首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lung surfactant disaturated phosphatidylcholine (PC) is highly dependent on the supply of palmitate as a source of fatty acid. The purpose of this study was to investigate the importance of de novo fatty acid synthesis in the regulation of disaturated PC production during late prenatal lung development. Choline incorporation into disaturated PC and the rate of de novo fatty acid synthesis was determined by the relative incorporation of [14C]choline and 3H2O, respectively, in 20-day-old fetal rat lung explants and in 18-day-old explants which were cultured 2 days. Addition of exogenous palmitate (0.15 mM) increased (26%) choline incorporation into disaturated PC but did not inhibit de novo fatty acid synthesis, as classically seen in other lipogenic tissue. Even in the presence of exogenous palmitate, de novo synthesis accounted for 87% of the acyl groups for disaturated PC. Inhibition of fatty acid synthesis by agaric acid or levo-hydroxycitrate decreased the rate of choline incorporation into disaturated PC. When explants were subjected to both exogenous palmitate and 60% inhibition of de novo synthesis, disaturated PC synthesis was below control values and 75% of disaturated PC acyl moieties were still provided by de novo synthesis. These data show that surfactant disaturated PC synthesis is highly dependent on the supply of palmitate from de novo fatty acid synthesis.  相似文献   

2.
3.
4.
Although glucocorticoid and thyroid hormones are known to act synergistically to stimulate surfactant production, they have opposite effects on other parameters of fetal lung maturation. We recently reported that the developmental increases in de novo fatty acid synthesis and glycogen accumulation in fetal rat lung were accelerated by dexamethasone but prevented by triiodothyronine and that the dexamethasone-induced increases were diminished when the two hormones were administered together. We have now examined the effects of maternal administration of these hormones on activities of enzymes of lung fatty acid synthesis and glycogen metabolism in the rat. There was a developmental increase in fatty-acid synthase activity between 19 and 21 days gestation. This activity was increased by dexamethasone but decreased by triiodothyronine. When the two hormones were administered together the stimulatory effect of dexamethasone was decreased from 56% to 29%. The stimulatory effect on fatty-acid synthase was also observed in fetal lung explants cultured in the presence of dexamethasone. This shows that the effect of the hormone was directly on the fetal lung. Dexamethasone had no effect on liver fatty-acid synthase. There was a developmental decrease in acetyl-CoA carboxylase activity but it was not affected by the hormones. These data show that the developmental and hormone-induced changes in fetal lung de novo fatty acid synthesis are mediated by fatty-acid synthase. Although there were developmental changes in fetal lung 6-phosphofructokinase, glycogen synthase and glycogen phosphorylase activities, these enzymes were not affected by the hormones.  相似文献   

5.
There is a developmental increase in fatty acid biosynthesis and surfactant production in late-gestation fetal lung and both are accelerated by glucocorticoids. We have examined the distribution of the newly synthesized fatty acids to determine whether they are preferentially incorporated into surfactant. Explants of 18 day fetal rat lung were cultured with and without dexamethasone for 48 h and then with [3H]acetate for 4 h after which labeled fatty acids were measured. Incorporation of radioactivity from acetate was considered a measure of newly synthesized fatty acids. Phospholipids contained 86% of the newly synthesized fatty acids of which approx. 80% were in phosphatidylcholine. Phosphatidylcholine and disaturated phosphatidylcholine contained a much greater percentage of the labeled fatty acids than of the phospholipid mass determined by phosphorus assay while phosphatidylethanolamine, phosphatidylserine and sphingomyelin contained less. Dexamethasone increased the rate of acetate incorporation into total lipid fatty acids but it had little effect on fatty acid distribution, except that it increased the percentages in phosphatidylglycerol and disaturated phosphatidylcholine. The hormone also increased the mass of these two phospholipids to a greater extent than that of the total. These data suggested that the newly synthesized fatty acids are preferentially incorporated into surfactant phospholipids and that this process is accelerated by dexamethasone. However, since phosphatidylcholine and phosphatidylglycerol are not exclusive to surfactant, we compared isolated lamellar bodies with a residual fraction not enriched in surfactant. The rate of acetate incorporation into fatty acids in lamellar body phosphatidylcholine as well as its specific activity (radioactivity per unit phosphorus) were both increased by dexamethasone. Specific activity, however, was no greater in the lamellar bodies than in the residual fraction in both control and dexamethasone-treated cultures. Therefore, there is no preferential incorporation of newly synthesized fatty acids into phospholipids in surfactant as opposed to those in other components of the lung.  相似文献   

