首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comparative genomic hybridization (CGH) has been applied to characterize 61 primary renal cell carcinomas derived histogenetically from the proximal tubulus. The tumor samples comprised 46 clear-cell renal cell carcinomas (ccRCCs) and 15 papillary renal cell carcinomas (pRCCs). Changes in the copy number of entire chromosomes or subregions were detected in 56 tumors (92%). In ccRCCs, losses of chromosome 3 or 3p (63%); 14q (30%); 9 (26%); 1 and 6 or 6q (17% each); 4 and 8 or 8p (15% each); 22 (11%); 2 or 2q and 19 (9% each); 7q, 10, 16, 17p, 18, and Y (7% each); and 5, 11, 13, 15, and 21 (4% each) were detected. Most frequent genomic gains in ccRCC were found on chromosome 5 (63%); 7 (35%); 1 or 1q (33%); 2q (24%); 8 or 8q, 12, and 20 (20% each); 3q (17%); 16 (15%); 19 (13%); 6 and 17 or 17q (11% each); and 4, 10, 11, 21, and Y (9% each). In pRCCs, gains in the copy number of chromosomes 7 and 17 (7/15, each) and 16 and 20 (6/15, each) were frequent. One pRCC showed amplification of subchromosome regions 2q22-->q33, 16q, 17q and the entire X chromosome. In pRCC, losses were less frequently seen than gains. Losses of chromosomes 1, 14, 15, and Y (3/15 each) and 2, 4, 6, and 13 (2/15 each) were observed. In ccRCCs, statistical evaluation revealed significant correlations of chromosomal imbalances with tumor stage and grade, i.e., a gain in copy number of chromosome 5 correlated positively with low tumor grade, whereas a gain of chromosomes 10 and 17 correlated positively with high tumor grade. Furthermore, loss of chromosome 4 correlated positively with high tumor stage.  相似文献   

2.
The aim of the present study was to investigate chromosomal alterations in a large set of homogeneous tumors, 98 endometrioid adenocarcinomas. We also wanted to evaluate differences in chromosomal alterations in the different groups of tumors in relation to stage, survival and invasive or metastatic properties of the tumors. Comparative genomic hybridization (CGH) was used to detect chromosomal alterations in tissue samples from 98 endometrioid adenocarcinomas. All chromosomes were involved in DNA copy number variations at least once in the tumor material, but certain changes were recurrent and rather specific. Among the specific changes, it was possible to identify 39 chromosomal regions displaying frequent DNA copy number alterations. The most frequent alteration was detected at 1q25-->q42, in which gains were found in 30 cases (30%). Gains at 19pter-->p13.1 were detected in 26 tumors (26%) and at 19q13.1-->q13.3 in 19 tumors (19%). Increased copy numbers were also detected at 8q (8q21-->q22 and 8q22-->qter), at a relatively high rate, in 17 cases (17%). Furthermore, gains at 10q21-->q23 and 10p were found in 14 (14%) and 13 cases (13%), respectively. The most common losses were found in the three regions 4q22-->qter, 16q21-->qter and 18q21-->qter, all of which were detected in eight of the 98 tumors (8%). We also detected differences between the tumors from deceased patients and from survivors. Gain at 1q25-->q42 was more commonly detected in the tumors from patients who died of cancer. We noted that the regions most affected differed in the different surgical stages (I-IV). The results of the CGH analysis identify specific chromosomal regions affected by copy number changes, appropriate objects for further genetic studies.  相似文献   

