首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
促性腺激素释放激素受体及其基因表达调控   总被引:9,自引:0,他引:9  
促性腺激素释放激素(GnRH,LHRH)在体内的重要功能是由GnRH受体介导的。GnRH受体是近年神经分内分泌和生殖生物学研究的热点之一,本文从GnRH受体的分子结构,GnRH受体基因表达调控,GnRH受体分布及表达,调节RnRH受体的因素以及GnRH受体介导的细胞信号转导等几个方面对GnRH受体近年来的研究进展进行了综述,对GnRH受体的研究,将有助于人们进一步了解GnRH受体在生殖调节和恶性肿  相似文献   

2.
3.
4.
5.
用链霉亲和素 -生物素化过氧化物酶复合物 (StreptAvidinBiotin peroxidaseComplex ,SABC)免疫细胞化学方法 ,使用促性腺激素释放激素 (Gonadotropin releasinghormone ,GnRH)以及促性腺激素释放激素受体 (GnRHR) 2种抗血清对性成熟前后的黄颡鱼 (Pelteobagrusfulvidraco)和鲇鱼 (Silurusasotus)的脑、垂体、卵巢中的免疫活性内分泌细胞进行了免疫细胞化学定位。结果表明GnRH和GnRHR免疫活性在两种鱼的各脑区、垂体、卵巢中均有分布 ;两种鱼在性成熟时它们的下丘脑、垂体和卵巢中的GnRH和GnRHR免疫反应细胞数目和免疫反应强度明显高于性成熟前。本文讨论了GnRH、GnRHR直接或间接参与黄颡鱼和鲇鱼性腺发育成熟调节的可能性及形态学证据。可为下丘脑 垂体 性腺轴、神经 内分泌、GnRH功能的多样性等研究领域提供新的形态学依据。  相似文献   

6.
7.
Specialized membrane microdomains known as lipid rafts are thought to contribute to G-protein coupled receptor (GPCR) signaling by organizing receptors and their cognate signaling molecules into discrete membrane domains. To determine if the GnRHR, an unusual member of the GPCR superfamily, partitions into lipid rafts, homogenates of alpha T3-1 cells expressing endogenous GnRHR or Chinese hamster ovary cells expressing an epitope-tagged GnRHR were fractionated through a sucrose gradient. We found the GnRHR and c-raf kinase constitutively localized to low density fractions independent of hormone treatment. Partitioning of c-raf kinase into lipid rafts was also observed in whole mouse pituitary glands. Consistent with GnRH induced phosphorylation and activation of c-raf kinase, GnRH treatment led to a decrease in the apparent electrophoretic mobility of c-raf kinase that partitioned into lipid rafts compared with unstimulated cells. Cholesterol depletion of alpha T3-1 cells using methyl-beta-cyclodextrin disrupted GnRHR but not c-raf kinase association with rafts and shifted the receptor into higher density fractions. Cholesterol depletion also significantly attenuated GnRH but not phorbol ester-mediated activation of extracellular signal-related kinase (ERK) and c-fos gene induction. Raft localization and GnRHR signaling to ERK and c-Fos were rescued upon repletion of membrane cholesterol. Thus, the organization of the GnRHR into low density membrane microdomains appears critical in mediating GnRH induced intracellular signaling.  相似文献   

8.
本实验采用RT-PCR法探讨大白鼠颌下腺是否存在GnRH受体mRNA,并用原位杂交法对其细胞定位进行了研究。结果显示RT-PCR可扩增出大白鼠颌下腺GnRH受体mRNA的特异性片段,其碱基数与设计的一致,原位杂交发现颌下腺浆液性腺泡上皮细胞、颗粒曲管、排泄管及分泌管上皮细胞内有GnRH受体mRNA的杂交信号,信号物质分布于胸质内,胞核阴性。上述结果表明大白鼠颌下腺能合成GnRH受体,颌下腺产生的GnRH可作用于颌上腺的靶细胞,参与颌下腺生理功能的调节。  相似文献   

