首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
2.
3.
4.
5.
The mechanism by which specific hormonal regulation of gene expression is attained in vivo is a paradox in that several of the steroid receptors recognize the same DNA element in vitro. We have characterized a complex enhancer of the mouse sex-limited protein (Slp) gene that is activated exclusively by androgens but not by glucocorticoids in transfection. Potent androgen induction requires both the consensus hormone response element (HRE) and auxiliary elements residing within the 120-bp DNA fragment C' delta 9. Multiple nonreceptor factors are involved in androgen specificity, with respect to both the elevation of androgen receptor activity and the inactivity of glucocorticoid receptor (GR), since clustered base changes at any of several sites reduce or abolish androgen induction and do not increase glucocorticoid response. However, moving the HRE as little as 10 bases away from the rest of the enhancer allows GR to function, suggesting that GR is repressed by juxtaposition to particular factors within the androgen-specific complex. Surprisingly, some sequence variations of the HRE itself, within the context of C' delta 9, alter the stringency of specificity, as well as the magnitude, of hormonal response. These HRE sequence effects on expression correspond in a qualitative manner with receptor binding, i.e., GR shows a threefold difference in affinities for HREs amongst which androgen receptor does not discriminate. Altering the HRE orientation within the enhancer also affects hormonal stringency, increasing glucocorticoid but not androgen response. The effect of these subtle variations suggests that they alter receptor position with respect to other factors. Thus, protein-protein interactions that elicit specific gene regulation are established by the array of DNA elements in a complex enhancer and can be modulated by sequence variations within these elements that may influence selection of precise protein contacts.  相似文献   

6.
Cho S  Blackford JA  Simons SS 《Biochemistry》2005,44(9):3547-3561
The determinants of the partial agonist activity of most antisteroids complexed with steroid receptors are not well understood. We now examine the role of the N-terminal half of the glucocorticoid receptor (GR) including the activation domain (AF-1), the DNA binding site sequence, receptor contact with DNA, and coactivator binding on the expression of partial agonist activity in two cell lines for GRs bound by five antiglucocorticoids: dexamethasone mesylate (Dex-Mes), dexamethasone oxetanone (Dex-Ox), progesterone (Prog), deoxycorticosterone (DOC), and RU486. Using truncated GRs, we find that the N-terminal half of GR and the AF-1 domain are dispensable for the partial agonist activity of antiglucocorticoids. This contrasts with the AF-1 domain being required for the partial agonist activity of antisteroids with most steroid receptors. DNA sequence (MMTV vs a simple GRE enhancer) and cell-specific factors (CV-1 vs Cos-7) exert minor effects on the level of partial agonist activity. Small activity differences for some complexes of GAL4/GR chimeras with GR- vs GAL-responsive reporters suggest a contribution of DNA-induced conformational changes. A role for steroid-regulated coactivator binding to GRs is compatible with the progressively smaller increase in partial agonist activity of Dex-Mes > Prog > RU486 with added GRIP1 in CV-1 cells. This hypothesis is consistent with titration experiments, where low concentrations of GRIP1 more effectively increase the partial agonist activity of Dex-Mes than Prog complexes. Furthermore, ligand-dependent GRIP1 binding to DNA-bound GR complexes decreases in the order of Dex > Dex-Mes > Prog > RU486. Thus, the partial agonist activity of a given GR-steroid complex in CV-1 cells correlates with its cell-free binding of GRIP1. The ability to modify the levels of partial agonist activity through changes in steroid structure, DNA sequence, specific DNA-induced conformational changes, and coactivator binding suggests that useful variations in endocrine therapies may be possible by the judicious selection of these parameters to afford gene and tissue selective results.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号