3.
Conventional cytogenetic analyses and comparative genomic hybridization have revealed a complex and even chaotic nature of chromosomal aberrations in pleural malignant mesothelioma (MM). We set out to describe the complex gene copy number changes and screen for novel genetic aberrations using a high-density oligonucleotide microarray platform for comparative genomic hybridization (aCGH) of a series of 26 well-characterized MM tumor samples. The number of copy number changes varied from zero to 40 per sample. Gene copy number losses predominated over gains, and the most frequent region of loss was 9p21.3 (17/26 cases), the locus of CDKN2A and CDKN2B, both known to be commonly lost in MM. The most recurrent minimal regions of losses were 1p31.1--> p13.2, 3p22.1-->p14.2, 6q22.1, 9p21.3, 13cen-->q14.12, 14q22.1-->qter, and 22qcen-->q12.3. Previously unreported gains included 9p13.3, 7p22.3-->p22.2, 12q13.3, and 17q21.32-->qter. The results suggest that gene copy number losses are a major mechanism of MM carcinogenesis and reveal a recurrent pattern of copy number changes in MM.  相似文献   

4.
Chromosomal imbalances were analyzed in 62 breast cancers with different DNA ploidy by CGH. The results of DNA image cytometry and CGH are consistent with peridiploid and aneuploid cases. The peritetraploid tumors harbored a high number of chromosomal imbalances, as a hint for an unfavorable prognosis. The quantitative analysis of imbalances highlighted the role of different physical constituents of the chromosome, and of chromosomal losses in different DNA ploidy groups. The peritetraploid and aneuploid tumors differed from the peridiploid tumors in losses at 8p and 18q. The peritetraploid cancers exhibited more gains at 8q, the aneuploid tumors more losses at 17p than their peridiploid counterparts. The aneuploid cases differed from the peritetraploid tumors in a higher number of losses at 11q and 14q. Combinations of imbalances provide further insights into the genetic background of DNA ploidy. Hypotheses for the progression from peridiploid to nondiploid breast cancers are given.  相似文献   

5.
Multiple chromosomal imbalances have been identified in breast cancer using comparative genomic hybridization (CGH). Their association with the primary tumors' potential for building distant metastases is unknown. In this study we have investigated 39 invasive breast carcinomas with a mean follow-up period of 99 months (max. 193 months) by CGH to determine the prognostic value of chromosomal gains and losses.The mean number of chromosomal imbalances per tumor was 6.5+/-0.7 (range 2 to 18). The most frequent alterations identified in more than 1/3 of cases were gains on chromosomes 11q13, 12q24, 16, 17, and 20q, and losses on 2q and 13q. A significantly different frequency of chromosomal aberrations (p相似文献   

6.
Here we tested the prognostic impact of genomic alterations in operable localized pancreatic ductal adenocarcinoma (PDAC). Fifty-two formalin-fixed and paraffin-embedded primary PDAC were laser micro-dissected and were investigated by comparative genomic hybridization after whole genome amplification using an adapter-linker PCR. Chromosomal gains and losses were correlated to clinico-pathological parameters and clinical follow-up data. The most frequent aberration was loss on chromosome 17p (65%) while the most frequent gains were detected at 2q (41%) and 8q (41%), respectively. The concomitant occurrence of losses at 9p and 17p was found to be statistically significant. Higher rates of chromosomal losses were associated with a more advanced primary tumor stage and losses at 9p and 18q were significantly associated with presence of lymphatic metastasis (chi-square: p = 0.03, p = 0.05, respectively). Deletions on chromosome 4 were of prognostic significance for overall survival and tumor recurrence (Cox-multivariate analysis: p = 0.026 and p = 0.021, respectively). In conclusion our data suggest the common alterations at chromosome 8q, 9p, 17p and 18q as well as the prognostic relevant deletions on chromosome 4q as relevant for PDAC progression. Our comprehensive data from 52 PDAC should provide a basis for future studies with a higher resolution to discover the relevant genes located within the chromosomal aberrations identified.  相似文献   

