首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Differences in the chemical composition of calcified skeletal structures (e.g. shells, otoliths) have proven useful for reconstructing the environmental history of many marine species. However, the extent to which ambient environmental conditions can be inferred from the elemental signatures within the vertebrae of elasmobranchs (sharks, skates, rays) has not been evaluated. To assess the relationship between water and vertebral elemental composition, we conducted two laboratory studies using round stingrays, Urobatis halleri, as a model species. First, we examined the effects of temperature (16°, 18°, 24°C) on vertebral elemental incorporation (Li/Ca, Mg/Ca, Mn/Ca, Zn/Ca, Sr/Ca, Ba/Ca). Second, we tested the relationship between water and subsequent vertebral elemental composition by manipulating dissolved barium concentrations (1x, 3x, 6x). We also evaluated the influence of natural variation in growth rate on elemental incorporation for both experiments. Finally, we examined the accuracy of classifying individuals to known environmental histories (temperature and barium treatments) using vertebral elemental composition. Temperature had strong, negative effects on the uptake of magnesium (DMg) and barium (DBa) and positively influenced manganese (DMn) incorporation. Temperature-dependent responses were not observed for lithium and strontium. Vertebral Ba/Ca was positively correlated with ambient Ba/Ca. Partition coefficients (DBa) revealed increased discrimination of barium in response to increased dissolved barium concentrations. There were no significant relationships between elemental incorporation and somatic growth or vertebral precipitation rates for any elements except Zn. Relationships between somatic growth rate and DZn were, however, inconsistent and inconclusive. Variation in the vertebral elemental signatures of U. halleri reliably distinguished individual rays from each treatment based on temperature (85%) and Ba exposure (96%) history. These results support the assumption that vertebral elemental composition reflects the environmental conditions during deposition and validates the use of vertebral elemental signatures as natural markers in an elasmobranch. Vertebral elemental analysis is a promising tool for the study of elasmobranch population structure, movement, and habitat use.  相似文献   

2.
There is an increasing desire for researchers to use the elemental concentrations in fish otoliths to reconstruct environmental histories of fish. These reconstructions may be plausible due to the unique incorporation of elements into discrete layers of otolith material that correspond to daily growth, and because environmental variables of temperature, salinity, and water chemistry can influence otolith chemistry. However, it is essential to establish exactly how temperature, salinity, and the ambient concentration of elements influence otolith chemistry in order to interpret environmental histories of fish. Using a controlled laboratory experiment we tested the relative and interactive effects of temperature, salinity, and ambient concentration of strontium (Sr) and barium (Ba) on the resulting concentration of Sr and Ba in otoliths of black bream Acanthopagrus butcheri (Munro 1949). Salinity and concentration, and temperature and concentration interacted to affect the elemental concentration of Sr:Ca and Ba:Ca in otoliths. Regression analysis revealed that temperature and ambient concentration contributed most to the trend in otolith chemistry for both elements. Importantly, this is the first experiment to combine three environmental variables and assess their effect on otolith chemistry. Based on these results, it should be possible to use changes in the elemental concentration in otoliths to better reconstruct previous environments of temperature, salinity, and ambient water chemistry, which is especially useful when determining occupancy in habitats such as estuaries that display variable environmental characteristics.  相似文献   

3.
The effect of digestion by a predatory fish (largemouth bass Micropterus salmoides) on stable isotopic (δ13C and δ18O) and trace elemental (Sr:Ca and Ba:Ca) compositions of prey fish (bluegill Lepomis macrochirus) otoliths was investigated in a laboratory experiment. Trace element and stable‐isotopic signatures of L. macrochirus otoliths were not significantly altered for up to 16 h after L. macrochirus were consumed by M. salmoides. Prey fish otoliths recovered from predator digesta can retain environmental stable isotopic and trace elemental signatures, suggesting that determination of environmental history for prey fishes by stable‐isotope and trace‐element analysis of otoliths recovered from stomachs of piscivorous fishes will be feasible.  相似文献   

4.
As there is a lack of information on the growth and migrations of bluefin tuna, information about them was gathered using the structural and chemical characteristics of their otoliths and mercury levels in body tissues as indicators of physiological and habitat characteristics. The otoliths of juvenile tuna caught in the Spanish Mediterranean littoral were studied. Otolith increments, assumed to be formed daily, were enumerated. Measurements by wavelength dispersive electron microprobe confirmed the presence of strontium in otolith tissue, and an inverse relationship between strontium/calcium (Sr/Ca) concentration ratio and temperature is suggested. Electron microprobe analyses combined with daily increment analyses of otoliths provided life history profiles for individual fish. Additional Sr/Ca concentration ratio data on fish supported the idea that Sr/Ca ratios can provide information on the environmental history of individual fish. Body concentrations of mercury were related to otolith analyses to suggest age structure, critical life history periods, growth environment, stock structure, food web position, and migration history. The techniques applied present an innovative approach to management-related problems, and the combination of chemical analyses with structural analyses promises to expand our knowledge of the life history of migratory fishes.  相似文献   

