首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is a body of evidences demonstrating, in biological systems, a cooperative interaction between tocopherols and carotenoids. FeAOX-6 is a novel antioxidant that combines the chroman head of α-tocopherol and a fragment of the isoprenyl chain of lycopene. We have tested its antioxidant effect on different radical species generated in a chemical system, where peroxyl, alkoxyl and methyl radicals are generated by the ferrous ion-mediated decomposition of tert-butyl hydroperoxide. We found that FeAOX-6 has the same effectiveness of α-tocopherol in quenching peroxyl radical with no contribution by lycopene. The antioxidant activity of FeAOX-6 on alkoxyl and methyl radicals is comparable to that of the equimolar mixture of the parent compounds. Lycopene is able to quench alkoxyl radical, while it has no effect on peroxyl radical, showing a different antioxidant activity compared to other carotenoids, such as β-carotene and lutein.  相似文献   

2.
Several lines of evidence suggest potential benefits by a combination of carotenoids and tocopherols in chronic diseases. Therefore, we have designed FeAOX-6, a novel antioxidant that combines into a single molecule the chroman head of tocopherols and a fragment of lycopene, consisting of a polyisoprenyl sequence of four conjugated double bonds. The ability of FeAOX-6 in inhibiting lipid peroxidation and reactive oxygen species (ROS) production induced by different sources of free radicals (t-BOOH, AAPH, and H2O2) in arachidonic acid solution and in isolated thymocytes was investigated. Its antioxidant efficiency was also compared with that of alpha-tocopherol, lycopene, and a mixture of the two antioxidants. The results strongly suggest that FeAOX-6 can act as a potent antioxidant in our models, by inhibiting malondialdehyde production and ROS generation in a dose- and a time-dependent manner. In the cell model, the compound also provides a higher antioxidant capacity than alpha-tocopherol and lycopene, alone or in combination, suggesting the possibility of an oxidative intramolecular cooperation.  相似文献   

3.
β-Carotene is thought to be a chain-breaking antioxidant, even though we have no information about the mechanism of its antioxidant activity. Using electron-spin resonance (ESR) spectroscopy coupled to the spin-trapping technique, we have studied the effect of β-carotene and lutein on the radical adducts of the spin-trap PBN (N-t -butyl-α-phenylnitrone) generated by the metal-ion breakdown of different tert -butyl hydroperoxide (t BOOH) concentrations in methylene chloride. The peroxyl radical, along with an oxidation product of PBN (the PBNOx), trapped at room temperature from the breakdown of high concentration of t BOOH (1 M), were quenched by β-carotene or lutein, in competition with the spin-trapping agent. However, carotenoids were not able to quench the alkoxyl and methyl radicals generated in the reaction carried out in the presence of low t BOOH concentration (1 mM). The reaction between carotenoids and the peroxyl radical was also carried out in the absence of the spin trap, at 77 K: Under these different experimental conditions, we did not detect any radical species deriving from carotenoids. In the same system, a further evidence of the peroxyl radical quenching by β-carotene and lutein was obtained. The antioxidant activity of vitamin E was also tested, for comparison with the carotenoids. In the presence of α-tocopherol, peroxyl and alkoxyl radicals were quenched, and the tocopheroxyl radical was detected. Our data provide the first direct evidence that carotenoids quench peroxyl radicals. Under our experimental conditions, we did not detect any carotenoid radical species that could derive from the interaction with the peroxyl radical. The radical-trapping activity of β-carotene and lutein demonstrated in this chemical reaction contributes to our understanding carotenoid antioxidant action in biological systems. © 1998 John Wiley & Sons, Inc. J Biochem Toxicol 12: 299–304, 1998  相似文献   

