首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The occurrence of natal homing in marine fish remains a fundamental question in fish ecology as its unequivocal demonstration requires tracking of individuals from fertilization to reproduction. Here, we provide evidence of long‐distance natal homing (>1000 km) over more than 60 years in Atlantic cod (Gadus morhua), through genetic analysis of archived samples from marked and recaptured individuals. Using a high differentiation single‐nucleotide polymorphism assay, we demonstrate that the vast majority of cod tagged in West Greenland and recaptured on Icelandic spawning grounds belonged to the Iceland offshore population, strongly supporting a hypothesis of homing. The high degree of natal fidelity observed provides the evolutionary settings for development of locally adapted populations in marine fish and emphasize the need to consider portfolio effects in marine fisheries management strategies.  相似文献   

2.
Naturally occurring stable isotope and trace elemental markers in otoliths have emerged as powerful tools for determining natal origins and environmental history of fishes in a variety of marine and freshwater environments. However, few studies have examined the applicability of this technique in large river-floodplain ecosystems. This study evaluated otolith microchemistry and stable isotopic composition as tools for determining environmental history of fishes in the Middle Mississippi River, its tributaries, and floodplain lakes in Illinois and Missouri, USA. Fishes were collected from 14 sites and water samples obtained from 16 sites during summer and fall 2006 and spring 2007. Otolith and water samples were analyzed for stable oxygen isotopic composition (δ18O) and concentrations of a suite of trace elements; otoliths were also analyzed for carbon isotopic composition (δ13C). Tributaries, floodplain lakes, and the Mississippi and Lower Missouri Rivers possessed distinct isotopic and elemental signatures that were reflected in fish otoliths. Fish from tributaries on the Missouri and Illinois sides of the middle Mississippi River could also be distinguished from one another by their elemental and isotopic fingerprints. Linear discriminant function analysis of otolith chemical signatures indicated that fish could be classified back to their environment of capture (Mississippi River, floodplain lake, tributary on the Illinois or Missouri side of the Mississippi River, or lower Missouri River) with 71–100% accuracy. This study demonstrates the potential applicability of otolith microchemistry and stable isotope analyses to determine natal origins and describe environmental history of fishes in the Middle Mississippi River, its tributaries, and floodplain lakes. The ability to reconstruct environmental history of individual fish using naturally occurring isotopic markers in otoliths may also facilitate efforts to quantify nutrient and energy subsidies to the Mississippi River provided by fishes that emigrate from floodplain lakes or tributaries.  相似文献   

3.
Coho Salmon Oncorhynchus kisutch show fidelity to natal spawning watersheds. Fine-scale homing, however, within rivers is not well understood. Interior Fraser Coho (IFC) salmon eggs were incubated at known spawning locations in the Coldwater River, two main stem sites and one-off channel pond site, providing otolith reference data for comparison to otolith signatures for returning adults using laser ablation inductively coupled plasma mass spectrometry. Elemental ratios for Ba:Ca and Sr:Ca in otoliths of juvenile O. kisutch differed significantly among the spawning locations examined. Juvenile otolith data were used to conduct a linear discriminant analysis to assess fine-scale homing in adults. Juvenile data were all assigned to the location where they had been incubated, producing a robust data set used to compare adult otoliths and define natal locations based on elemental signatures in otoliths of adult spawners. Homing and straying were apparent at the reach level; 57.1% of adults returned to their natal spawning locations, while 42.9% strayed to other spawning sites within the Coldwater River. Straying to novel incubation sites at the reach scale demonstrated plasticity in homing within a watershed.  相似文献   

4.
Male and female indigo buntings (Passerina cyanea) were equally likely to return and breed in their natal areas. The distances and number of territories between natal and breeding sites were similar between the sexes. The breeding site was not limited by prior occupation of sites by breeding adults closer to the natal territory. Dispersal distances were independent of whether parents or siblings of either sex returned in the same year. Variation in distance within the natal area appeared to be independent of local population density, social competition, active kin recognition, and avoidance of incest, but was affected by date of birth. The local distribution of dispersal distances approximated a neutral model with a decreasing probability of settling with distance from the natal site. A population inbreeding coefficient ΔF of 0.01 was estimated from known genealogies and matings. The proportion of nestlings recaptured in a later year on their natal area was 1.65% of 1,212 nestlings at the George Reserve and 8.78% of 1,332 nestlings at Niles. Locally born birds comprised 1.6% and 13.0% of the breeding population in areas of 10 and 4 km2. Evidently most buntings settle and breed more than 2 km from their natal site. The results are inconsistent with predictions of social and avoidance-of-inbreeding hypotheses that are based on the local natal demographic environment. The results are consistent with a model of neutral dispersal within a genetically open population.  相似文献   