5.
The utility of Sr/Ca ratios in otoliths as indicators of thermal history in fish was investigated for juvenile Girella elevata . There was no direct relationship between ratios of Sr/Ca and temperature of the water, as has been assumed in many previous studies. Sr/Ca ratios did not decrease when water temperature was elevated from 19 to 28° C. Elevation of ambient Sr levels in the sea water caused a significant increase in Sr/Ca ratios in otoliths, and there was a detectable increase in Sr/Ca ratios in otoliths of some individuals fed an Sr-enriched diet. Multiple factors may influence natural Sr/Ca ratios in otoliths of juvenile G. elevata and their interactions make it difficult to interpret the chronology of conditions experienced by an individual fish during early life in the pelagic or benthic environment.  相似文献   

6.

Otoliths, calcium carbonate (CaCO3) ear stones of fish, contain a wealth of information about fish life and environmental history yet the CaCO3 polymorph form the otolith is made of is a critical, but seldom considered, piece of information during otolith analysis. Otolith trace element chemistry data increasingly informs management decisions, but recent work has shown that CaCO3 polymorphs—aragonite, vaterite, and calcite—can bear on incorporation of trace elements in a non-trivial way. Most fishes are thought to have otoliths of the aragonite CaCO3 form, but this construct is potentially outdated with many recent literature reports showing otherwise. Our study used previously unpublished neutron diffraction data and reports from published literature to address three objectives: (1) summarize the relative effects of otolith CaCO3 polymorphism on otolith microchemistry, (2) summarize reports of otolith polymorphs to gain a better understanding of the extent of non-aragonite otoliths among fishes, (3) outline future research needed to align interpretations of microchemistry with our current understanding of otolith polymorph diversity. We found that while aragonite otoliths are the most common, so are exceptions. For example, the ostensibly rare (among species) CaCO3 form vaterite was reported in at least some otoliths of 40% of the species surveyed. Our work suggests that examination of the CaCO3 polymorph composition of otoliths should become more common particularly in studies where results will or may be used to inform management decisions. Future research should work to attribute controls on otolith CaCO3 polymorph expression using a combination of -omics and material characterization approaches to enrich the life history and environmental information output from otoliths and increase our understanding of the assumptions made in otolith trace element chemistry studies.

  相似文献   

7.
The effects of temperature on somatic and otolith growth and the incorporation of strontium in otolith of the Japanese eel, were studied in laboratory-reared and field-caught eels. The somatic and otolith growth rates of the eel increased significantly with temperature and were estimated as approximately 0·096 mm t.l, (P<0·01) and 0·36 μm in otolith diameter per degree-day (0·01相似文献   

8.
  • 1.1. The gross anatomy and crystalline ultrastructure of the external surfaces has been described for the sagittal otoliths of a 6 million year old fossil otolith and the following bottom-living deep-water teleosts (families in parenthesis): Coryphaenoides (Nematonurus) armatus (Macrouridae), Coryphaenoides (Chalinura) mediterraneus (Macrouridae), Celonurus globiceps (Macrouridae), Coryphaenoids (Chalinura) leptolepis (Macrouridae), Antimora rostrata (Moridae), Halosaurus pectoralis (Halosauridae), Psychrolutes obesus and Neophrynichthys angustus (Psychroultidae).
  • 2.2. Sections of otoliths were scanned by proton microprobe to yield three dimensional maps of the elemental density of calcium, strontium and, in some otoliths, zinc. The same sections were examined optically for opaque and hyaline zones. For some otoliths, broken sections were examined by SEM and their internal crystalline structure described.
  • 3.3. The theoretical basis for using cycles in elemental (particularly strontium) composition to interpret life history is examined. Life history information from elemental composition is compared with other information derived both from otoliths and field observations of the species involved.
  相似文献   