4.
To clarify the nature of cytocidal molecular species among the radicals generated in the iron-catalyzed reactions of peroxides (ROOH), we examined the cytocidal effects of these radicals against gram-positive and gram-negative bacteria in the presence or absence of various radical scavengers. Three organic peroxides, t-butyl hydroperoxide (t-BuOOH), methyl ethyl ketone peroxide (MEKOOH), and cumene hydroperoxide, were used. Each radical generated from these peroxides was identified and quantitated by electron spin resonance (ESR) spin trapping with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). The major cytotoxic radical species generated in the mixtures of various peroxides and heme iron, especially methemoglobin, metmyoglobin, or hemin, was the alkyl peroxyl radical (ROO.). Strong bactericidal action against gram-positive bacteria was observed in the peroxide-heme iron system, especially in the case of t-BuOOH and MEKOOH. Killing curves for gram-positive bacteria showed an initial lag period, which may indicate the multihit/multitarget kinetics of cell killing. When the diethylenetriamine pentaacetic acid (DTPA)-Fe2+ complex was used as a catalyst for decomposition of various peroxides, alkyl, alkoxyl, and alkyl peroxyl radicals were identified by spin-trapping analysis. However, study of the time course of alkyl peroxyl radical production in the DTPA-Fe2+ complex system revealed that radical species generated in this system were very short lived: a maximal level was achieved within 1 min and then declined sharply, and no bactericidal activity was observed after 10 min. In contrast, the alkyl peroxyl radical level generated by the organic peroxide-heme iron system remained high for 30 min or longer. The generation of alkyl peroxyl radicals quantified by ESR correlated quite well with the bactericidal effect of the system of peroxide plus iron. In addition, bactericidal activity was completely inhibited by the addition of the spin trap DMPO, as well as of other various radical scavengers (alpha-tocopherol and L-ascorbic acid), into the peroxide-heme iron system, but this effect was not observed with superoxide dismutase, beta-carotene, dimethyl sulfoxide, diphenylamine, or butylated hydroxyltoluene. In view of these results, it is assumed that alkyl peroxyl radicals are the potent molecular species that are cytotoxic against bacteria, whereas alkoxyl radicals (RO.) generated in this system do not affect bacterial viability.  相似文献   

5.
The kinetic studies on the actions of quinolinic and indolinonic aminoxyls in the oxidation of lipid peroxidation induced by free radicals were carried out to evaluate their antioxidant activity. These aminoxyls showed a similar reactivity toward peroxyl radical with alpha-tocopherol. The antioxidant efficacies of aminoxyls against oxidation of methyl linoleate in homogeneous solution were smaller than that of alpha-tocopherol. Hydroxylamine, a reduced form of aminoxyl, possessed a comparative antioxidant efficacy with alpha-tocopherol and was capable of suppressing the consumption of alpha-tocopherol. Aminoxyls showed more potent antioxidant activity than alpha-tocopherol against the oxidation of methyl linoleate micelles induced by peroxyl radical or by a combination of copper ion and hydrogen peroxide. These results suggest that quinolinic and indolinonic aminoxyls may act as potent antioxidants against lipid peroxidation, especially in the presence of a good reductant which reduces aminoxyl radicals to hydroxylamines.  相似文献   

6.
A kinetic model was constructed to describe the reactions involved in the oxidation of methyl linoleate (ML) inhibited by alpha-tocopherol (TH). The initial model of the reaction mechanism included 53 individual steps, which were numerically analyzed by the value method based on Hamiltonian systematization of kinetic equations. Good accord was obtained with experimental data at 40 and 50 degrees C. The dominant steps responsible for the antioxidant and pro-oxidant properties of TH in the process of ML peroxidation were revealed. Tocopherol-mediated peroxidation (TMP) and generation of alkoxyl radicals as a result of the reduction of hydroperoxides by TH or the decomposition tocopherol alkyl peroxides are the dominant reactions responsible for the pro-oxidant activities of alpha-tocopherol. The extreme behavior of reaction induction period in relation to TH initial concentration is related to the increase in the ratios of [tocopheroxyl radical]/[peroxyl radical] and the TMP rate/rate of termination by combination of tocopheroxyl and peroxyl radicals.  相似文献   

