运的重要载体,参与调节磷和硫酸盐的吸收与转运,对提高大豆的磷、硫利用效率至关重要。大豆磷转运蛋白可划分为Pht1、Pht2、Pht3、Pho1和Pho2 5大家族,目前对Pht1的研究最为深入。大豆14个Pht1家族可分为3个亚家族,他们对磷吸收和转运具有重要作用。大豆硫转运蛋白基因GmSULTR1;2b可在大豆根中特异性表达并被低硫胁迫诱导。本文基于大豆磷、硫的营养吸收、转运与利用过程中的相关性,对Pht1家族以及GmSULTR1;2b基因在大豆中的研究进展进行了综述,并对近年来大豆磷、硫转运蛋白的研究进展及未来的研究方向进行了展望。  相似文献   

2.
人类糖脂转运结构域2蛋白(Glycolipid transfer protein domain containing 2,GLTPD2)是糖脂转运蛋白(Glycolipid trans-fer protein,GLTP)家族的一个新成员,其功能目前尚不清楚.研究的目的在于通过生物信息学分析,预测人类GLTPD2的结构、...  相似文献   

3.
单羧酸转运蛋白家族及其生物学功能   总被引:1,自引:0,他引:1  
单羧酸转运蛋白家族是哺乳动物细胞膜上一类重要的跨膜转运蛋白,负责乳酸,短链脂肪酸等单羧酸类化合物的跨膜转运,涉及多种生物学功能,包括促进营养物质吸收、影响代谢动态平衡、调节胞内pH值以及参与药物输送等.迄今为止,单羧酸转运蛋白家族已发现有1 4个成员,各亚型间具有底物差异性和组织分布特异性.研究单羧酸转运蛋白家族的生化特征、组织分布、生物学功能及基因表达调控,将为人和动物的营养代谢稳衡和疾病治疗提供新的方法.  相似文献   

4.
ABC转运蛋白的结构与转运机制   总被引:5,自引:0,他引:5  
腺苷三磷酸结合盒转运蛋白(ATP-binding cassette transponer,ABC转运蛋白)超家族是一组跨膜蛋白,具有ATP结合区域的单向底物转运泵,以主动转运方式完成多种分子的跨膜转运.ABC转运蛋白的一个亚家族与多药抗性(multidrug resistance,MDR)有关,而多药抗性是临床肿瘤化疗中需要解决的主要问题,所以其结构与转运机制一直是研究的热点.最近几年获得了一些高分辨率的ABC转运蛋白的晶体结构,该文将根据ABC转运蛋白的结构的研究进展对其可能的转运机制进行讨论.  相似文献   

5.
膜转运蛋白结构和功能的研究是功能膜蛋白质组研究中的一个重要内容,而大量蛋白质的分离纯化是进行蛋白质的结构和功能研究的基础.目前,结构和功能膜蛋白质组学相关研究的瓶颈,在于不能有效地超量表达和纯化具有生物活性的膜转运蛋白.影响膜转运蛋白超量表达和纯化的关键因素,包括目标蛋白的拓扑学结构分析和去垢剂的选择.进行膜转运蛋白拓扑学结构的分析,对于构建用于活体表达的重组膜转运蛋白具有指导意义.去垢剂能够稳定去膜状态的膜蛋白,在膜转运蛋白的离体表达和亲和纯化以及包涵体的处理过程中具有重要的作用.本文就目前功能膜蛋白质组学研究中所涉及的有关膜转运蛋白功能性超表达和分离纯化策略及关键技术作一简述.  相似文献   

6.
ABC转运蛋白结构及在植物病原真菌中的功能研究进展   总被引:1,自引:0,他引:1  
ABC (ATP-binding cassette)转运蛋白是最大的膜转运蛋白超家族之一,其主要功能是利用ATP水解产生的能量将底物进行逆浓度梯度运输.所有生物体都含有大量ABC蛋白. ABC蛋白位于细胞的不同空间,如细胞膜、液泡、线粒体和过氧化物酶体.通常,ABC转运蛋白由跨膜结构域(TMD)和核苷酸结合结构域(NBD)组成,分别与底物和ATP结合.NBD执行与ATP结合和水解,是ABC转运蛋白的动力引擎,TMD识别特异性配体.大多数ABC转运蛋白最初是通过研究生物体耐药性而被发现的,包括多效耐药(PDR)和多药耐药(MDR).本文对ABC转运蛋白的结构及作用机制,以及植物病原真菌中ABC转运蛋白功能的研究进展进行综述.  相似文献   

