首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Gonadotropin-releasing hormone receptors in prostate tissue   总被引:1,自引:0,他引:1  
OBJECTIVE: To perform an immunohistochemical analysis of gonadotropin-releasing hormone receptors (GnRH-Rs) in archival prostate tissue. STUDY DESIGN: Thirteen benign prostatic hyperplasia (BPH) specimens from open surgery, 48 radical prostatectomy specimens (30 surgery only and 18 neoadjuvant hormone treatment and surgery) and 14 prostate needle biopsies were examined. The avidin-biotin-peroxidase technique and monoclonal antibody A9E4 against the extracellular domain of GnRH-Rs were employed. Cases with > 5% immunoreactive cells (IR) were considered positive. RESULTS: The epitheliumfrom all 13 cases of BPH was immunoreactive. Most tumor cellsfrom biopsies were IR positive. Twenty-seven of 30 surgery-only specimens were IR positive vs. 8/18 in the surgery and neoadjuvant hormone treatment group. CONCLUSION: GnRH-Rs have been histochemically demonstrated in normal lutenizing hormone/follicle-stimulating hormone pituitary cells. In cell lines LN-CaP and DU-145, Gn-RH-R was identical to that of the pituitary. GnRH-Rs in the prostate can be quite easily assessed immunohistochemically in archival tissue samples, and hormone treatment significantly decreases the immunoreactivity of GnRH-Rs in prostate cancer tissue. This strongly suggests that GnRH agonists bind to BPH and prostate cancer cells.  相似文献   

3.
Gonadotropin-releasing hormone signaling in behavioral plasticity   总被引:1,自引:0,他引:1  
Sex and reproduction sculpt brain and behavior throughout life and evolution. In vertebrates, gonadotropin-releasing hormone (GnRH) is essential to these processes. Recent advances have uncovered novel regulatory mechanisms in GnRH signaling, such as the initiation of sexual maturation by kisspeptins. Yet despite our increasing molecular knowledge, we know very little about environmental influences on GnRH signaling and reproductive behavior. Alternative model systems have been crucial for understanding the plasticity of GnRH effects within an organismal context. For instance, GnRH signaling is under the control of seasonal cues in songbirds, whereas social signals regulate GnRH in cichlid fishes, with crucial consequences for reproduction and behavior. Analyzing cellular signaling cascades within an organismic context is essential for an integrative understanding of GnRH function.  相似文献   

4.
A protein present in ovaries and other tissues of many species competitively and reversibly inhibits high affinity binding of gonadotropin-releasing hormone (GnRH) to rat ovarian membranes, but this protein is not GnRH. This protein has been partially purified and characterized from bovine ovaries. The absence of GnRH binding inhibitory (GBI) activity in plasma and follicular fluid indicates that this protein may act in a localized manner within or near its site of production or release. The bovine ovarian GBI protein evokes antigonadotropic activity in ovarian cells from both the rat and the bovine. The biological effect of GBI may occur independently of interaction with high affinity binding sites for GnRH, since these are absent from the bovine ovary. Thus, the GBI protein may abrogate gonadotropin-dependent responses in ovarian cells by mechanisms separate from interaction with GnRH receptors. A complete characterization of the GBI protein and evaluation of its mechanism of action in ovarian and pituitary cells will dictate conclusions on the physiological importance of this protein.  相似文献   