7.
Polyunsaturated fatty acid (PUFA) peroxyl radicals play a crucial role in lipid oxidation. ESR spectroscopy with the spin-trapping technique is one of the most direct methods for radical detection. There are many reports of the detection of PUFA peroxyl radical adducts; however, it has recently been reported that attempted spin trapping of organic peroxyl radicals at room temperature formed only alkoxyl radical adducts in detectable amounts. Therefore, we have reinvestigated spin trapping of the linoleic, arachidonic, and linolenic acid-derived PUFA peroxyl radicals. The slow-flow technique allowed us to obtain well-resolved ESR spectra of PUFA-derived radical adducts in a mixture of soybean lipoxygenase, PUFA, and the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO). However, interpretation of the ESR spectra was complicated by the overlapping of the PUFA-derived alkoxyl radical adduct spectra. In order to understand these spectra, PUFA-derived alkoxyl radical adducts were modeled by various alkoxyl radical adducts. For the first time, we synthesized a wide range of DMPO adducts with primary and secondary alkoxyl radicals. It was found that many ESR spectra previously assigned as DMPO/peroxyl radical adducts based on their close similarity to the ESR spectrum of the DMPO/superoxide radical adduct, in conjunction with their insensitivity to superoxide dismutase, are indeed alkoxyl radical adducts. We have reassigned the PUFA alkylperoxyl radical adducts to their corresponding alkoxyl radical adducts. Using hyperfine coupling constants of model DMPO/alkoxyl radical adducts, the computer simulation of DMPO/PUFA alkoxyl radical adducts was performed. It was found that the trapped, oxygen-centered PUFA-derived radical is a secondary, chiral alkoxyl radical. The presence of a chiral carbon atom leads to the formation of two diastereomers of the DMPO/PUFA alkoxyl radical adduct. Therefore, attempted spin trapping of the PUFA peroxyl radical by DMPO at room temperature leads to the formation of the PUFA alkoxyl radical adduct.  相似文献   

8.
The recently discovered peroxyl radical scavenging properties of plasmalogen phospholipids led us to evaluate their potential interactions with alpha-tocopherol. The oxidative decay of plasmalogen phospholipids and of polyunsaturated fatty acids as induced by peroxyl radicals (generated from 2,2'-azobis-2-amidinopropane hydrochloride; AAPH) was studied in micelles using 1H-NMR and chemical analyses. In comparison with alpha-tocopherol, a 20- to 25-fold higher concentration of plasmalogen phospholipids was needed to induce a similar inhibition of peroxyl radical-mediated oxidation of polyunsaturated fatty acids. Plasmalogen phospholipids and alpha-tocopherol protected each other from oxidative degradation. In low-density lipoproteins (LDL) and micelles supplemented with plasmalogen phospholipids plus alpha-tocopherol, the peroxyl radical-promoted oxidation was additively diminished. The differences in the capacities to inhibit oxidation processes induced by peroxyl radicals between the plasmalogen phospholipids and alpha-tocopherol were less pronounced in the LDL particles than in the micelles. In conclusion, plasmalogen phospholipids and alpha-tocopherol apparently compete for the interaction with the peroxyl radicals. Oxidation processes induced by peroxyl radicals are inhibited in an additive manner in the presence of the two radical scavengers. The contribution of the plasmalogen phospholipids to the protection against peroxyl radical promoted oxidation in vivo is expected to be at least as important as that of alpha-tocopherol.  相似文献   