6.
Developing rat lung lipofibroblasts express leptin beginning on embryonic day (E) 17, increasing 7- to 10-fold by E20. Leptin and its receptor are expressed mutually exclusively by fetal lung fibroblasts and type II cells, suggesting a paracrine signaling "loop." This hypothesized mechanism is supported by the following experimental data: 1) leptin stimulates the de novo synthesis of surfactant phospholipid by both fetal rat type II cells (400% x 100 ng(-1) x ml(-1) x 24 h(-1)) and adult human airway epithelial cells (85% x 100 ng(-1) x 24 h(-1)); 2) leptin is secreted by lipofibroblasts in amounts that stimulate type II cell surfactant phospholipid synthesis in vitro; 3) epithelial cell secretions such as parathyroid hormone-related protein (PTHrP), PGE(2), and dexamethasone stimulate leptin expression by fetal rat lung fibroblasts; 4) PTHrP or leptin stimulate the de novo synthesis of surfactant phospholipid (2- to 2.5-fold/24 h) and the expression of surfactant protein B (SP-B; >25-fold/24 h) by fetal rat lung explants, an effect that is blocked by a leptin antibody; and 5) a PTHrP receptor antagonist inhibits the expression of leptin mRNA by explants but does not inhibit leptin stimulation of surfactant phospholipid or SP-B expression, indicating that PTHrP paracrine stimulation of type II cell maturation requires leptin expression by lipofibroblasts. This is the first demonstration of a paracrine loop that functionally cooperates to induce alveolar acinar lung development.  相似文献   

7.
De novo fatty acid synthesis in developing rat lung   总被引:1,自引:0,他引:1  
The rate of de novo fatty acid synthesis in developing rat lung was measured by the rate of incorporation of 3H from 3H2O into fatty acids in lung slices and by the activity of acetyl-CoA carboxylase in fetal, neonatal and adult lung. Both tritium incorporation and acetyl-CoA carboxylase activity increased sharply during late gestation, peaked on the last fetal day, and declined by 50% 1 day after birth. In the adult, values were only one-half the peak fetal rates. In vitro regulation of acetyl-CoA carboxylase activity in fetal lung was similar to that described in adult non-pulmonary tissues: activation by citrate and inhibition by palmitoyl-CoA. Similarly, incubation conditions that favored enzyme phosphorylation inhibited acetyl-CoA carboxylase activity in lung while dephosphorylating conditions stimulated activity. Incorporation of [U-14 C]glucose into lung lipids during development was influenced heavily by incorporation into fatty acids, which generally paralleled the rate of tritium incorporation into fatty acids. The relative utilization of acetyl units from exogenous glucose for overall fatty acid synthesis was greater in adult lung than in fetal or neonatal lung, suggesting that other substrates may be important for fatty acid synthesis in developing lung. In fetal lung explants, de novo fatty acid synthesis was inhibited by exogenous palmitate. Taken together, these data suggest that de novo synthesis may be an important source of saturated fatty acids in fetal lung but of lesser importance in the neonatal period. Furthermore, the regulation of acetyl-CoA carboxylase activity and fatty acid synthesis in lung may be similar to non-pulmonary tissues.  相似文献   

8.
The development of the fetal lung is regulated by fibroblast-type-II cell communications which involve fibroblast pneumonocyte factor (FPF). FPF production is positively regulated by glucocorticoids and negatively regulated by dihydrotestosterone (DHT) and transforming growth-factor beta (TGF-beta). We studied whether DHT or TGF-beta affected other steps in the process of lung maturation, by studying how the developing lung in organ culture would respond to exogenously supplied FPF after DHT or TGF-beta exposure. Fetal rabbit (day 19 of gestation) lung organ cultures were prepared and cultured in the presence of cortisol, DHT or TGF-beta. After seven days, the media were replaced with serum-free medium containing either cortisol or FPF conditioned medium. The incorporation of [14C]glycerol into surfactant lamellar body DSPC was studied over 24 h as the index of surfactant synthesis. Results were compared to simultaneous control cultures. Treatment had no significant effect on tissue protein concentration or on the efficiency of lamellar body recovery. Cortisol stimulated baseline incorporation of glycerol into DSPC. This was inhibited by DHT, such that DHT plus cortisol treatment was no different from untreated controls. FPF stimulated the incorporation of glycerol into DSPC, and did so even after culture treatment with DHT. Cultures treated with TGF-beta exhibited glycerol incorporation similar to untreated controls. After TGF-beta exposure, FPF did not stimulate glycerol incorporation into DSPC. We conclude that DHT interferes with progression of lung development by delaying the appearance of FPF production by the fibroblast. TGF-beta, on the other hand, inhibits other elements of lung maturation besides FPF production. We speculate that TGF-beta interferes with type-II cell development such that the cell cannot respond to FPF.  相似文献   