9.
Reproduction in all vertebrates requires the brain hormone gonadotropin-releasing hormone (GnRH) to activate a cascade of events leading to gametogenesis. All vertebrates studied to date have one to three forms of GnRH in specific but different neurons in the brain. In addition, at least one type of GnRH receptor is present in each vertebrate for activation of specific physiological events within a target cell. Humans possess two types of GnRH (GnRH1 and GnRH2) but only one functional GnRH receptor. Zebrafish, Danio rerio, also have two types of GnRH (GnRH2 and GnRH3), although in contrast to humans, zebrafish appear to have four different GnRH receptors in their genome. To characterize the biological significance of multiple GnRH receptors within a single species, we cloned four GnRH receptor cDNAs from zebrafish and compared their structures, expression, and cell physiology. The zebrafish receptors are 7-transmembrane G-protein coupled receptors with amino-acid sequence identities ranging from 45 to 71% among the four receptors. High sequence similarity was observed among the seven helices of zebrafish GnRHRs compared with the human GnRHR, the green monkey type II GnRHR, and the two goldfish GnRHRs. Also, key amino acids for putative ligand binding, disulfide bond formation, N-glycosylation, and G-protein coupling were present in the extracellular and intracellular domains. The four zebrafish receptors were expressed in a variety of tissues including the brain, eye, and gonads. In an inositol phosphate assay, each receptor was functional as shown by its response to physiological doses of native GnRH peptides; two receptors showed selectivity between GnRH2 and GnRH3. Each of the four receptor genes was mapped to distinct chromosomes. Our phylogenetic and syntenic analysis segregated the four zebrafish GnRH receptors into two distinct phylogenetic groups that are separate gene lineages conserved throughout vertebrate evolution. We suggest the maintenance of four functional GnRH receptors in zebrafish compared with only one in humans may depend either on subfunctionalization or neofunctionalization in fish compared with mammalian GnRH receptors. The differences in structure, location, and response to GnRH forms strongly suggests that the four zebrafish GnRH receptors have novel functions in addition to the conventional activation of the pituitary gland in the reproductive axis.  相似文献   

10.
In mammals, the receptor of the neuropeptide gonadotropin-releasing hormone (GnRHR) is unique among the G protein-coupled receptor (GPCR) family because it lacks the carboxyl-terminal tail involved in GPCR desensitization. Therefore, mechanisms involved in the regulation of GnRHR signaling are currently poorly known. Here, using immunoprecipitation and GST pull-down experiments, we demonstrated that SET interacts with GnRHR and targets the first and third intracellular loops. We delineated, by site-directed mutagenesis, SET binding sites to the basic amino acids 66KRKK69 and 246RK247, located next to sequences required for receptor signaling. The impact of SET on GnRHR signaling was assessed by decreasing endogenous expression of SET with siRNA in gonadotrope cells. Using cAMP and calcium biosensors in gonadotrope living cells, we showed that SET knockdown specifically decreases GnRHR-mediated mobilization of intracellular cAMP, whereas it increases its intracellular calcium signaling. This suggests that SET influences signal transfer between GnRHR and G proteins to enhance GnRHR signaling to cAMP. Accordingly, complexing endogenous SET by introduction of the first intracellular loop of GnRHR in αT3-1 cells significantly reduced GnRHR activation of the cAMP pathway. Furthermore, decreasing SET expression prevented cAMP-mediated GnRH stimulation of Gnrhr promoter activity, highlighting a role of SET in gonadotropin-releasing hormone regulation of gene expression. In conclusion, we identified SET as the first direct interacting partner of mammalian GnRHR and showed that SET contributes to a switch of GnRHR signaling toward the cAMP pathway.  相似文献   

11.
So WK  Cheng JC  Poon SL  Leung PC 《The FEBS journal》2008,275(22):5496-5511
The hypothalamic decapeptide gonadotropin-releasing hormone (GnRH) is well known for its role in the control of pituitary gonadotropin secretion, but the hormone and receptor are also expressed in extrapituitary tissues and tumor cells, including epithelial ovarian cancers. It is hypothesized that they may function as a local autocrine regulatory system in nonpituitary contexts. Numerous studies have demonstrated a direct antiproliferative effect on ovarian cancer cell lines of GnRH and its synthetic analogs. This effect appears to be attributable to multiple steps in the GnRH signaling cascade, such as cell cycle arrest at G(0)/G(1). In contrast to GnRH signaling in pituitary gonadotropes, the involvement of G(alpha q), protein kinase C and mitogen-activated protein kinases is less apparent in neoplastic cells. Instead, in ovarian cancer cells, GnRH receptors appear to couple to the pertussis toxin-sensitive protein G(alpha i), leading to the activation of protein phosphatase, which in turn interferes with growth factor-induced mitogenic signals. Apoptotic involvement is still controversial, although GnRH analogs have been shown to protect cancer cells from doxorubicin-induced apoptosis. Recently, data supporting a regulatory role of GnRH analogs in ovarian cancer cell migration/invasion have started to emerge. In this minireview, we summarize the current understanding of the antiproliferative actions of GnRH analogs, as well as the recent observations of GnRH effects on ovarian cancer cell apoptosis and motogenesis. The molecular mechanisms that mediate GnRH actions and the clinical applications of GnRH analogs in ovarian cancer patients are also discussed.  相似文献   