9.
Oxygen radical chemistry of polyunsaturated fatty acids   总被引:24,自引:0,他引:24  
Polyunsaturated fatty acids (PUFA) are readily susceptible to autoxidation. A chain oxidation of PUFA is initiated by hydrogen abstraction from allylic or bis-allylic positions leading to oxygenation and subsequent formation of peroxyl radicals. In media of low hydrogen-donating capacity the peroxyl radical is free to react further by competitive pathways resulting in cyclic peroxides, double bond isomerization and formation of dimers and oligomers. In the presence of good hydrogen donators, such as alpha-tocopherol or PUFA themselves, the peroxyl radical abstracts hydrogen to furnish PUFA hydroperoxides. Given the proper conditions or catalysts, the hydroperoxides are prone to further transformations by free radical routes. Homolytic cleavage of the hydroperoxy group can afford either a peroxyl radical or an alkoxyl radical. The products of peroxyl radicals are identical to those obtained during autoxidation of PUFA; that is, it makes no difference whether the peroxyl radical is generated in the process of autoxidation or from a performed hydroperoxide. Of particular interest is the intramolecular rearrangement of peroxyl radicals to furnish cyclic peroxides and prostaglandin-like bicyclo endoperoxides. Other principal peroxyl radical reactions are the beta-scission of O2, intermolecular addition and self-combination. Alkoxyl radicals of PUFA, contrary to popular belief, do not significantly abstract hydrogens, but rather are channeled into epoxide formation through intramolecular rearrangement. Other significant reactions of PUFA alkoxyl radicals are beta-scission of the fatty chain and possibly the formation of ether-linked dimers and oligomers. Although homolytic reactions of PUFA hydroperoxides have received the most attention, hydroperoxides are also susceptible to heterolytic transformations, such as nucleophilic displacement and acid-catalyzed rearrangement.  相似文献   

10.
The major objectives of the present work were focused on assessing the antioxidant capacities of two hydroxyl-substituent Schiff bases, 2-((o-hydroxylphenylimino)methyl)phenol (OSAP) and 2-((p-hydroxylphenylimino)methyl)phenol (PSAP) either used alone or in combination with some familiar water-soluble antioxidants i.e. 6-hydroxyl-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) and L-ascorbic acid (VC), and lipophilic ones i.e. alpha-tocopherol (TOH) and L-ascorbyl-6-laurate (VC-12). 2,2'-Azobis(2-amidinopropane hydrochloride) (AAPH). Induced hemolysis of human erythrocytes functioned as the evaluation experimental system in this research. The present findings showed that either OSAP or PSAP not only was an antioxidant with high activity in protecting erythrocytes against AAPH-induced hemolysis concentration-dependently, but can also protect erythrocytes by acting with Trolox, TOH, VC and VC-12 synergistically. Based on chemical kinetic deduction, the number of trapping peroxyl radicals, n, of the above-mentioned antioxidants can be calculated in relation to Trolox that traps two peroxyl radicals; thus, TOH can trap 3.83 peroxyl radicals, VC-12 traps 2.87 and VC can only trap 1.08. As for OSAP and PSAP, 8.71 and 13.7 peroxyl radicals can be trapped, respectively, indicating that they were the most efficient inhibitors against AAPH-induced hemolysis. Moreover, the total number of peroxyl radicals trapped by OSAP+Trolox, OSAP+TOH, OSAP+VC and PSAP+VC were higher than the sum of the above individual antioxidant used alone, demonstrating that a mutual promotive effect existed in the above mixed antioxidants. In contrast, owing to the fact that the total number of peroxyl radicals trapped by OSAP+VC-12, PSAP+Trolox, PSAP+TOH and PSAP+VC-12 were less than the sum of the above individual antioxidant used alone, a mutual antagonistic effect was suggested in these combinative usages. This information may be helpful in the pharmaceutical application of two Schiff bases.  相似文献   

11.
Carotenoid extract from ripe tomato fruit was subjected to a lipoxygenase-catalysed co-oxidation in the presence of vitamin C and vitamin E at different concentrations. Relative retention (%) of major carotenoids by the experimental mixture was used as an index of their degradation and interaction with the antioxidants. Oxidation-prevention activity of each antioxidant against pigment co-oxidation as impacted by their molar concentration was studied. beta-Carotene was found to be the most sensitive pigment, followed by lycoxanthin and lycopene. Ascorbic acid when added in the range of 0-1.8 mM interacted with the different carotenoids by different modes. Evidence was given on regeneration, by ascorbic acid, of lycopene during the course of co-oxidation. The concentration required for alpha-tocopherol acetate to exhibit antioxidative effect was 10 times higher than that of ascorbic acid. beta-Carotene was prevented, by alpha-tocopherol acetate, faster than lycoxanthin and lycopene. The latter carotenoids differed substantially in their interaction with the lipophilic antioxidant at only the lowest concentration (0.3 mM). It was established that under the given conditions there is no synergism between vitamin C and vitamin E that improves their oxidation prevention against co-oxidation of carotenoids. Moreover, the combined use of antioxidants caused more oxidative degradation of beta-carotene.  相似文献   