7.
ABC转运蛋白是一类利用ATP水解能量,逆浓度方向将一系列化合物转运通过膜结构的膜蛋白,这一类蛋白能转运离子,糖,氨基酸,维生素,多肽,多糖,激素,脂类及生物异源物质.P-糖蛋白(P-gp)、多药耐药相关蛋白(MRP)和乳腺癌耐药蛋白(BCRP)等ABC转运蛋白还具有转运抗癌药物的能力,因此对化疗的有效性有负面的影响.近年来,许多研究涉及到如何逆转由ABC转 运蛋白引起的肿瘤多药耐药性.本文概述了近年来在蛋白水平,mRNA水平或DNA水平上对ABC转运蛋白调控的研究.  相似文献   

8.
人类糖脂转运结构域2蛋白(GLTPD2)是糖脂转运蛋白(GLTP)家族的一个新成员.本研究的目的在于通过生物信息学分析,探究GLTPD2在肝细胞癌(LIHC)中的表达及临床意义.利用TCGA数据库的第三方在线工具LinkedOmics分析GLTPD2的表达与LIHC各临床病理特征的关系;利用Ualcan工具分析GLTP...  相似文献   

9.
小电导钙激活钾通道亚型2(SK2通道)主要在心房表达,与心房颤动有关.高频刺激模拟心房快速起搏可以增加SK2电流,但是其中的机制并不完全清楚.本研究旨在研究转运调节蛋白Synaptobrevin-2(VAMP2)在调节心房肌细胞膜SK2通道转运过程中的作用.以培养的新生大鼠(Rattus norvegicus)心房肌细胞(NRAMs)和表达有SK2通道的HEK293细胞为研究对象,采用蛋白质印迹、膜片钳、共聚焦显微成像、流式细胞术和全内荧光反射等技术研究VAMP2对SK2通道转运的影响.结果发现,快速起搏可上调VAMP2蛋白和增加SK2通道蛋白在细胞膜上的表达,而敲低VAMP2可降低NRAMs细胞膜上SK2通道蛋白的表达.在HEK293细胞上共表达VAMP2和SK2,增加了SK2的表达,加速了SK2向细胞膜的转运,并通过抑制SK2内吞来稳定SK2通道蛋白在细胞膜上表达.由以上结果可知,VAMP2可能通过促进SK2通道的表达,转运和稳定细胞膜上的表达,参与快速起搏心房肌细胞SK2功能的增强.  相似文献   

10.
植物中钼的吸收转运及钼辅因子与钼酶的研究进展   总被引:1,自引:0,他引:1  
钼是植物生长发育所必需的微量元素,只有和蛋白质或者蝶呤结合形成钼辅因子才能产生生物活性。自然界存在2种钼辅因子:以铁硫簇为基础的铁钼辅因子(Fe Moco)和以钼蝶呤为基础的钼辅因子(MPT/Moco)。植物对钼的吸收有2种转运蛋白系统,一种是专一性转运蛋白,如MOTl和MOT2;另一种是共转运蛋白,如磷酸盐转运蛋白(PHT)和硫酸盐转运蛋白(SULTR)。最近研究发现一种钼酶——线粒体氨肟还原蛋白(m ARC)。本文综述了近年来植物体内钼的吸收与转运机制、钼辅因子的合成过程以及钼酶的研究进展,并提出了今后的重点研究方向。  相似文献   

11.
木质纤维素降解真菌粗糙脉孢菌天然具有吸收利用多种单糖和寡糖的能力,但是目前基因组中注释的预测糖转运蛋白仍然有过半功能未知。本研究从全基因组水平系统分析了粗糙脉孢菌预测糖转运蛋白的转运底物。研究发现两个转运蛋白(NCU01868和NCU08152)具有转运多种己糖底物的功能,因此分别命名为NcHXT-1和NcHXT-2。利用荧光共振能量转移技术(FRET)确认了NcHXT-1/-2具有葡萄糖转运功能。在己糖转运蛋白全缺酿酒酵母EBY.VW4000中分别过表达NcHXT-1/-2,能恢复其在葡萄糖、半乳糖或甘露糖的液体培养基中生长并生成乙醇的能力。NcHXT-1/-2在很多纤维素降解真菌中均具有保守的同源蛋白。本研究通过全基因组扫描鉴定,发现了两个保守的丝状真菌己糖转运蛋白,为真菌降解利用木质纤维素及酵母利用单糖发酵提供了新的改造靶点。  相似文献   