12.
The present study aims at quantification of gonadotropin releasing hormone (GnRH) by radioimmunoassay, relative expression of its mRNA by real-time PCR accompanied by its cellular localization in the rat ovary by immunonohistochemistry (IHC) during different time points of pregnancy. To determine the involvement of endogenous ovarian GnRH in receptor mediated local autocrine/paracrine functions within the ovary, the cell specific localization of the classical receptor for GnRH (GnRHR) in the ovary by IHC and expression pattern of its mRNA were studied during pregnancy. Receptor expression during each time point within the ovary was reconfirmed by Western blot analysis accompanied by densitometric analysis of the signal intensity. Results reveal that the content of ovarian GnRH reaches its maximum on Day 20. The densitometric analysis of GnRHR receptor expression from Western blot study exhibits a decreasing trend by Day 20. Presence of GnRH and GnRHR mRNA in the ovary indicates the local synthesis of both ligand and receptor in the rat ovary. Differential expression of GnRH/GnRHR in the corpus luteum throughout pregnancy strengthens the hypothesis of the involvement of ovarian GnRH in local ovarian functions by receptor-mediated mechanisms. The expression of GnRH and GnRHR in the atretic antral follicles is indicative of the possible involvement of this decapeptide in processes like follicular atresia. The expression of GnRH/GnRHR in the nonatretic antral follicles and their oocytes requires further in-depth investigation. Collectively, this study for the first time reveals the presence of endogenous ovarian GnRH/GnRHR supporting their possible involvement in local autocrine/paracrine functions during pregnancy.  相似文献   

13.
Estradiol-17beta (E2) is the major regulator of GnRH receptor (GnRHR) gene expression and number during the periovulatory period; however, the mechanisms underlying E2 regulation of the GNRHR gene remain undefined. Herein, we find that E2 conjugated to BSA (E2-BSA) mimics the stimulatory effect of E2 on GnRH binding in primary cultures of ovine pituitary cells. The time course for maximal GnRH analog binding was similar for both E2 and E2-BSA. The ability of E2 and E2-BSA to increase GnRH analog binding was blocked by the estrogen receptor (ER) antagonist ICI 182,780. Also, increased GnRH analog binding in response to E2 and the selective ESR1 agonist propylpyrazole triol was blocked by expression of a dominant-negative form of ESR1 (L540Q). Thus, membrane-associated ESR1 is the likely candidate for mediating E2 activation of the GNRHR gene. As cAMP response element binding protein (CREB) is an established target for E2 activation in gonadotrophs, we next explored a potential role for this protein as an intracellular mediator of the E2 signal. Consistent with this possibility, adenoviral-mediated expression of a dominant-negative form of CREB (A-CREB) completely abolished the ability of E2 to increase GnRH analog binding in primary cultures of ovine pituitary cells. Finally, the presence of membrane-associated E2 binding sites on ovine pituitary cells was demonstrated using a fluorescein isothiocyanate conjugate of E2-BSA. We suggest that E2 regulation of GnRHR number during the preovulatory period reflects a membrane site of action and may proceed through a nonclassical signaling mechanism, specifically a CREB-dependent pathway.  相似文献   

14.
Luteinizing hormone and gonadotropin releasing hormone receptors (LHR and GnRHR, respectively) are G protein-coupled receptors with important functions in reproduction. We have developed chimeric GnRHR-LHR that contain the full GnRHR coupled to various forms of the LH receptor C-terminus to explore the role of the LH receptor C-terminus in raft localization of the receptor and signaling. Addition of the full-length LHR C-terminus to GnRHR resulted in localization of the resting chimeric receptor in the bulk membrane rather than plasma membrane rafts as has been reported for the wild-type GnRHR [A. Navratil, S. Bliss, K. Berghorn, J. Haughian, T. Farmerie, J. Graham, C. Clay, M. Roberson, Constitutive localization of the gonadotropin-releasing hormone (GnRH) receptor to low density membrane microdomains is necessary for GnRH signaling to ERK, J. Biol. Chem. 278 (2003) 31593-31602]. With truncation of the LHR C-terminus, approximately 3% of chimeric receptors appeared in low density membrane fractions. Palmitoylation of sites on the LHR C-terminus appears important for raft localization. Mutations to C-terminus palmitoylation sites eliminated translocation of LH receptors from the bulk membrane to rafts upon binding of hCG although these mutant receptors retained the ability to signal via cAMP.  相似文献   