12.
Hypochlorite or its acid, hypochlorous acid, may exert both beneficial and toxic effects in vivo. In order to understand the role and action of hypochlorite, the formation of active oxygen species and its kinetics were studied in the reactions of hypochlorite with peroxides and amino acids. It was found that tert-butyl hydroperoxide and methyl linoleate hydroperoxide reacted with hypochlorite to give peroxyl and/or alkoxyl radicals with little formation of singlet oxygen in contrast to hydrogen peroxide, which gave singlet oxygen exclusively. Amino acids and ascorbate reacted with hypochlorite much faster than peroxides. Free radical-mediated lipid peroxidation of micelles and membranes in aqueous suspensions was induced by hypochlorite, the chain initiation being the decomposition of hydroperoxides by hypochlorite. It was suppressed efficiently by ebselen which reduced hydroperoxides and by alpha-tocopherol, which broke chain propagation, but less effectively by hydrophilic antioxidants present in the aqueous phase. Cysteine suppressed the oxidation, but it was poorer antioxidant than alpha-tocopherol. Ascorbate also exerted moderate antioxidant capacity, but it acted as a synergist with alpha-tocopherol. Taken together, it was suggested that the primary target of hypochlorite must be sulfhydryl and amino groups in proteins and that the lipid peroxidation may proceed as the secondary reaction, which is induced by radicals generated from sulfenyl chlorides and chloramines.  相似文献   

13.
Spin trapping using 5,5-dimethyl-1-pyrroline N-oxide (DMPO) has been used to detect and distinguish between the carbon-centred, alkoxyl, and peroxyl radicals produced during the photolytic decomposition of hydroperoxides. Photolysis of tert-butyl and cumene hydroperoxides, and peroxidized fatty acids, in toluene, with low levels of u.v. light, is shown to lead to the initial production of alkoxyl radicals by homolysis of the oxygen-oxygen bond. Subsequent reaction of these radicals with excess hydroperoxide leads, by hydrogen abstraction, to the production of peroxyl radicals that can be detected as their corresponding adducts with the spin trap. Subsequent breakdown of these adducts produces alkoxyl radicals and a further species that is believed to be the oxidized spin-trap radical 5,5-dimethyl-1-pyrrolidone-2-oxyl. No evidence was obtained at low hydroperoxide concentrations, with either the cumene or lipid alkoxyl radicals, for the occurrence of beta-scission reactions; the production of low levels of carbon-centred radicals is believed to be due to the alternative reactions of hydrogen abstraction, ring closure, and/or 1,2 hydrogen shifts. Analogous experiments with 3,3,5,5-tetramethyl-1-pyrroline N-oxide (TMPO) led only to the trapping of alkoxyl radicals with no evidence for peroxyl radical adducts, this is presumably due to a decreased rate of radical addition because of increased steric hindrance.  相似文献   

14.
Ceruloplasmin (CP) is the major plasma antioxidant and copper transport protein. In a previous study, we showed that the aggregation of human ceruloplasmin was induced by peroxyl radicals. We investigated the effects of antioxidant dipeptides carnosine, homocarnosine and anserine on peroxyl radical-mediated ceruloplasmin modification. Carnosine, homocarnosine and anserine significantly inhibited the aggregation of CP induced by peroxyl radicals. When CP was incubated with peroxyl radicals in the presence of three compounds, ferroxidase activity, as measured by the activity staining method, was protected. All three compounds also inhibited the formation of dityrosine in peroxyl radicals-treated CP. The results suggest that carnosine and related compounds act as peroxyl radical scavenger to protect the protein modification. It is proposed that carnosine and related peptides might be explored as potential therapeutic agents for pathologies that involve CP modification mediated by peroxyl radicals generated in the lipid peroxidation.  相似文献   