9.
The analysis of elements in calcifiedstructures of fish (e.g., otoliths) todiscriminate among fish stocks and determineconnectivity between populations is becomingwidespread in fisheries research. Recently, theconcentrations of elements in otoliths arebeing analysed on finer scales that allow thedetermination of a continuous record of otolithchemistry over a fish's entire life history.These elemental concentrations can potentiallybe used to reconstruct migration patterns,based upon the influence that water chemistry,temperature, and salinity have on otolithchemistry. In doing so, assumptions are madeabout how environmental and biological factorsinfluence the concentration of elements in fishotoliths. However, there have been fewexperiments that have tested crucialassumptions regarding what influences elementaluptake and incorporation into fish otoliths.Specifically, knowledge regarding interactionsamong environmental variables, such as theambient concentration of elements in water,temperature, and salinity, and how they mayaffect otolith chemistry, is limited.Similarly, our understanding of the rate atwhich elements are incorporated into otolithsand the implications this may have forinterpretations is lacking. This reviewdiscusses methods of determining movement offish, the development of otolith research, andsome physiological aspects of otoliths (e.g.,pathways of elemental uptake). The types ofanalysis techniques that will lead to reliableand accurate migratory reconstructions areoutlined. The effects that have on otolith chemistry arereviewed with the specific aim of highlightingareas lacking environmentalvariables in experimental data. Theinfluences of the rate of elementalincorporation and ontogeny on otolith chemistryare also addressed. Finally, future researchdirections are suggested that will fill thegaps in our current knowledge of otolithchemistry. Hypotheses that need to be tested inorder to reconstruct the migratory histories offish are outlined, in a bid to clarify thedirection that research should take beforecomplex reconstructions are attempted.  相似文献   

10.
Although otolith Strontium (Sr)/calcium (Ca) ratios have been widely used to reconstruct the past salinity environmental history of anguillid eels, factors affecting the Sr/Ca ratios in otoliths are incompletely understood. Japanese Eel (Anguilla japonica) elvers (mean length 54.7 ± 2.1 mm) were collected in the estuary during their upstream migration and reared at 5 different salinities (0, 5, 15, 25, and 35 psu) and 3 types of feeding conditions (formulated feed, tubifex, and starvation) for 30 days to evaluate the effects of salinity and diets on otolith Sr/Ca ratios. Ca and Sr concentrations in the ambient water significantly increased with salinity (SAL) as [Ca] water = 15.50SAL − 5.56, and [Sr] water = 0.21SAL + 0.03, respectively. Sr/Ca ratios in otoliths increased with salinity (SAL) of the rearing water as [(Sr/Ca) × 1000] otolith = 0.091SAL + 3.790. In diets, Sr/Ca ratios were 4 times higher in tubifex than in formulated feed. However, in otoliths, ANOVA indicated that Sr/Ca ratios did not differ significantly between groups fed on tubifex or formulated feed (p = 0.118). Otolith Sr/Ca ratios were negatively correlated with fish growth rates while the growth rates differed significantly among rearing conditions with different salinities and diets. Partition coefficients of the Sr/Ca ratios from ambient water to fish tissues and otoliths significantly increased with salinity. The Sr/Ca ratios of Japanese Eel otoliths thus were positively correlated with the ambient salinity and decreased with increasing fish growth rate, but was not affected by fish diet.  相似文献   

11.
Much has been revealed about fish migration, including diadromous behaviour, through the use of otolith chemistry. Manipulative experiments assist with unravelling information on otolith chemical composition and incorporation thereby answering specific questions on diadromous movements. In this study, a laboratory-based experiment was used to determine the relative and interactive effects of salinity and water temperature on the composition of three key elements (Sr, Ba and Mg) within the otolith of a catadromous fish, Percalates novemaculeata, endemic to south-eastern Australia. Otolith incorporation of Sr and Ba was positively related to ambient water concentration, whereas Mg incorporation was not. Sr and Ba increased and decreased significantly across salinity gradients, respectively, with minor positive effects of temperature also being detected. Salinity and temperature interacted to significantly affect the elemental concentration ratios for Ba: Ca in otoliths. Discrimination between fresh water and marine environments shows promise for interpreting P. novemaculeata residency based on these elements alone. However, deciphering finer scale movements within estuarine environments may be difficult. Our data highlights the importance of multifactorial validation experiments and suggests complementary use of multiple approaches for unravelling species-specific patterns of fish movement and habitat use.  相似文献   

12.
Although the life history traits of Nile tilapia, Oreochromis niloticus have been studied since the early 20th century, the potential range of life history parameters in unexploited populations and geographical variability in life history traits are still poorly understood. We explored life history traits (age composition, growth rate, mortality, size, and age at maturity) of an invasive and unexploited population in the Tabaru River, Yonaguni-jima Island, southwestern Japan, through comparisons with exploited populations across the species’ global distribution. Analysis of sectioned otoliths from 307 fish revealed that growth and maximum age were sexually dimorphic (females growing less but having greater longevity). Large-scale comparisons with exploited populations revealed that the unexploited Tabaru River population had a greater life span than exploited populations in other regions, but the growth rate was in the middle of the range of observed values. Although a high variation in life history parameters was observed among populations (L , K, maximum age), we found no significant variation in life history traits by latitude or between African and non-African populations. Such a combination of long life span and high variability in life history traits in response to environmental and fishing pressures may aid the success of non-native Nile tilapia in various environments.  相似文献   