15.
Novel antitumor peptide hormones and their effect on signal transduction.   总被引:2,自引:0,他引:2  
A series of novel gonadotropin releasing hormone (GnRH) and Somatostatin analogs have been developed in our laboratory and were screened for antiproliferative and signal transduction inhibitory effect. Our GnRH analog Folligen, had significant antitumor activity on DMBA induced mammary carcinomas in rats without blocking ovarian functions. The direct effect of Folligen and Buserelin has been compared on the human breast cancer cell line MDA-MB-231. Folligen was found to be more effective in inhibiting cell proliferation and significant differences were found in the signal transduction pathways activated by these analogs. Our novel Somatostatin analogs were screened for tyrosine kinase inhibition and for antiproliferative effect on human colon tumor cells and for growth hormone (GH) release inhibition in vitro and in vivo. The analog TT-2-50 was significantly more active inhibiting GH release in superfused rat pituitary cells and in vivo than native Somatostatin and it strongly inhibited tyrosine kinase and proliferation while it stimulated protein kinase C activity.  相似文献   

16.
17.
18.
Infertility associated with obesity is characterized by abnormal hormone release from reproductive tissues in the hypothalamus, pituitary, and ovary. These tissues maintain insulin sensitivity upon peripheral insulin resistance. Insulin receptor signaling may play a role in the dysregulation of gonadotropin-releasing hormone (GnRH) secretion in obesity, but the interdependence of hormone secretion in the reproductive axis and the multi-hormone and tissue dysfunction in obesity hinders investigations of putative contributing factors to the disrupted GnRH secretion. To determine the role of GnRH insulin receptor signaling in the dysregulation of GnRH secretion in obesity, we created murine models of diet-induced obesity (DIO) with and without intact insulin signaling in the GnRH neuron. Obese control female mice were infertile with higher luteinizing hormone levels and higher GnRH pulse amplitude and total pulsatile secretion compared to lean control mice. In contrast, DIO mice with a GnRH specific knockout of insulin receptor had improved fertility, luteinizing hormone levels approaching lean mice, and GnRH pulse amplitude and total secretion similar to lean mice. Pituitary responsiveness was similar between genotypes. These results suggest that in the obese state, insulin receptor signaling in GnRH neurons increases GnRH pulsatile secretion and consequent LH secretion, contributing to reproductive dysfunction.  相似文献   

19.
The neurohormone gonadotropin-releasing hormone (GnRH) is a decapeptide which is synthesized in the hypothalamus and released into the hypophysial portal system in a pulsatile manner. GnRH exerts its effect on the anterior pituitary gonadotrophs where it regulates the secretion and synthesis of gonadotropins (luteinizing hormone and follicle-stimulating hormone) through receptor-mediated actions. The GnRH receptor has been characterized and shown to be coupled to the formation of 'second messengers' which participate in signal transduction mechanisms. GnRH stimulation of luteinizing hormone release is a Ca2(+)-dependent process. G protein, phosphoinositide hydrolysis, protein kinase C as well as arachidonic acid and some of its metabolites were identified as possible mediators in the process.  相似文献   

20.
目的:探讨蒙药乌力吉-18对大鼠下丘脑-垂体-卵巢轴相关激素及受体的影响。方法:选取40只健康雌性未孕SD大鼠,随机分为空白组、对照组、乌力吉-18高、低2个剂量组,每组10只。空白组灌胃等体积蒸馏水,对照组灌胃逍遥丸,高、低剂量组分别灌胃2.0 g·kg-1·d-1、1.0 g·kg-1·d-1乌力吉-18,连续给药31学艺术d。采用酶联免疫吸附法测定血清促性腺激素释放激素(GnRH)、促卵泡生成素(FSH)、黄体生成素(LH)、雌二醇(E2)及孕酮(PROG)的含量;免疫组化法检测下丘脑组织促性腺激素释放激素(GnRH)、垂体组织促性腺激素释放激素受体(GnRHR)的表达;以蛋白免疫印迹技术检测卵巢组织促卵泡生成素受体(FSHR)、黄体生成素受体(LHR)蛋白表达量。以实时荧光定量PCR检测卵巢组织中FSHR、LHR基因表达量。结果:与空白组比较,乌力吉-18低剂量组可明显升高血清LH含量(P<0.05),上调下丘脑组织GnRH、垂体组织GnRHR表达及卵巢组织FSHR、LHR蛋白表达(P<0.05);乌力吉-18高剂量组可显著升高血清FSH、LH、E2含量(P<0.05),上调下丘脑组织GnRH表达及卵巢组织FSHR表达量(P<0.05),并可显著升高卵巢组织中FSHR、LHR基因表达量(P<0.05);对照组可明显升高血清E2含量(P<0.05)。结论:蒙药乌力吉-18可明显升高血清FSH、LH及E2的含量,促进下丘脑组织GnRH、垂体组织GnRHR及卵巢组织中FSHR、LHR的表达,表明乌力吉-18能够对下丘脑-垂体-卵巢轴相关激素及受体表达产生影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号