9.
To study the effect of oligohydramnios on lung growth and biochemical lung development in fetal rabbits, amniotic fluid was drained through a tube inserted into the maternal peritoneal cavity on the 23 day of gestation. Littermate fetuses without an amniotic shunt were used as controls. The fetuses were delivered abdominally on the 28 day of gestation. In a total of 8 pregnant does, 17 fetuses underwent amniotic shunting and 22 fetuses were used as controls. The amniotic shunt produced a significant reduction in the amniotic fluid volume. There were no differences in the wet weights of the fetal body, liver or brain between the two groups. However, the amniotic shunt significantly decreased the wet weight of the fetal lung, fetal lung wet weight/body weight ratio, and protein concentration per lung as compared to the control fetuses. In the fetal liver and brain tissues, no changes were found in the concentrations of total phospholipids, phosphatidylcholine (PC) or disaturated phosphatidylcholine (DSPC, the main component of lung surfactant) per g of wet tissue and per mg of protein. However, the lungs of the fetuses with amniotic shunts contained significantly more PC and DSPC, and the L/S ratio was higher than in the control fetuses. These results suggest that the oligohydramnios produced by an amniotic shunt causes pulmonary hypoplasia, but raises the pulmonary surfactant content of fetal rabbit lung.  相似文献   

10.
11.
In the present study we investigated the maturation of the surfactant phospholipids and the role of fetal sex on the effect of betamethasone in male and female rabbit fetuses. Betamethasone was administered to the doe (0.2 mg/kg intramuscularly) 42 and 18 h prior to killing. The fetuses were studied at 27 and 28 days from conception. Results from the alveolar lavage show that male fetuses tended to have a lower disaturated phosphatidylcholine/sphingomyelin ratio and lower levels of phosphatidylinositol. Phosphatidylglycerol was detected in trace amounts. This was apparently due to the high extracellular levels of myo-inositol inhibiting the synthesis of surfactant phosphatidylglycerol while increasing the synthesis of surfactant phosphatidylinositol. Betamethasone increased the recovery of disaturated phosphatidylcholine and phosphatidylinositol from the lung lavage in both sexes. As studied in lung slices in vitro, the betamethasone treatment decreased the incorporation of glucose into phospholipids, including into the fatty acid moiety of disaturated phosphatidylcholine, although it had no significant effect on the incorporation of glucose into the glycerol moiety of disaturated phosphatidylcholine. However, the addition of palmitate increased the incorporation of glucose into the glycerol moiety of disaturated phosphatidylcholine. The betamethasone treatment did not increase the incorporation of [1-14C]pyruvate into disaturated phosphatidylcholine. Following betamethasone administration, the availability of fatty acids may become rate-limiting for the synthesis of surfactant phospholipids. Betamethasone increased the activities of phosphatidic acid phosphohydrolase and phosphatidate cytidyltransferase in a fraction of microsomal membranes. The present evidence suggests that the glucocorticoid-induced lung maturation and the maturation of the normal lung are associated with an increase in the activity of the enzymes which are involved in metabolizing phosphatidic acid to neutral and acidic surfactant secretion of the male fetus was not explained by possible sex-related differences in the biosynthesis of the phospholipids.  相似文献   