5.
Close to 30 forms of gonadotropin releasing hormone (GnRH) and at least five GnRH receptors have been identified in a wide variety of vertebrates and some invertebrates. One form, now called GnRH II, has the broadest distribution and the most ancient and conserved phylogeny. The distribution of the neurons that produce this peptide are completely nonoverlapping with any other GnRH forms. Fibers that project from these neurons overlap with GnRH I cells and/or fibers in a few regions, but are primarily divergent. The musk shrew (Suncus murinus) continues to be the most tractable mammalian species to use for studies of the function of GnRH II. The brain of the musk shrew has two GnRH genes (I and II), two GnRH receptors (types-1 and -2), and two different behaviors can be influenced by central infusion of GnRH II, but not by GnRH I; receptivity and feeding. Here, we summarize research on the musk shrew relative to the behavioral functions of GnRH II. First, female musk shrews are continually sexually receptive by virtue of their lack of an ovarian and/or behavioral estrus cycle. This feature of their reproductive ecology may be related to their semi-tropical distribution and their breeding season is highly dependent on changes in the availability of food. When food is not abundant, females stop mating, but brief bouts of feeding reinstate reproductive behavior. Likewise, intake of food is related to GnRH II mRNA and peptide content in the brain; after mild food restriction both decline. When GnRH II is infused centrally, at times when its content is low, it can both enhance receptivity and inhibit food intake. Simultaneous administration of a type-1 antagonist does not change the effect of GnRH II and use of an analog (135-18) that is a specific GnRH II agonist as well as a type-1 antagonist has the same effect as the endogenous GnRH II peptide. We propose that GnRH II plays a critical role by orchestrating the coordination of reproduction with the availability of nutritional support for these activities. Humans are bombarded with copious nutritional opportunities and at present obesity is a larger threat to health in many parts of the world than is under nutrition. It is our hope that understanding neuropeptides such as GnRH II that regulate food intake can ultimately lead to products that may curb appetite and thus decrease obesity and related risks to health.  相似文献   

6.
The rodent GnRH receptor was characterized in Xenopus oocytes injected with RNA isolated from rat pituitary and from a gonadotrope cell line, alpha T3, derived from a transgenic mouse. Three to 4 days after 150-200 ng RNA injection, 93% of the oocytes, which were recorded by voltage clamp, responded to 10(-7) M GnRH. The mean inward currents obtained after RNA injection were 620 +/- 88 nA (n = 22) with pituitary RNA and 1415 +/- 598 (n = 4) with alpha T3 RNA. The threshold GnRH concentration able to evoke the dose dependent current after pituitary RNA injection was 3 x 10(-9) M GnRH. The GnRH receptor response of the oocyte was antagonized by [D-Phe2,6,Pro3] GnRH and [N-Ac-D-Na](2)1, D-alpha D-Me, pCl-Phe2, D-Arg6, D-Ala10-NH2]GnRH and could be elicited by D-Ser(But)6,Pro9-N-ethylamide GnRH (buserelin). The reversal potential of the GnRH generated current as determined by voltage-ramp was -22.5 +/- 1.0 mV (n = 7) and -25.6 +/- 3.3 mV (n = 3) in pituitary and cell line RNA-injected oocytes respectively, consistent with the chloride reversal potential. The GnRH receptor response was virtually eliminated by intracellular EGTA injection but was unaffected by ligand application in calcium-free perfusate. The GnRH-evoked response is mimicked by intracellular injection of inositol 1,4,5-trisphosphate. To determine the size of the GnRH receptor mRNA, alpha T3 RNA was size fractionated through a sucrose gradient. The maximal GnRH response was induced by a fraction larger than the 28S ribosomal peak. Thus we find that oocytes injected with RNA from an appropriate source develop an electrophysiological response to GnRH which is dependent on intracellular calcium mobilization, is independent of extracellular calcium, and may be mediated by inositol 1,4,5-trisphosphate.  相似文献   

7.
8.
Circulating gonadotropin-releasing hormone (GnRH) levels were measured during and after intravenous infusion intervals ranging from 0.08 minutes to 5 minutes and doses ranging from 1 to 25 micrograms per pulse. In all dose groups (1 vs. 5 vs. 25 micrograms), the peak levels of GnRH decreased from the 0.08 minute to the 5 minute infusion interval. Our results suggest that the infusion interval over which GnRH is administered has profound effects on the amount, duration, and pattern of GnRH measured in the peripheral circulation.  相似文献   