5.
The existence of biologically differentiated populations has been credited with a major role in conferring sustainability and in buffering overall productivity of anadromous fish population complexes where evidence for spatial structure is uncontroversial. Here, we describe evidence of correlated genetic and life history (spawning season linked to spawning location) differentiation in an abundant and highly migratory pelagic fish, Atlantic herring, Clupea harengus, in the North Sea (NS) and adjacent areas. The existence of genetically and phenotypically diverse stocks in this region despite intense seasonal mixing strongly implicates natal homing in this species. Based on information from genetic markers and otolith morphology, we estimate the proportional contribution by NS, Skagerrak (SKG) and Kattegat and western Baltic (WBS) fish to mixed aggregations targeted by the NS fishery. We use these estimates to identify spatial and temporal differences in life history (migratory behaviour) and habitat use among genetically differentiated migratory populations that mix seasonally. Our study suggests the existence of more complex patterns of intraspecific diversity than was previously recognized. Sustainability may be compromised if such complex patterns are reduced through generalized management (e.g. area closures) that overlooks population differences in spatial use throughout the life cycle.  相似文献   

6.
The anadromous Gulf sturgeon occurs along the north central coast of the Gulf of Mexico and is federally listed as threatened. We analyzed fine‐scale patterns of Gulf sturgeon population structure, focusing on the Pascagoula River drainage of Mississippi, in reference to movement patterns as determined via telemetry and capture data. We genotyped 361 Gulf sturgeon using eight microsatellite loci including samples from the Pascagoula, Pearl, Escambia, Yellow, Choctawhatchee, and Apalachicola river drainages. Pairwise FST estimates indicated that genetic structure occurs at least at the drainage level. The Pascagoula and Pearl rivers form a western group, demonstrating 100% bootstrap support for a division with drainages to the east. Assignment tests detected non‐natal genotypes occurring in all drainages. According to assignment tests, the Pascagoula supports an admixture of individuals, containing minimal influence from drainages to the east (2%) and substantial interaction with the Pearl River (14.1%). The occurrence of Pascagoula River fish in the Pearl was non‐reciprocal, observed at 1.1%. After accounting for non‐natal genetic diversity within the Pascagoula, there remained a disparity between a pooled Pascagoula group and the only documented spawning site within the drainage located in the Bouie River. We interpret this as an indication of a second genetic stock within the Pascagoula River drainage. Radio telemetry data suggest that spawning likely occurs in the Chickasawhay River, in areas isolated from the Bouie River spawning site by about 350 river kilometers. We emphasize the utility of integrating field and molecular approaches when delineating fine‐scale patterns of population structure in anadromous fishes.  相似文献   

7.
The elemental signature in otolith nuclei was determined using laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) for stock discrimination of adult anadromous tapertail anchovy, Coilia nasus, in five Chinese estuaries. Five elements (Na, Mg, K, Sr, and Ba) were well detected in the otolith nuclei of the adult fish. Results showed that the elemental composition in the otolith nuclei varied substantially among the estuaries. Age and fish length data showed no significant influences on the elemental concentration ratios across the sample sites. The Sr:Ca and Ba:Ca ratios were inter-site distinct and could be used as natal tags for discriminating among stocks. Discriminant function analyses (DFA) showed that these ratios can be used in discriminating the Liaohe River estuary (LD, 92.3?%), the Yangtze River estuary (CJ, 86.7?%), and the Yellow River estuary (HH, 76.9?%) samples with high classification accuracy, followed by the Haihe River estuary (BH, 58.3?%) and the Daguhe River estuary (JZ, 46.2?%) samples. An overall classification accuracy rate of 72.7?% from the discriminant functions indicated that elemental fingerprinting appeared to have the potential to discriminate between tapertail anchovy stocks in these estuaries.  相似文献   