12.
Fetal lung fatty-acid synthase and choline-phosphate cytidylyltransferase activities are increased by glucocorticoids. There is evidence that the hormone increases synthesis of fatty-acid synthase but only increases the catalytic activity of the cytidylyltransferase. Free fatty acids and a number of phospholipids have been reported to stimulate cytidylyltransferase activity in several organs, including the lung. We have addressed the question of whether glucocorticoid induction of fatty-acid synthase mediates the stimulatory effect of the hormone on choline-phosphate cytidylyltransferase activity. Explants of 18-day fetal rat lung were cultured for 48 h with dexamethasone and inhibitors of de novo fatty acid biosynthesis (agaric acid and hydroxycitric acid) being included in the medium for the final 20 h. Dexamethasone increased the activities of fatty acid synthase and choline-phosphate cytidylyltransferase by 84% and 60%, respectively. Agaric acid and hydroxycitric acid completely abolished the stimulatory effect of the hormone on cytidylyltransferase but not on fatty-acid synthase. The inhibitors had no effect on cytidylyltransferase activity in control cultures. Fetal lung choline-phosphate cytidylyltransferase can be maximally stimulated by inclusion of phosphatidylglycerol in the assay mixture and under this condition, cytidylyltransferase activity in control and dexamethasone-treated cultures in the presence and absence of the inhibitors were all increased to the same level. Therefore, the inhibitors did not diminish the capacity of cytidylyltransferase to be fully activated. We suggest that the glucocorticoid induction of fatty-acid synthase in fetal lung results in increased synthesis of fatty acids which in turn, either as free acids or after incorporation into phospholipids, activate choline-phosphate cytidylyltransferase.  相似文献   

13.
Males and females exhibit different stages of lung development at the same gestation with males lagging behind. We hypothesized that one of the mechanisms responsible for the sex-specific difference in fetal lung maturation is a delay in the onset of epidermal growth factor (EGF) activity in the male fetal lung. EGF influences growth and differentiation during development. We studied the effects of EGF on the incorporation of glycerol into lamellar body disaturated phosphatidylcholine (DSPC) in sex-specific fetal rabbit lung explants prepared at 21 and 24 days gestation (term 31 days). The explants were maintained in Waymouth's media + 10% stripped fetal calf serum with or without EGF (10 ng/ml). The incorporation of [1,3-14C]glycerol into lamellar body DSPC was assessed after 3, 5, or 7 days of culture. Female lung explants prepared at 21 days of gestation had increased incorporation of glycerol into DSPC over time in response to EGF treatment. Male lung explants prepared at 21 days did not respond to EGF treatment. In explants prepared at 24 days gestation, baseline glycerol incorporation into DSPC was higher in female as compared to male fetal lung explants. EGF-responsiveness was also sex-specific in these more mature explants, with the male explants now responding to EGF with a consistent increase in the incorporation of glycerol into lamellar body DSPC. We conclude that one of the mechanisms responsible for the lag in male fetal lung development is a delay in the onset of EGF activity.  相似文献   

14.
Levels of fatty acid binding proteins (FABPs), lipids as well as activities of fatty acid synthesizing enzymes such as fatty acid synthase and ATP-citrate lyase increase with gestation showing maximum at term in human fetal lung. However, the activity of ATP-citrate lyase showed the same trend up to 30 weeks of gestation before declining slightly at term. These results indicate the importance of supply and/or synthesis of fatty acids when lung surfactant synthesis begins; thereby showing a correlation between the FABPs, lipid pattern and the activities of fatty acid synthesizing enzymes during prenatal lung development.  相似文献   

15.
Explants of fetal rabbit lung were established on the 25th day of gestation. These were maintained in serum-free medium for periods up to 10 days. During this time, the cultures exhibited morphological changes typical of terminal lung differentiation. Morphological evidence was also obtained for synthesis and secretion of pulmonary surfactant in these explants. beta-Adrenergic receptors were identified in these lung explants. Exposure of the explants to 10(-7)M dexamethasone on the third day of culture resulted in a significant increase in the number of beta-adrenergic receptors in the tissue without a change in receptor affinity. The effect of dexamethasone in organ culture was dose-dependent, a maximum increase in receptor number being observed within 48 hours of incubation with a hormone concentration of 1 x 10(-7)M. Exposure of the explant tissue to 1 x 10(-7)M triiodothyronine resulted in no significant increase in the concentration of beta-adrenergic receptors and no change in receptor affinity. These results suggest that glucocorticoids may potentiate the effects of beta-adrenergic agents in the fetal lung by increasing the numbers of their receptors. The effects of triiodothyronine upon the fetal lung do not appear to be mediated by this mechanism.  相似文献   