9.
Synthetic gonadotropin-releasing hormone (GnRH) was monoiodinated at a high specific radioactivity with 125I. The iodinated hormone retained full biological activity as assessed by the release of luteinizing hormone in vitro from bovine anterior pituitary tissue slices. Specific binding of 125I-labeled gonadotropin-releasing hormone of high affinity and low capacity was obtained using dispersed bovine anterior pituitary cells. The binding had sigmoid characteristics, compatible with the presence of more than one binding site. The subcellular fraction responsible for binding was identified with the plasma membranes. However, significant binding also occurred in the secretory granules fraction. The plasma membranes were solubilized with sodium dodecyl sulfate. Using gonadotropin-releasing hormone covalently coupled to a solid phase, a protein was purified by an affinity technique from the solubilized plasma membrane preparation which possessed similar binding propperties as plasma membranes, both intact and solubilized. The protein migrated as a single component on polyacrylamide gel in sodium dodecyl sulfate and the estimated molecular weight was 60 000. The character of the gonadotropin-releasing hormone concentration dependence binding as well as association kinetics were multiphasic and suggested the presence of more than one binding site. When analyzed by the Hill plot, the Hill coefficient of all binding curves was always greater than one which is compatible with positive cooperativity. This was further supported by the dissociation studies where the dissociation rate was inversely proportionate to both the gonadotropin-releasing hormone concentration and the time interval during which the gonadotropin-releasing hormone-gonadotropin-releasing hormone receptor protein complex was formed. Using difference chromatography, aggregation of the purified gonadotropin-releasing hormone receptor protein was demonstrated to occur upon its exposure to gonadotropin-releasing hormone. The formed macromolecular complexes bound preferentially 125I-labeled gonadotropin-releasing hormone. It is concluded that a single receptor protein is responsible for gonadotropin-releasing hormone binding in the bovine anterior pituitary. It is a part of the plasma membranes. Its interaction with gonadotropin-releasing hormone provokes transitions of the protein into different allosteric forms and this may be related to the biological effect of gonadotropin-releasing hormone on gonadotropin secretion.  相似文献   

10.
Gonadotropin-releasing hormone and the control of gonadotrope function   总被引:4,自引:0,他引:4  
Normal gametogenesis and steroidogenesis is highly dependent on the pulsatile release of hypothalamic GnRH that binds high-affinity receptors present at the surface of pituitary gonadotrophs thereby triggering the synthesis and release of the gonadotropins LH and FSH. The mammalian GnRH receptor displays the classical heptahelical structure of G protein-coupled receptors with, however, a unique feature, the lack of a C-terminal tail. Accordingly, it does not desensitise sensu stricto, and internalises very poorly. It is now well established that GnRH stimulation induces the activation of a complex network of transduction pathways involved in the control of gonadotropin release and subunit gene expression. Other authors and ourselves have demonstrated that the GnRH action is associated with an increased complexity regarding gene regulation/cell function. Indeed GnRH affects the GnRH receptor gene itself and a number of additional genes that include some involved in cell signalling and auto-/paracrine regulation. The fact that GnRH regulates the expression of its own receptor, together with a host of other genes typically involved in its signal transduction cascades implies alteration/auto-adaptation in gonadotropic responsiveness. Furthermore, some of these genes respond differentially depending on whether the GnRH stimulation is intermittent or permanent suggesting specific roles in the dual process of activation/desensitisation. Thus, it can be assumed that the importance of pulsatility of GnRH action is closely related to, or dependent on, the inability of the GnRH receptor to desensitise. Moreover, multiple post-receptor events are crucial for both the regulation/plasticity of gonadotropic function and the maintenance of cell integrity.  相似文献   

11.
Gonadotropin-releasing hormone: regulation of the GnRH gene   总被引:2,自引:0,他引:2  
Lee VH  Lee LT  Chow BK 《The FEBS journal》2008,275(22):5458-5478
  相似文献   

12.
The plasma level curves of the peptide hormone gonadotropin-releasing hormone (GnRH) after its intravenous, intramuscular, and intraperitoneal administration into rats were fitted according to a two- (i.v.) and one-compartment model (i.m., i.p.), respectively. From the pharmacokinetic parameters it is concluded that urinary excretion and proteolytic degradation by kidney and liver are not sufficient to fully account for the clearance of the hormone and that, therefore, proteolytic degradation by tissues may play a role for the elimination of GnRH. This may be generally true with other short peptide hormones. The GnRH pharmacokinetics is shown as an example to underline that there presently exist problems of interpreting pharmacokinetic data of peptide hormones and that there is a need for a close interplay between biochemical and pharmacokinetic studies on peptide hormones for their pharmacokinetic behaviour to be understood.  相似文献   