13.
  • 1.1. External and internal examinations of otoliths in fishes for macrostructure and microstructure has demonstated yearly, daily and population rhythmic patterns.
  • 2.2. Chemical analyses (atomic absorption) of otolith carbonate from reared Fundulus heteroclitus for strontium-calcium concentration ratios demonstrated changes in chemistry related to temperature.
  • 3.3. Microprobe analyses made it feasible to interpret almost daily changes in temperature to provide the temperature history of an individual fish.
  • 4.4. A combination of microprobe analyses and daily increment analyses of otoliths can provide a life history profile for individual fish and can provide information on the environmental history of each fish.
  • 5.5. Such information is vital to our understanding of the processes underlying recruitment and growth rates, and would make it possible to link growth and mortality rates to environmental occurrences.
  相似文献   

14.
Synopsis We examined the stock composition and life history of Pacific cod, Gadus macrocephalus, in the northeast Pacific Ocean from sagittal otoliths collected from three marine fishing areas in Washington State, U.S.A. We analyzed both stable isotope ratios (δ18O and δ13C) and trace elemental concentrations (Sr, Mg, Na, Fe, Mn) for these otoliths. The combination of δ18O and δ13C, and correlation of δ18O vs. 1000Sr/Ca and 1000Mg/Ca showed clear separations between North Puget Sound and coastal cod, suggesting there might be two different spawning stocks in the region. The North Puget Sound cod might represent an ‘Estuary-type’ from the Strait of Georgia, whereas coastal cod might represent an ‘Ocean-type’ from the Pacific west coast. Isotopic variations from five representative otoliths also showed a two-stage life history for Pacific cod, and a critical transition period for cod in migration to the ocean or in age of sexual maturity. These chemical interpretations and conclusions appear in agreement with biological observations of Pacific cod, and are consistent with results of previous studies for other marine fish species in nearby areas.  相似文献   

15.
C. H. Wang    Y. T. Lin    J. C. Shiao    C. F. You    W. N. Tzeng 《Journal of fish biology》2009,75(6):1173-1193
The elements Na, Mg, Mn, Ca, Sr and Ba in otoliths of southern bluefin tuna Thunnus maccoyii , collected from their feeding ground in the central Indian Ocean and spawning ground between southern Java and north-western Australia were measured by laser-ablation inductively coupled plasma mass spectrometry (LA-ICPMS) and compared among sampling locations and developmental stages. The Na, Mg and Mn to Ca concentration ratios were significantly higher at the larval stage than at the adult stage, and the ratio reached a peak at the first inflection point of the otolith, mean ± s.d. 43·3 ± 4·9 days after hatching and decreased sharply to a low level thereafter. The temporal change of the elements:Ca ratios in the first inflection point corresponded to the life stage transition from larva to juvenile, indicating that the uptake rate of elements from ambient waters was significantly influenced by the ontogenetic change in the fish. The elemental composition at the otolith edge differed significantly in sub-adults on the feeding grounds and adults on the spawning grounds. Thus, the otolith elemental composition can be used as a biological tracer to study the time of the ontogenetic shift and to reconstruct the past migratory environmental history of T. maccoyii . In addition, the elemental composition of the otolith core of the adult was similar between feeding and spawning grounds, indicating that the fish in the Indian Ocean had the same larval origin, which is consistent with the single spawning population hypothesis.  相似文献   

16.
Incorporation of strontium into otoliths of an estuarine fish   总被引:1,自引:0,他引:1  
Patterns of Sr/Ca variability in fish otoliths have been widely applied as tracers of movement between freshwater and marine habitats, with the assumption that low salinity habitats correspond to lower otolith levels of Sr/Ca. On the other hand, fluvial estuaries can contain steep gradients in Sr/Ca, and in some estuaries, freshwater values of Sr/Ca can exceed marine values, which are relatively constant across marine habitats. Therefore, to interpret Sr/Ca variability in otoliths of fish that move through estuaries, information is needed about both the incorporation of strontium into otoliths and the nature of the gradient of Sr/Ca in the water. We conducted four experiments to evaluate the incorporation of strontium into fish otoliths under estuarine conditions, using white perch (Morone americana) as a model estuarine fish. One laboratory and the two field experiments tested the relationship between Sr/Ca in the otolith and that in the water. A fourth experiment investigated the effect of salinity, independently of the water chemistry (Sr was manipulated while maintaining a constant salinity and Ca level). All four experiments supported a direct relationship between Sr/Ca in the otolith and the water, across a range of estuarine salinities. Results also indicated that the incorporation of strontium into otoliths of estuarine fishes should be constant across broad gradients of Sr/Ca in estuarine waters. While the experiments supported past applications of tracing estuarine and diadromous movements with otolith Sr/Ca chronologies, we emphasize the need to understand the underlying nature of Sr/Ca gradients in estuaries, which may limit or confound reconstructions of estuarine habitat use.  相似文献   