7.
Although it is established that the loss of function of both alleles of the RB1 gene is a prerequisite for the development of retinoblastoma, little is known about the genetic events that are required for tumor progression. We used comparative genomic hybridization (CGH) to search for DNA copy number changes in isolated unilateral retinoblastomas. From a series of 66 patients with retinoblastomas with somatic mutations in both RB1 alleles, tumor samples from 13 children with the youngest (2.0-9.8 months) and 13 with the oldest (36.2-84.1 months) age at operation were studied. Loss at 13q14, the location of RB1, was demonstrated in two tumors only. Recurring chromosome imbalances included gains at 6p (11/26), 1q (10/26), 2p (4/26), and 17q (4/26), gains of the entire chromosome 19 (3/26), and losses at 16q (9/26). A commonly gained region at 1q32 was identified. Increased dosage of GAC1, a candidate oncogene located in 1q32, was found in two of four tumors by Southern blot analysis. Comparison of the CGH findings revealed that retinoblastomas from children with an older age at operation showed significantly more frequent (13/13 cases vs 4/13 cases; P = 0.0005) and more complex genetic abnormalities (median, 5 changes/abnormal tumor vs median, 1.5 changes/abnormal tumor; P = 0.003) than retinoblastomas from children with a young age at operation. Gains at 1q, 2p, 17q, of the entire chromosome 19 and losses of 16q were restricted to the older age group. Our results suggest that the progression of retinoblastomas from older patients follows mutational pathways different from those of younger patients.  相似文献   

8.
Comparative genomic hybridization (CGH) was employed to survey genomic regions with increased and decreased copy number of the DNA sequence in 15 endometrial cancers [10 cases with microsatellite instability positive (MI+) and 5 cases with MI–]. Twelve of these 15 tumors (80%) showed abnormalities in copy number at one or more of the chromosomal regions. There were no regions with frequent chromosomal losses. Conversely, 11 of 15 cases (73%) showed gains on chromosome arms 1q (8/15; 53%) and/or 8q (6/15; 40%). Concordant gains of both chromosome arms 1q and 8q were observed in all three endometrial cancers of histological grade 3. These results suggest that these two chromosomal regions may contain genes whose increased expression contributes to development and/or progression of endometrial carcinogenesis. Two cases were further analyzed by fluorescence in situ hybridization (FISH) using three probes on chromosome 1 and two probes on chromosome 8 to more accurately determine increases in copy number. We found gains of chromosome 1q to 2.9–3.6 copies per cell and on 8q to 4.4 copies per cell. Received: 9 March 1997 / Accepted: 2 June 1997  相似文献   

9.
DNA copy number changes were studied by comparative genomic hybridization on 10 tumor specimens of squamous cell carcinoma of cervix obtained from Korean patients. DNA was extracted from paraffin-embedded sections after removal of non-malignant cells by microdissection technique. Copy number changes were found in 8/10 tumors. The most frequent changes were chromosome 19 gains (n=6) and losses on chromosomes 4 (n=4), 5 (n=3), and 3p (n=3). A novel finding was amplification in chromosome arm 9p21-pter in 2 cases. Gains in 1, 3q, 5p, 6p, 8q, 16p, 17, and 20q and losses at 2q, 6q, 8p, 9q, 10p, 11, 13, 16q, and 18q were observed in at least one of the cases.  相似文献   

10.
To identify DNA amplifications in sarcomas, comparative genomic hybridization was performed on 27 cases that were likely to display high-level DNA copy number gains. In all cases, chromosome banding analysis had revealed homogeneously staining regions or double minutes, i.e., cytogenetic signs of gene amplification. In most cases, gains predominated over losses. Low-level amplifications (ratio 1.3:1.5) were seen in 20 cases. High-level amplifications (ratio >1.5) exceeded the frequencies seen in published, unselected sarcomas of similar histotypes and were detected in 16 tumors: 4/4 osteosarcomas, 5/8 malignant fibrous histiocytomas, 3/7 leiomyosarcomas, 1/2 myosarcomas, 0/1 liposarcoma, 0/1 rhabdomyosarcoma, 1/1 pleomorphic sarcoma, 0/1 myxofibrosarcoma, 1/1 malignant mesenchymona, and 1/1 malignant schwannoma, with two to four chromosomal regions involved in nine tumors. Recurrent amplifications involved 1p33-p32, 5p15-p14, 7pter-p12, 7q21-qter, 8q21.3-qter, 11q22-q23, 16p13.2-p12, 19q12-q13.1, 20q11.2-qter, and 22q12-q13. Most of the recurrent gains/amplifications we detected have been reported in sarcomas previously. A novel gain/amplification was seen at 2q14.3-q21 in five cases of four sarcoma types. The disparate pattern of amplified sequences, the poor correspondence between the localization of low- and high-level amplifications, and the chromosomal position of homogeneously staining regions suggest the involvement of many genes in the amplifications and that the genes rarely maintain their native position in these tumors.  相似文献   