13.
Cheung LW  Wong AS 《The FEBS journal》2008,275(22):5479-5495
Gonadotropin-releasing hormone (GnRH) has historically been known as a pituitary hormone; however, in the past few years, interest has been raised in locally produced, extrapituitary GnRH. GnRH receptor (GnRHR) was found to be expressed in normal human reproductive tissues (e.g. breast, endometrium, ovary, and prostate) and tumors derived from these tissues. Numerous studies have provided evidence for a role of GnRH in cell proliferation. More recently, we and others have reported a novel role for GnRH in other aspects of tumor progression, such as metastasis and angiogenesis. The multiple actions of GnRH could be linked to the divergence of signaling pathways that are activated by GnRHR. Recent observations also demonstrate cross-talk between GnRHR and growth factor receptors. Intriguingly, the classical G(alphaq)-11-phospholipase C signal transduction pathway, known to function in pituitary gonadotropes, is not involved in GnRH actions at nonpituitary targets. Herein, we review the key findings on the role of GnRH in the control of tumor growth, progression, and dissemination. The emerging role of GnRHR in actin cytoskeleton remodeling (small Rho GTPases), expression and/or activity of adhesion molecules (integrins), proteolytic enzymes (matrix metalloproteinases) and angiogenic factors is explored. The signal transduction mechanisms of GnRHR in mediating these activities is described. Finally, we discuss how a common GnRHR may mediate different, even opposite, responses to GnRH in the same tissue/cell type and whether an additional receptor(s) for GnRH exists.  相似文献   

14.
15.
We have been studying the release of gonadotropin-releasing hormone (GnRH) from adult male rat medial basal hypothalamus (MBH) utilizing a continuous flow superfusion system. This model system allows for direct application of modifying substances into the superfusion chambers and for continuous collection of effluent for radioimmunoassay of GnRH levels. Gonadotropin-releasing hormone is rapidly released in response to specific chemical stimuli. As demonstrated by others, pulses of KCl or prostaglandin E2 (PGE2) result in sharp peaks of GnRH release followed by rapid return to baseline. Forty millimolar KCl increases [GnRH] 3- to 4-fold, consistent with a membrane-associated secretory process for GnRH release. A 50-micrograms bolus of PGE2 results in a 2-fold rise in GnRH. Norepinephrine stimulates the release of GnRH in a log-linear dose-dependent manner in the range of 10(-9) to 10(-5) M norepinephrine (NE). At 10(-11) M, NE does not increase GnRH release above baseline, whereas at 10(-9) M NE GnRH release is increased 2-fold. The alpha-receptor blocker phentolamine significantly inhibits the NE-induced rise in GnRH. Propranolol, a beta-adrenergic receptor blocker, does not inhibit the GnRH response to NE. This study demonstrates a direct, dose-dependent, alpha-mediated stimulatory effect of NE on GnRH release from superfused male rat MBH, and establishes the potential of this system for the investigation of the GnRH response to other aminergic agents and their extraneural modifiers, including steroid hormones.  相似文献   

16.
This report describes the rapid effects of GnRH and an agonist [D-Ala6, des-Gly10] GnRH ethylamide (GnRHa) on polyphosphoinositide metabolism in rat granulosa cells. As indicated by the depletion of cellular levels of 32P-prelabeled triphosphoinositide (TPI) and diphosphoinositide (DPI), GnRHa rapidly stimulated the hydrolysis of TPI and DPI. The effect of GnRHa was maximal at the earliest time point examined (30 sec) and preceded GnRHa-induced increases in labeling of phosphatidylinositol. A specific GnRH antagonist had no effect on TPI or DPI levels, but prevented the polyphosphoinositide depletion induced by GnRH. LH did not stimulate depletion of 32P-polyphosphoinositides. The rapid and specific effects of GnRH on polyphosphoinositide depletion may represent an early and possibly initiating event in the action of GnRH.  相似文献   