8.
We evaluated the spatial and temporal scales over which otolith signatures varied in a reef fish on the Great Barrier Reef (GBR) using the non-dispersing damselfish Acanthochromis polyacanthus. We found a robust multi-element separation in otolith signatures from reef clusters in the northern and southern GBR. Variance components indicated that this spatial scale accounted for the majority of the variation in two elemental ratios (Ba/Ca and Sr/Ca) over the 2 years of the study. There was also significant variation in elemental signatures between otoliths collected over two consecutive years, as well as within a season. Individual reefs within clusters were less distinguishable based on otolith chemistry and were probably observed by differences within reefs (among sites and broods within sites). These results indicate that it may be difficult to determine the reef of origin for individual fish using otolith chemistry, while determining natal region seems a realistic goal.  相似文献   

9.
The population of adult cisco in the Bothnian Bay consists of a number of spawning populations. Each one of these returns to the same inshore area for spawning every autumn. In the summer these populations are mixed and occur mainly offshore. These are the main conclusions of an experiment in which cisco were marked with Carlin-type tags. The cisco were caught mainly in fyke nets both in the summer and in the autumn and released after tagging in the area where they had been caught. Fish tagged in the autumn and recaptured in the autumn one or more years later showed a strong affinity to the point of release, while fish from the same group recaptured in the summer had migrated far from the release site. The distribution of cisco that were tagged in the summer and caught in the autumn showed no correlation with the release site.  相似文献   

10.
Otoliths of king threadfin, Polydactylus macrochir were collected from 2007 to 2009 at nine locations across northern Australia representing most of their distributional range and areas where fisheries are active. Measurement of the stable isotope ratios of δ18O and δ13C in the sagittal otolith carbonate from assemblages of P. macrochir revealed location-specific signatures and indicated that adult fish sampled from representative sites across their range were significantly different. The significant differences in the isotopic signatures of P. macrochir demonstrated that population subdivision is evident and there is unlikely to be substantial movement of fish among these distinct adult assemblages. The stable isotopic signatures for the fish from the different locations were persistent through time, and therefore it could be concluded that they comprise separate stocks for many of the purposes of fisheries management. The spatial separation of these populations indicates a complex stock structure across northern Australia with stocks of P. macrochir associated with large coastal beaches and embayments on a fine spatial scale. These results indicate that in order to achieve optimal fisheries management, the current spatial management arrangements need to be reviewed, particularly the potential for localised depletion of stocks on small spatial scales. This study has provided further evidence that measurement of the stable isotopes ratios in teleost sagittal otolith carbonate can be a valuable tool in the delineation of fishable stocks or fishery management units of adult fish and that widely distributed fish can nonetheless show strong localised population structure.  相似文献   

11.
Maintaining viable populations of salmon in the wild is a primary goal for many conservation and recovery programs. The frequency and extent of connectivity among natal sources defines the demographic and genetic boundaries of a population. Yet, the role that immigration of hatchery-produced adults may play in altering population dynamics and fitness of natural populations remains largely unquantified. Quantifying, whether natural populations are self-sustaining, functions as sources (population growth rate in the absence of dispersal, λ>1), or as sinks (λ<1) can be obscured by an inability to identify immigrants. In this study we use a new isotopic approach to demonstrate that a natural spawning population of Chinook salmon, (Oncorhynchus tshawytscha) considered relatively healthy, represents a sink population when the contribution of hatchery immigrants is taken into consideration. We retrieved sulfur isotopes ((34)S/(32)S, referred to as δ(34)S) in adult Chinook salmon otoliths (ear bones) that were deposited during their early life history as juveniles to determine whether individuals were produced in hatcheries or naturally in rivers. Our results show that only 10.3% (CI = 5.5 to 18.1%) of adults spawning in the river had otolith δ(34)S values less than 8.5‰, which is characteristic of naturally produced salmon. When considering the total return to the watershed (total fish in river and hatchery), we estimate that 90.7 to 99.3% (CI) of returning adults were produced in a hatchery (best estimate = 95.9%). When population growth rate of the natural population was modeled to account for the contribution of previously unidentified hatchery immigrants, we found that hatchery-produced fish caused the false appearance of positive population growth. These findings highlight the potential dangers in ignoring source-sink dynamics in recovering natural populations, and question the extent to which declines in natural salmon populations are undetected by monitoring programs.  相似文献   