11.
The sentinel lymph node (SLN) is considered to be the first axillary node that contains malignant cells in metastatic breast tumors, and its positivity is currently used in clinical practice as an indication for axillary lymph node dissection. Therefore, accurate evaluation of the SLN for the presence of breast metastatic cells is essential. The main aim of our study is to characterize the genomic changes present in the SLN metastatic samples with the ultimate goal of improving the predictive value of SLN evaluation. Twenty paired samples of SLN metastases and their corresponding primary breast tumors (PBT) were investigated for DNA copy number changes using comparative genomic hybridization (CGH). Non-random DNA copy number changes were observed in all the lesions analyzed, with gains being more common than losses. In 75% of the cases there was at least one change common to both PBT and SLN. The most frequent changes detected in both lesions were gains of 1pter-->p32, 16, 17, 19, and 20 and losses of 6q13-->q23 and 13q13-->q32. In the PBT group, alterations on chromosomes 1, 16, and 20 were the most frequent, whereas chromosomes 1, 6, and 19 were the ones with the highest number of changes in the SLN metastatic group. A positive correlation was found between the DNA copy number changes per chromosome in each of the groups. Our findings indicate the presence of significant DNA copy number changes in the SLN metastatic lesions that could be used in the future as additional markers to improve the predictive value of SLN biopsy procedure.  相似文献   

12.
Most neuroblastoma cells have chromosomal aberrations such as gains, losses, amplifications and deletions of DNA. Conventional approaches like fluorescence in situ hybridization (FISH) or metaphase comparative genomic hybridization (CGH) can detect chromosomal aberrations, but their resolution is low. In this study we used array-based comparative genomic hybridization to identify the chromosomal aberrations in human neuroblastoma SH-SY5Y cells. The DNA microarray consisting of 4000 bacterial artificial chromosome (BAC) clones was able to detect chromosomal regions with aberrations. The SH-SY5Y cells showed chromosomal gains in 1q12 approximately q44 (Chr1:142188905-246084832), 7 (over the whole chromosome), 2p25.3 approximately p16.3 (Chr2:18179-47899074), and 17q 21.32 approximately q25.3 (Chr17:42153031-78607159), while chromosomal losses detected were the distal deletion of 1p36.33 (Chr1:552910-563807), 14q21.1 approximately q21.3 (Chr14:37666271- 47282550), and 22q13.1 approximately q13.2 (Chr22:36885764-4190 7123). Except for the gain in 17q21 and the loss in 1p36, the other regions of gain or loss in SH-SY5Y cells were newly identified.  相似文献   

13.
Endometriosis is characterized by infertility and pelvic pain in 10-15% of women of reproductive age. The genetic events involved in endometriotic cell expansion remain in large part unknown. To identify genomic changes involved in development of this disease, we examined a panel of 18 selected endometriotic tissues by comparative genomic hybridization (CGH), a molecular cytogenetic method that allows screening of the entire genome for chromosomal gains and/or losses. The study was performed on native, nonamplified DNA extracted from manually dissected endometriotic lesions. Recurrent copy number losses on several chromosomes were detected in 15 of 18 cases. Loss of chromosome 1p and 22q were detected in 50% of the cases. Additional common losses occurred on chromosomes 5p (33%), 6q (27%), 7p(22%), 9q (22%), 16 (22%) as well as on 17q in one case. Gain of DNA sequences were seen at 6q, 7q and 17q in three cases. To validate the CGH data, selective dual-color FISH was performed using probes for the deleted regions on chromosomes 1, 7 and 22 in parallel with the corresponding centromeric probes. Cases showing deletion by CGH all had two signals at 1p36, 7p22.1 and 22q12 in less than 30% of the nuclei in comparison to the double centromeric labels found in more than 85% of the cells. These findings indicate that genes localized to previously undescribed chromosomal regions play a role in development and progression of endometriosis.  相似文献   