15.
Consumption of carotenoids is associated with an enhanced immune response and protection against neoplasia and atherosclerosis. Because these effects have been achieved using carotenoids with no pro-vitamin A activity, they are assumed to be due to the antioxidant properties of carotenoids. Carotenoids protect against photosensitized oxidation by quenching singlet oxygen. In addition, beta-carotene reacts chemically with peroxyl radicals to produce epoxide and apocarotenal products. To investigate the potential significance of these reactions to biological systems, we have used soybean lipoxygenase to generate peroxyl radical enzymatically. beta-Carotene inhibits the oxidation of linoleic acid by soybean lipoxygenase as well as the formation of the hydroperoxide product. In addition, the absorption of beta-carotene is diminished (bleached) by soybean lipoxygenase. The potential significance of these antioxidant reactions of carotenoids to biological function is discussed.  相似文献   

16.
Resveratrol (RSV) analogues have attracted much attention because of the expected health functions including antioxidant activities. We have carried out a quantitative determination of the scavenging abilities of six trans-RSV analogues against various reactive oxygen species and methyl radical (hydroxyl radical, superoxide, alkoxyl radical, peroxyl radical, methyl radical, and singlet oxygen). RSV analogues are in general more potent scavenger than the parent RSV. Furthermore, piceatannol (PIC) having two OH groups in the ortho position of resveratrol was found to show 11 times higher scavenging ability against peroxyl radical than parent resveratrol. With the aid of previous theoretical studies, the enhanced antioxidant ability was interpreted based on the effects of substituent that modifies the original resveratrol structure and function.  相似文献   

17.
The study of the important role of peroxyl radicals in biological systems is limited by their difficult detection with direct electron spin resonance (ESR). Many ESR spectra were assigned to 5,5-dimethyl-1-pyrroline N-oxide (DMPO)/peroxyl radical adducts based only on the close similarity of their ESR spectra to that of DMPO/superoxide radical adduct in conjunction with their insensitivity to superoxide dismutase, which distinguishes the radical adduct from DMPO/superoxide radical adduct. Later, the spin-trapping literature reported that DMPO/peroxyl radical adducts have virtually the same hyperfine coupling constants as synthesized alkoxyl radical adducts, raising the issue of the correct assignment of peroxyl radical adducts. However, using 17O-isotope labelling, the methylperoxyl and methoxyl radical adducts should be distinguishable. We have reinvestigated the spin trapping of the methylperoxyl radical. The methylperoxyl radical was generated in aerobic solution with 17O-molecular oxygen either in a Fenton system with dimethylsulfoxide or in a chloroperoxidase system with tert-butyl hydroperoxide. Two different spin traps, DMPO and 2,2,4-trimethyl-2H-imidazole-1-oxide (TMIO), were used to trap methylperoxyl radical. 17O-labelled methanol was used to synthesize methoxyl radical adducts by nucleophylic addition. It was shown that the 17O hyperfine coupling constants of radical adducts formed in methylperoxyl radical-generating systems are identical to that of the methoxyl radical adduct. Therefore, methylperoxyl radical-producing systems form detectable methoxyl radical adduct, but not detectable methylperoxyl radical adducts at room temperature. One of the possible mechanisms is the decomposition of peroxyl radical adduct with the formation of secondary alkoxyl radical adduct. These results allow us to reinterpret previously published data reporting detection of peroxyl radical adducts. We suggest that detection of 17O-alkoxyl radical adduct from 17O-labelled molecular oxygen can be used as indirect evidence for peroxyl radical generation.  相似文献   