17.
Pulsatile luteinizing-hormone releasing hormone (LHRH) secretion was measured from the mediobasal-suprachiasmatic-preoptic (MBH-SCN-POA) region of the hypothalamus from fetal baboons (Papio anubis) at midgestation (day 100; term = day 184). The entire MBH-SCN-POA (48 ± 5 mg) was obtained between 1100 and 1200 hours and was immediately placed in icecold phosphate buffer (pH 7.4). The MBH-SCN-POA units were halved at the midline and superfused in parallel at 37.5°C for 5 hours. Then 500 μl of superfusate was collected at 10-minute intervals, and LHRH concentration was measured by radioimmunoassay using the Chen-Ramirez antibody. In fetuses of untreated baboons (N = 3), LHRH pulse amplitude (mean ± SE) was 16.0 ± 4.2 pg, with a period of 30 ± 1 minute; the average 10-minute output of LHRH was 9.4 ± 2.0 pg. In fetal baboons in which the hormonal milieu in the mother was modulated by androstenedione treatment of midpregnancy (N = 3), average LHRH pulse amplitude was 1.7 ± 0.3 pg, with a period of 33.5 ± 4.9 minutes; the average 10-minute output of LHRH was 1.2 ± 0.2 pg. Collectively, these data suggest that as early as midgestation, fetal baboons secrete LHRH in vitro in a pulsatile fashion and with a periodicity of 30–35 minutes. In addition, the decrease in LHRH pulse amplitude and the average 10-minute LHRH output (P < .01, P < .05) in tissue from fetal baboons of mothers in which the normal pattern of steroidogenesis is altered suggest that the output of LHRH systems in the fetus is sensitive to changes in the maternal hormonal milieu.  相似文献   

18.
The regulation of rat luteinizing hormone (rLH) bioactivity was studied in an in vitro system using isolated pituitaries from male rats. Stored and released rLH was evaluated in terms of mass (I-LH), bioactivity (B-LH), mobility in nonequilibrium pH gradient electrophoresis, and mannose and sulfate incorporation either in the presence or absence of gonadotropin-releasing hormone (GnRH). GnRH increased the biological potency of stored and released rLH. The pituitary content revealed seven I-LH species (pH 7.2, 7.8, 8.5, 9.0, 9.1, 9.3, and 9.7) and five B-LH species (pH 8.5, 9.0, 9.2, 9.4, and 9.7). The major I-LH and B-LH peaks were at pH 9.0 and 9.2, respectively. I-LH peaks at pH 7.2 and 7.8 are devoid of bioactivity; at these pH values, free rLH subunits are detectable. GnRH increases the amount of both I-LH and B-LH material secreted into the medium, and the major component migrates at pH 8.5 and is probably the alpha beta dimer. [3H]Mannose and [35S]sulfate can be incorporated into stored and released rLH (pH 7.2, 7.8, 9.0, 9.1, and 9.3 and 7.2, 7.8, 8.5, and 9.0, respectively). GnRH decreases [2-3H]mannose incorporation into secreted rLH. [35S]Sulfate was incorporated into I-LH released spontaneously into the medium; the form at pH 7.2 has no biological activity and is probably the free alpha subunit. GnRH decreases the [35S]sulfate-labeled rLH content of the pituitary concomitantly with a 500% increase in [35S]sulfate-labeled released rLH, suggesting that, soon after [35S]sulfate is incorporated, sulfated rLH is released. Sulfatase action on released rLH reveals that sulfation may be related to release of rLH but that sulfate residues are not involved in the expression of rLH bioactivity. In conclusion, GnRH stimulates carbohydrate incorporation and processing of the oligosaccharide residues giving the highest biological potent rLH molecule and also increases sulfation; this step is closely related to the step limiting the appearance of LH in the medium in the absence of GnRH.  相似文献   

19.
Gonadotropin-releasing hormone (GnRH) has been shown to inhibit ovulation in gonadotropin-primed hypophysectomized rats and steroid production in cultured rat granulosa cells. To determine if similar effects of GnRH can be observed in another species, the extracorporeal perfused rabbit ovary was utilized. Two groups of rabbit ovaries were exposed to GnRH in a pulsatile fashion at two dose levels (Group I, 2.56 X 10(-8) M; Group II, 2.56 X 10(-7) M). Contralateral ovaries were not perfused with GnRH. Human chorionic gonadotropin (hCG) was added to the perfusate of all ovaries 30 min after the onset of perfusion. Ovulation occurred in all ovaries exposed to hCG in the presence or absence of GnRH. Ovulatory efficiency was similar in both the experimental and control groups. No statistical difference could be determined in the time of ovulation, stage of maturity of oocytes, or percent of degeneration of ovulated or follicular oocytes. Progesterone production was not inhibited in the GnRH-treated ovaries. In contrast to observations in the rat, GnRH does not exhibit a direct inhibitory effect on ovulation or steroid production in the rabbit.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号