12.
In patchily distributed species dispersal connects local populations into metapopulations. Reliable quantifications of dispersal are therefore crucial to understanding the population dynamics and genetic structure of such metapopulation systems. The great reed warbler (Acrocephalus arundinaceus) inhabits eutrophic lakes and has a patchy breeding distribution. In this study we investigated the dispersal pattern of the great reed warbler based on an extensive capture-recapture effort covering a large census area (22,500 km2). At two adjacent breeding sites (10 km apart) in southern Central Sweden, the "main study area", we ringed the majority of adult and nestling great reed warblers between 1992 and 1999. In 1998 and 1999, we opportunistically searched for territorial males at the majority of the Swedish breeding sites, and were able to examine about 56% of all males in the region. Analyses of recaptured males demonstrated that philopatry predominated. Sixty-nine percent of the recruiting nestlings returned to breed in the main study area (their natal area), and 92% of the resighted adults were found at the same breeding locality in both study years. Breeding dispersal was significantly more restricted than natal dispersal. Additional data on natal and breeding dispersal within the main study area in 1992-1999 suggested that females were as philopatric as males. The overall high level of philopatry, with only occasional longer dispersal distances documented, yielded a root-mean-square dispersal distance of 33 km per generation. High philopatry, short dispersal distances and similar dispersal patterns of male and female great reed warblers contrast the findings among birds in general, but conform to data of species having patchy breeding habitat and isolated populations. Restricted dispersal suggests limited gene flow even among several Swedish populations, which is in line with some previous findings of the population ecology of the great reed warbler: (1) structured mtDNA lineages among European populations; (2) small-scale population differences in song patterns; and (3) low genetic variation and occurrence of inbreeding depression in our main study population.  相似文献   

13.
The objective of this study was to examine the spatial genetic relationships of the Lake Qinghai scaleless carp Gymnocypris przewalskii within the Lake Qinghai system, determining whether genetic evidence supports the current taxonomy of Gymnocypris przewalskii przewalskii and Gymnocypris przewalskii ganzihonensis and whether Gymnocypris przewalskii przewalskii are returning to their natal rivers to spawn. Comparison of mitochondrial (control region) variation (42 haplotypes in 203 fish) of G. przewalskii with the postulated ancestral species found in the Yellow River, Gymnocypris eckloni (10 haplotypes in 23 fish), indicated no haplotype sharing, but incomplete lineage sorting. Consistent with the sub-species status, an AMOVA indicated that the Ganzi River population was significantly different from all other river populations (F(ST) = 0·1671, P < 0·001). No genetic structure was found among the other rivers in the Lake Qinghai catchment. An AMOVA of amplified fragment length polymorphism (AFLP) loci, however, revealed significant genetic differences between most spawning populations (F(ST) = 0·0721, P < 0·001). Both mitochondrial and AFLP data found significant differences among G. p. przewalskii, G. p. ganzihonensis and G. eckloni (F(ST) values of 0·1959 and 0·1431, respectively, P < 0·001). Consistent with the incomplete lineage sorting, Structure analysis of AFLP loci showed evidence of five clusters. One cluster is shared among all sample locations, one is unique to G. p. ganzihonensis and G. eckloni, and the others are mostly found in G. p. przewalskii. Genetic evidence therefore supports the current taxonomy, including the sub-species status of G. p. ganzihonensis, and is consistent with natal homing of most Lake Qinghai populations. These findings have significant implications for the conservation and management of this unique and threatened species. The evidence suggests that G. p. przewalskii should be treated as a single population for conservation purposes. Exchangeability of the populations, however, should not be used to promote homogenization of fish spawning in the different rivers. As some degree of genetic divergence was detected in this study, it is recommended that the spawning groups be treated as separate management units.  相似文献   

14.
Knowledge of the patterns and scale of connectivity among populations is essential for the effective management of species, but our understanding is still poor for marine species. We used otolith microchemistry of newly settled bicolor damselfish (Stegastes partitus) in the Mesoamerican Reef System (MRS), Western Caribbean, to investigate patterns of connectivity among populations over 2 years. First, we assessed spatial and temporal variability in trace elemental concentrations from the otolith edge to make a ‘chemical map’ of potential source reef(s) in the region. Significant otolith chemical differences were detected at three spatial scales (within-atoll, between-atolls, and region-wide), such that individuals were classified to locations with moderate (52 % jackknife classification) to high (99 %) accuracy. Most sites at Turneffe Atoll, Belize showed significant temporal variability in otolith concentrations on the scale of 1–2 months. Using a maximum likelihood approach, we estimated the natal source of larvae recruiting to reefs across the MRS by comparing ‘natal’ chemical signatures from the otolith of recruits to the ‘chemical map’ of potential source reef(s). Our results indicated that populations at both Turneffe Atoll and Banco Chinchorro supply a substantial amount of individuals to their own reefs (i.e., self-recruitment) and thus emphasize that marine conservation and management in the MRS region would benefit from localized management efforts as well as international cooperation.  相似文献   