17.
18.
To understand if the trace elements in the otoliths can be used as a biological tracer for tracking natal origin and dispersal of larval black porgy (Acanthopagrus schlegeli) and yellowfin seabream (A. latus) among estuaries, the fish larvae in 1997, 1998, and 2005 and water samples in 2005 were collected from 3 estuaries on the western coast of Taiwan. The elemental composition in both otoliths of the larvae and water samples were analyzed by a solution-based inductively coupled plasma mass spectrometer (ICP-MS). Temporal and spatial differences were found in some of the measured 12 element/Ca ratios in the larval otoliths. The water elemental composition was also significantly different between estuaries and between flood and ebb tides. 87.5–100?% of the larvae of both species could be successfully assigned to their sampled estuaries. However, only 20?% of the black porgy collected from TT in 1998 could be successfully assigned to TT and the rest to GST and TK. The low assignment might be due to the mixing by the tidal current because the flood tide comes from the direction of TK in the south and GST in the north and merged in the middle of Taiwan Strait nearby TT. This study demonstrated that the trace elements in the otoliths of the fish have the potential to detect the temporal and spatial variation of environmental conditions in the estuaries and subsequently can be used for tracking the origin of the larvae from different estuaries and their dispersal rate.  相似文献   

19.
Chemical constituents in otoliths have become a valuable tool for fish ecologists seeking to reconstruct migratory patterns and life-history diversity in a wide range of species worldwide. This approach has proved particularly effective with fishes that move across substantial salinity gradients over the course of their life, including many diadromous species. Freshwater endmembers of several elemental and isotope ratios (e.g. Sr:Ca, Ba:Ca and (87)Sr:(86)Sr) are typically identifiably distinct from marine values, and often differ among freshwater tributaries at fine spatial scales. Because these chemical tags are generally incorporated in proportion to their ambient dissolved concentrations, they can be effective proxies for quantifying the presence, duration and frequency of movements between freshwater and marine habitats. The development of high precision probe-based analytical techniques, such as laser ablation inductively coupled plasma mass spectrometry (ICP-MS) and microbeam methods, has allowed researchers to glean increasingly detailed life-history profiles of these proxies across otoliths. Researchers are also combining multiple chemical proxies in an attempt to refine interpretations of habitat residence patterns. A thorough understanding of the spatial and temporal variation in water chemistry as well as environmental and physiological controls on incorporation of specific elements into otoliths is required for confident estimation of lifetime salinity experience. First some assumptions, methodological considerations and data processing options that are particularly relevant to diadromous otolith chemistry studies are discussed. Insights into diadromous migrations obtained from decades of otolith chemistry research, highlighting the increasingly recognized importance of contingent behaviour and partial migration are then discussed. Finally, areas for future research and the need to integrate otolith chemistry studies into comprehensive assessments of the effects of global environmental change are identified.  相似文献   

20.
Otolith elemental (Sr:Ca, Ba:Ca, Mn:Ca, Mg:Ca and Rb:Ca) and isotopic (87Sr:86Sr) profiles from several annual cohorts of juvenile Atlantic salmon Salmo salar were related to the physico‐chemical characteristics (chemical signatures, flow rate, temperature and conductivity) of their natal rivers over an annual hydrological cycle. Only Sr:Ca, Ba:Ca and 87Sr:86Sr in otoliths were determined by their respective ratios in the ambient water. Sr:Ca ratios in stream waters fluctuated strongly on a seasonal basis, but these fluctuations, mainly driven by water flow regimes, were not recorded in the otoliths. Otolith Sr:Ca ratios remained constant during freshwater residency at a given site and were exclusively related to water Sr:Ca ratios during low flow periods. While interannual differences in otolith elemental composition among rivers were observed, this variability was minor compared to geographic variability and did not limit classification of juveniles to their natal stream. Success in discriminating fish from different sites was greatest using Sr isotopes as it remained relatively constant across years at a given location.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号