12.
蔗糖是高等植物中碳水化合物最主要的转运形式,对于植物的生长发育至关重要.植物体内蔗糖的转运主要依赖蔗糖转运蛋白,因此对于蔗糖转运蛋白基因的研究具有重要意义.拟南芥蔗糖转运蛋白AtSUC2在蔗糖装载中起主要作用,通过半定量RT-PCR测定拟南芥叶片不同发育时期和不同光强下AtSUC2基因的表达量,研究拟南芥特定发育阶段和光诱导作用下AtSUC2基因表达的影响.结果表明,在野生型拟南芥叶片中,AtSUC2基因在16 d幼叶、30 d营养期叶片、生殖期叶片中均表达,在16 d幼叶和生殖期叶片中表达强度较弱,在营养生长旺盛时(30 d叶龄)表达较高.同时,植株在暗处理12 h时,AtSUC2基因表达量降低,在强光处理12 h时,AtSUC2基因表达量与对照差异不显著,可能AtSUC2基因的表达受光诱导但与光强无关.  相似文献   

13.
尿酸是人体内嘌呤代谢的终产物。在肝脏合成后,正常情况下约70%的尿酸在肾脏分泌,而一小部分则被分泌到肠内。肾脏是血尿酸稳态调节的主要器官,其调控依赖于尿酸转运体的转运。尿酸代谢紊乱或转运异常将导致高尿酸血症、痛风、痛风性肾结石等疾病。本文对肾脏尿酸转运体的研究进展进行综述。  相似文献   

14.
在许多类型的哺乳动物细胞中,细胞体积对介导胰岛素发挥其生理功能起关键作用.细胞体积调节机制在胰岛素的主要靶组织骨骼肌中尤为重要.为了解该组织中细胞体积调节的机制,对Na K 2Cl-共转运蛋白在大鼠L6骨骼肌细胞中的表达及其在调节性体积增加中的作用进行了研究.应用免疫印迹法,在L6肌管细胞中检测到分子量为170kD的钠钾氯共转运蛋白.K (86Rb )输入实验结果表明,54%的86Rb 是通过钠钾氯共转运蛋白输入细胞的,而其余86Rb 的输入是通过钠钾三磷酸腺苷酶和其他未知转运蛋白实现的.当L6细胞被置于高渗透压溶液(420mosmolL)中,导致细胞体积减少40%,同时钠钾氯共转运蛋白的活性迅速增加(高达2倍).细胞体积在60min内恢复至正常,但在钠钾氯共转运蛋白抑制剂bumetanide存在时,这种调节性体积增加的过程被阻断.这些结果表明,L6肌管细胞表达具有生理活性的钠钾氯共转运蛋白;此转运蛋白被高渗透压诱导造成的细胞体积缩小激活的现象表明,它是细胞调节性体积增加(RVI)机制中的关键元素,在L6骨骼肌细胞体积的调节中起重要作用.  相似文献   

15.
在许多类型的哺乳动物细胞中,细胞体积对介导胰岛素发挥其生理功能起关键作用.细胞体积调节机制在胰岛素的主要靶组织骨骼肌中尤为重要.为了解该组织中细胞体积调节的机制,对Na+K+2Cl-共转运蛋白在大鼠L6骨骼肌细胞中的表达及其在调节性体积增加中的作用进行了研究.应用免疫印迹法,在L6肌管细胞中检测到分子量为170kD的钠钾氯共转运蛋白.K+(86Rb+)输入实验结果表明,54%的86Rb+是通过钠钾氯共转运蛋白输入细胞的,而其余86Rb+的输入是通过钠钾三磷酸腺苷酶和其他未知转运蛋白实现的.当L6细胞被置于高渗透压溶液(420mosmolL)中,导致细胞体积减少40%,同时钠钾氯共转运蛋白的活性迅速增加(高达2倍).细胞体积在60min内恢复至正常,但在钠钾氯共转运蛋白抑制剂bumetanide存在时,这种调节性体积增加的过程被阻断.这些结果表明,L6肌管细胞表达具有生理活性的钠钾氯共转运蛋白;此转运蛋白被高渗透压诱导造成的细胞体积缩小激活的现象表明,它是细胞调节性体积增加(RVI)机制中的关键元素,在L6骨骼肌细胞体积的调节中起重要作用.  相似文献   