15.
Geographic variability in sagittal otoliths shape of the Japanese Spanish mackerel (Scomberomorus niphonius) was studied to test whether stock discrimination might be possible using this method. It was hypothesized that S. niphonius would show little difference in otolith shape, likely as a result of mixing between seas. A total of 164 sagittal otoliths were collected from commercial fishing vessels between April and June 2010 in three spawning grounds, that of Qingdao in the middle Yellow Sea, Lvsi in the southern Yellow Sea, Huanghua in the the Bohai Sea. To minimize the potential effect of the fish size among the three fishing grounds, a narrow size range (400–550 mm fork length) was selected. The discriminant function analysis conducted with standardized otolith shape indices and Fourier harmonics produced classification success rates ranging from 57.0 to 88.2% and worked well in the separation between the Bohai Sea group and the Yellow Sea group. No significant differences were detected among the three groups for the Lvsi spawning grounds. The otolith variables showed a distinct gradual variation tendency with the movement of fish schools from south to north. The results suggest that stock from the Bohai Sea could be managed as a separate entity from those found in the Yellow Sea.  相似文献   

16.
Yellowfin bream were tagged and released in three non-spawning areas and two spawning areas in Moreton Bay, a large estuarine system on the east coast of Australia. A total of 194 fish were recaptured. Juvenile fish made only small-scale movements (less than 6 km) from the release site. Small-scale movements were also recorded for adult fish, although large-scale movements from 10 to 90 km were also recorded. The large-scale movements appear to be associated with the migration of adult fish to or from surf bar spawning areas. Some adult fish remained in feeding areas during the spawning season (May-August). There was no indication from tag recoveries of any movements of yellowfin bream outside Moreton Bay and the results indicate that adult yellowfin bream in Moreton Bay may be regarded as a unit stock for the purpose of fisheries management.  相似文献   

17.
Connectivity between fish stocks is fundamental to the understanding of population dynamics and the implementation of sustainable fisheries management. Otolith microchemistry is a promising tool as it can provide information on the continuous growth of otoliths and the environmental effects on otolith composition. Such elemental fingerprints can help distinguish different stocks or life history stages, identify the origins or nursery areas of fish, and assess population structure. In this study, we examined the stock discrimination and spatial connectivity of cage-cultured and wild stocks of yellowfin seabream (Acanthopagrus latus) from the coastal waters of Shantou, Yangjiang, and Zhanjiang in China southern province Guangdong during 2012–2014, based on otolith trace-elemental signatures using multivariate statistical analysis and machine learning approaches. The concentrations of 13 elements (7Li, 23Na, 24Mg, 40Ca, 55Mn, 56Fe, 59Co, 59Ni, 64Cu, 65Zn, 88Sr, 122Sb, and 137Ba) in the natal spot of fish otoliths, representing the embryonic and paralarval stages of fish, were analyzed using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Stepwise discriminant analysis and random forests were used to distinguish the cultured and wild stocks of yellowfin seabream, and non-metric multidimensional scaling (NMDS) and cluster analysis were used to determine the spatial variation and connectivity of yellowfin seabream stocks. Overall, the cultured and wild stocks of yellowfin seabream could be identified with classification accuracy of 80.7% and 99.2% by using stepwise discriminant analysis and random forests respectively. When we compared site difference between cultured and wild stocks (site × stock interactions), the classification success was 60.4% for stepwise discriminant analysis and 85.7% for random forests. The misclassification of cultured and wild stocks within the three sites suggested the spatial connectivity between stocks and among sampling locations. Our findings suggested that the three wild stocks of yellowfin seabream from Guangdong coastal waters could be considered as one unit for management, and the difference between cultured and wild stocks was significant for yellowfin seabream from Shantou and Yangjiang, but less significant for yellowfin seabream from Zhanjiang. This study demonstrated that otolith elemental fingerprints can help improve our knowledge on the spatial connectivity, population structure, and life history of fish stocks, and random forests can be a useful tool for identifying cultured and wild stocks compared to the traditional stepwise discriminant analysis.  相似文献   