18.
Resveratrol inhibition of lipid peroxidation   总被引:14,自引:0,他引:14  
To define the molecular mechanism(s) of resveratrol inhibition of lipid peroxidation we have utilized model systems that allow us to study the different reactions involved in this complex process. Resveratrol proved (a) to inhibit more efficiently than either Trolox or ascorbate the Fe2+ catalyzed lipid hydroperoxide-dependent peroxidation of sonicated phosphatidylcholine liposomes; (b) to be less effective than Trolox in inhibiting lipid peroxidation initiated by the water soluble AAPH peroxyl radicals; (c) when exogenously added to liposomes, to be more potent than alpha-tocopherol and Trolox, in the inhibition of peroxidation initiated by the lipid soluble AMVN peroxyl radicals; (d) when incorporated within liposomes, to be a less potent chain-breaking antioxidant than alpha-tocopherol; (e) to be a weaker antiradical than alpha-tocopherol in the reduction of the stable radical DPPH*. Resveratrol reduced Fe3+ but its reduction rate was much slower than that observed in the presence of either ascorbate or Trolox. However, at the concentration inhibiting iron catalyzed lipid peroxidation, resveratrol did not significantly reduce Fe3+, contrary to ascorbate. In their complex, our data indicate that resveratrol inhibits lipid peroxidation mainly by scavenging lipid peroxyl radicals within the membrane, like alpha-tocopherol. Although it is less effective, its capacity of spontaneously entering the lipid environment confers on it great antioxidant potential.  相似文献   

19.
《Free radical research》2013,47(11):1406-1412
Abstract

Carotenoids act as physiological antioxidant by scavenging reactive-free radicals as well as quenching singlet oxygen. Fucoxanthin is one of the abundant carotenoids found in edible brown seaweeds. The assessment of radical scavenging capacity of carotenoids has been the subject of extensive studies, which, however, gave inconsistent results. In the present study, the capacity of fucoxanthin for scavenging peroxyl radicals, chain carrying species of lipid peroxidation, was assessed quantitatively by measuring the effect of α-tocopherol on the decay of fucoxanthin induced by peroxyl radicals. It was found that α-tocopherol was 7.1 times more reactive than fucoxanthin in heptane solution, but interestingly fucoxanthin exerted 1.6 times higher reactivity than α-tocopherol in methanol solution. In SDS micelles, the relative reactivity of fucoxanthin and α-tocopherol depended on the site of peroxyl radical formation. The efficacy of lipid peroxidation inhibition by fucoxanthin was much less than that of α-tocopherol.  相似文献   

20.
Antioxidant activity of thiosulfinates derived from garlic   总被引:1,自引:0,他引:1  
Garlic extract significantly inhibited the oxidation of methyl linoleate in homogeneous acetonitrile solution, whereas the antioxidant effect of allicin-free garlic extract, prepared by removing allicin by prepared by removing allicin by preparative HPLC, was much lower than that of the garlic extract. These results suggest that the antioxidant properties are mostly attributed to the presence of allicin in the garlic extract. Allicin a major component of the thiosulfinates in garlic extract, was found to be effective for inhibiting methyl linoleate oxidation, but its efficiency was less than that of alpha-tocopherol. Next, the reactivity of allicin toward the peroxyl radical, which is a chain-propagating species, was investigated by direct ESR detection. The addition allicin to 2,2'-azobis(2,4-dimethylvaleronitrile)-peroxyl radical solution caused the signal intensity of the peroxyl radical to dose-dependently decrease, indicating that allicin is capable of scavenging the the peroxyl radical and acting as an antioxidant. Finally, we studied the structure-anioxidant activity relationship for thiosulfinates and suggested that the combination of the allyl group (-CH2CH=CH2) and the -S(O)S- group is necessary for the antioxidant action of thiosulfinates in the garlic extract. In addition, one of the two possible combinations, -S(O)S-CH2CH=CH2, was found to make a much larger contribution to the antioxidant activity of the thiosulfinates than the other, CH2=CH-CH2-S(O)S-.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号