16.
近年来,高尿酸血症(hyperuricemia,HUA)在人群中频发,危害性强,并发症多。为了探究日常饮品--半发酵茶铁观音茶水对于缓解HUA是否具有辅助作用,以小鼠为实验对象,采用氧嗪酸钾和次黄嘌呤联合法构建小鼠高尿酸血症模型,21只模型鼠随机分为模型组、铁观音茶水提物组、阳性药物组,7只非模型鼠作为对照。做不同处理2周后,取小鼠血清及肾、肝、小肠。观察各器官病理变化,从细胞层面鉴定铁观音茶水提物对高尿酸血症小鼠各脏器的影响;测定与HUA相关度较高的生化指标:血清尿酸(uric acid,UA)浓度、肝黄嘌呤氧化酶(xanthine oxidase,XOD)活力,以明确造模是否成功以及判断铁观音茶水提物对HUA是否具有缓解作用;利用qRT-PCR检测尿酸合成和排泄相关基因的mRNA表达水平,并利用Western blot检测肝XOD蛋白的表达水平,以从分子层面明确铁观音茶水提物对HUA的影响。病理切片显示,相比于阳性药物组,铁观音茶水提物组小鼠的肾和肝损害程度较轻;生化指标测定结果显示,铁观音茶水提物可降低血清尿酸水平,并且抑制XOD活性;从分子层面可以看出,铁观音茶水提物显著升高了尿酸重吸收转运体尿酸转运蛋白1(uric acid transporter 1,URAT1)和有机阴离子转运蛋白3(organic anion transporter 3,OAT3)的mRNA表达水平(P<0.05),显著降低了葡萄糖转运子9(glucose transporter 9,GLUT9)和有机阴离子转运蛋白1(organic anion transporter 1,OAT1)的表达水平(P<0.05)。虽然qRT-PCR和Western blot提示,XOD的mRNA和蛋白质的表达水平升高,但尿酸生成量却下降,推测可能是铁观音茶水提物中的某种成分使得无催化活性的XOD蛋白表达增加进而对XOD基因的转录表达造成一种正反馈。研究提示,铁观音茶水提物对小鼠高尿酸血症具有缓解作用,其缓解高尿酸血症的作用与抑制XOD活性、干预尿酸生成过程和刺激或抑制相关阴离子转运体mRNA的表达相关。  相似文献   

17.
X-连锁肾上腺 脑白质营养不良基因(ALD基因)编码的ALD蛋白(ALDP)是4种人类ABCD转运蛋白之一,为一种半ABC转运蛋白,既有ABC(ATP binding cassette)转运蛋白的共有特征,又有过氧化物酶体膜蛋白的特点. 其功能可能是将胞浆中极长链饱和脂肪酸(VLCFA)或其衍生物转运到过氧化物酶体内,并在其中进行β氧化. 已报道的ALD基因突变有900多个,其后果多种多样,但最终都使VLCFA或其衍生物无法进入过氧化物酶体,从而使VLCFA在体内蓄积. 作者认为,ALDP是研究ABCD转运蛋白,乃至所有ABC转运蛋白的一个极好模型.  相似文献   

18.
GLUT4在胰岛素作用下的转运上膜是血糖调控的一个关键途径.其中包含了两个重要的过程-胰岛素信号转导以及GLUT4转运途径.在这两个过程中新的特异分子的发现以及它们功能特点的研究是发展有效的药物治疗糖尿病的关键因素.本文主要从GLUT4在胞内的循环途径,胰岛素调节的GLUT4的转运以及转运中的调控蛋白三个方面着手,综述了GLUT4的转运调控研究进展.  相似文献   

19.
ABC(ATP-Binding Cassette)转运蛋白家族是目前已知最大、功能最广泛的蛋自家族,能利用水解ATP的能量来参与生物体内多种物质的转运,这一基因家族成员在哺乳动物和微生物中已广泛鉴定,在植物中的研究是一个相对较新的研究领域.铝是酸性土壤作物生产的一个主要的限制因素,ABC转运蛋白在植物铝耐受性方面有重要作用.该文主要对ABC转运蛋白的特点、生物学功能及植物ABC转运蛋白在Al胁迫下的作用进行了综述,并分析其存在的问题,展望今后可能开展的研究方向.  相似文献   

20.
钠-葡萄糖协转运蛋白(SGLT)是一类在小肠(SGLT-1)和肾脏近曲小管(SGLT-1、SGLT-2)发现的蛋白基因家族,负责吸收 和重吸收葡萄糖。在肾脏处,SGLT 蛋白,特别是SGLT-2 蛋白将肾小球滤过液中的绝大部分葡萄糖重新转运进入血液,从而维持 体内血糖的稳定与平衡。SGLT 蛋白抑制剂通过阻断该蛋白的转运机制,使葡萄糖随尿液排出从而降低血糖,为糖尿病的治疗提 供了创造性的思路。本文重点阐述了SGLT 蛋白和SGLT 抑制剂的作用机制,以及近年来SGLT-2 抑制剂的研发上市情况。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号