18.
Dispersal is a key demographic process, ultimately responsible for genetic connectivity among populations. Despite its importance, quantifying dispersal within and between populations has proven difficult for many taxa. Even in passerines, which are among the most intensely studied, individual movement and its relation to gene flow remains poorly understood. In this study we used two parallel genetic approaches to quantify natal dispersal distances in a Neotropical migratory passerine, the black-capped vireo. First, we employed a strategy of sampling evenly across the landscape coupled with parentage assignment to map the genealogical relationships of individuals across the landscape, and estimate dispersal distances; next, we calculated Wright’s neighborhood size to estimate gene dispersal distances. We found that a high percentage of captured individuals were assigned at short distances within the natal population, and males were assigned to the natal population more often than females, confirming sex-biased dispersal. Parentage-based dispersal estimates averaged 2400m, whereas gene dispersal estimates indicated dispersal distances ranging from 1600–4200 m. Our study was successful in quantifying natal dispersal distances, linking individual movement to gene dispersal distances, while also providing a detailed look into the dispersal biology of Neotropical passerines. The high-resolution information was obtained with much reduced effort (sampling only 20% of breeding population) compared to mark-resight approaches, demonstrating the potential applicability of parentage-based approaches for quantifying dispersal in other vagile passerine species.  相似文献   

19.
The degree of natal philopatry relative to natal dispersal in animal populations has important demographic and genetic consequences and often varies substantially within species. In salmonid fishes, lakes have been shown to have a strong influence on dispersal and gene flow within catchments; for example, populations spawning in inflow streams are often reproductively isolated and genetically distinct from those spawning in relatively distant outflow streams. Less is known, however, regarding the level of philopatry and genetic differentiation occurring at microgeographic scales, for example, where inflow and outflow streams are separated by very small expanses of lake habitat. Here, we investigated the interplay between genetic differentiation and fine‐scale spawning movements of brown trout between their lake‐feeding habitat and two spawning streams (one inflow, one outflow, separated by <100 m of lake habitat). Most (69.2%) of the lake‐tagged trout subsequently detected during the spawning period were recorded in just one of the two streams, consistent with natal fidelity, while the remainder were detected in both streams, creating an opportunity for these individuals to spawn in both natal and non‐natal streams. The latter behavior was supported by genetic sibship analysis, which revealed several half‐sibling dyads containing one individual that was sampled as a fry in the outflow and another that was sampled as fry in the inflow. Genetic clustering analyses in conjunction with telemetry data suggested that asymmetrical dispersal patterns were occurring, with natal fidelity being more common among individuals originating from the outflow than the inflow stream. This was corroborated by Bayesian analysis of gene flow, which indicated significantly higher rates of gene flow from the inflow into the outflow than vice versa. Collectively, these results reveal how a combination of telemetry and genetics can identify distinct reproductive behaviors and associated asymmetries in natal dispersal that produce subtle, but nonetheless biologically relevant, population structuring at microgeographic scales.  相似文献   

20.
Little is known about intraspecific variation within the deacon rockfish (Sebastes diaconus), a recently described species found in the northeast Pacific Ocean. We investigated population structure among fish sampled from two nearshore reefs (Siletz Reef and Seal Rock) and one offshore site (Stonewall Bank) within a <50‐km2 area off the Oregon coast. Fish from the three sample sites exhibited small but statistically significant differences based on genetic variation at >15,000 neutral loci, whether analyzed independently or classified into nearshore and offshore groups. Male and females were readily distinguished using genetic data and 92 outlier loci were associated with sex, potentially indicating differential selection between males and females. Morphometric results indicated that there was significant secondary sexual dimorphism in otolith shape, but further sampling is required to disentangle potential confounding influence of age. This study is the first step toward understanding intraspecific variation within the deacon rockfish and the potential management implications. Since differentiation among the three sample sites was small, we consider the results to be suggestive of a single stock. However, future studies should evaluate how the stock is affected by differences in sex, age, and gene flow between the nearshore and offshore environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号