16.
17.
In addition to a signal arising from the physical "stretching" of the adipocytes, metabolic and endocrine regulation of leptin production seems to operate in adipocytes. There is however a paucity of literature examining direct role of fatty acid synthesis in regulating adipocytes leptin production. To clarify the relation between fatty acid synthesis and leptin release in adipocytes, we examined leptin release from primary cultured rat epididymal adipocytes with several substances relevance to de novo fatty acid syntyhesis. Bezafibrate (0.5 or 1.0 mM), known to inhibit acetyl-CoA carboxylase, decreased leptin release to 60.3 +/- 7.2 or 47.3 +/- 11.9%, while cerulenin (15, 30, or 75 mM), an inhibitor of fatty acid synthase, increased it by 20.5 +/- 7.7, 58.5 +/- 12.1 or 105.0 +/- 35.0% of the control. Exogenous pyruvate (2.5, 5.0, or 10.0 mM) and malonyl-CoA (10, 20, or 40 mM), substrates and intermediate of fatty acid synthesis, increased leptin release by 11.0 +/- 3.3, 21.5 +/- 5.4, or 61.0 +/- 10.7%, and 11.1 +/- 3.0, 41.1 +/- 9.7 or 56.7 +/- 7.9% of the control, respectively. Considering difference in the site of action of bezafibrate and cerulenin along fatty acid synthesis pathway, one plausible explanation is that malonyl-CoA levels act as a signal of fuel availability to trigger leptin synthesis and/or secretion in adipocytes. Keywords: Leptin secretion; Fatty acid synthesis; Malonyl-CoA; Rat adipocytes.  相似文献   

18.
Antibodies directed against the major apoprotein of rabbit lung surfactant, a 29-36-kDa glycoprotein, were used to study changes in the levels of translatable surfactant apoprotein mRNA in rabbit lung tissue during development, as well as the effects of cortisol and cyclic AMP analogues on the levels of surfactant apoprotein and its mRNA in fetal rabbit lung tissue in organ culture. The major surfactant apoprotein and its mRNA were undetectable in lung tissues of 21-day gestational age fetal rabbits. Translatable mRNA specific for the major surfactant apoprotein was first detectable in lung tissues of 26-day fetuses, increased 25-fold on day 28, reached peak levels at day 31, and declined after birth. Incubation of 21-day fetal rabbit lung explants with cortisol in serum-free medium resulted in an increase in the specific content of the 29-36-kDa apoprotein. Cyclic AMP analogues and forskolin, an activator of adenylate cyclase, also caused a marked increase in the accumulation of surfactant apoprotein. When fetal lung explants were incubated with cortisol and dibutyryl cyclic AMP in combination, the specific content of the surfactant apoprotein was increased to levels greater than that of explants treated with either cortisol or dibutyryl cyclic AMP alone. These effects of dibutyryl cyclic AMP and cortisol on surfactant apoprotein accumulation were associated with comparable changes in the levels of translatable surfactant apoprotein mRNA. Thus, we have shown for the first time that the induction of pulmonary surfactant apoprotein synthesis during differentiation in vitro and in vivo is associated with an increase in the level of translatable mRNA and that cortisol and cyclic AMP increase both the accumulation of the major surfactant apoprotein and the corresponding mRNA in fetal rabbit lung tissue in vitro.  相似文献   

19.
We examined the effect of monolayer culture on surfactant phospholipids and proteins of type II cells isolated from human adult and fetal lung. Type II cells were prepared from cultured explants of fetal lung (16-24 weeks gestation) and from adult surgical specimens. Cells were maintained for up to 6 days on plastic tissue culture dishes. Although incorporation of [methyl-3H]choline into phosphatidylcholine (PC) by fetal cells was similar on day 1 and day 5 of culture, saturation of PC fell from 35 to 26%. In addition, there was decreased distribution of labeled acetate into PC, whereas distribution into other phospholipids increased or did not change. The decrease in saturation of newly synthesized PC was not altered by triiodothyronine (T3) and dexamethasone treatment or by culture as mixed type II cell/fibroblast monolayers. The content of surfactant protein SP-A (28-36 kDa) in fetal cells, as measured by ELISA and immunofluorescence microscopy, rose during the first day and then fell to undetectable levels by the fifth. Synthesis of SP-A, as measured by [35S]methionine labeling and immunoprecipitation, was detectable on day 1 but not thereafter. Levels of mRNAs for SP-A and for the two lipophilic surfactant proteins SP-B (18 kDa) and SP-C (5 kDa) fell with half-times of maximally 24 h. In contrast, total protein synthesis measured by [35S]methionine incorporation increased and then plateaued. In adult cells, the content of SP-A and its mRNA decreased during culture, with time-courses similar to those for fetal cells. We conclude that in monolayer culture on plastic culture dishes, human type II cells lose their ability to synthesize both phospholipids and proteins of surfactant. The control of type II cell differentiation under these conditions appears to be at a pretranslational level.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号