14.
Characteristic genetic changes underlying the metastatic progression of malignant melanoma is incompletely understood. The goal of our study was to explore specific chromosomal alterations associated with the aggressive behavior of this neoplasm. Comparative genomic hybridization was performed to screen and compare genomic imbalances present in primary and metastatic melanomas. Sixteen primary and 12 metastatic specimens were analyzed. We found that the pattern of chromosomal aberrations is similar in the two subgroups; however, alterations present only in primary and/or metastatic tumors were also discovered. The mean number of genetic changes was 6.3 (range 1-14) in primary and 7.8 (range 1-16) in metastatic lesions. Frequent losses involved 9p and 10q, whereas gains most often occurred at 1q, 6p, 7q, and 8q. Distinct, high-level amplifications were mapped to 1p12-p21 and 1p22-p31 in both tumor types. Amplification of 4q12-q13.1, 7q21.3-qter and 8q23-qter were detected only in primary tumors. The 20q13-qter amplicon was present in a metastatic tumor. The number of genetic alterations were significantly higher in primary tumors which developed metastases within one year after the surgery compared to tumors without metastasis during this time period. Fluorescence in situ hybridization with centromeric and locus-specific probes was applied to validate CGH results on a subset of tumors. Comparison of FISH and CGH data gave good correlation. The aggressive behavior of melanoma is associated with accumulation of multiple genetic alterations. Chromosome regions, which differ in the primary and metastatic lesions, may represent potential targets to identify metastases-related chromosomal alterations.  相似文献   

15.
This review summarizes the chromosomal changes detected by molecular cytogenetic approaches in esophageal squamous cell carcinoma (ESCC), the ninth most common malignancy in the world. Whole genome analyses of ESCC cell lines and tumors indicated that the most frequent genomic gains occurred at 1, 2q, 3q, 5p, 6p, 7, 8q, 9q, 11q, 12p, 14q, 15q, 16, 17, 18p, 19q, 20q, 22q and X, with focal amplifications at 1q32, 2p16-22, 3q25-28, 5p13-15.3, 7p12-22, 7q21-22, 8q23-24.2, 9q34, 10q21, 11p11.2, 11q13, 13q32, 14q13-14, 14q21, 14q31-32, 15q22-26, 17p11.2, 18p11.2-11.3 and 20p11.2. Recurrent losses involved 3p, 4, 5q, 6q, 7q, 8p, 9, 10p, 12p, 13, 14p, 15p, 18, 19p, 20, 22, Xp and Y. Gains at 5p and 7q, and deletions at 4p, 9p, and 11q were significant prognostic factors for patients with ESCC. Gains at 6p and 20p, and losses at 10p and 10q were the most significant imbalances, both in primary carcinoma and in metastases, which suggested that these regions may harbor oncogenes and tumor suppressor genes. Gains at 12p and losses at 3p may be associated with poor relapse-free survival. The clinical applicability of these changes as markers for the diagnosis and prognosis of ESCC, or as molecular targets for personalized therapy should be evaluated.  相似文献   

16.
Although recurrent chromosomal alterations occur in chronic lymphocytic leukemia (CLL), relatively few affected tumor suppressors and oncogenes have been implicated. To improve genetic characterization of CLL, we performed high-resolution gene copy number analysis of 20 CLL patients using oligonucleotide array comparative genomic hybridization (aCGH). The most recurrent losses were observed in 13q and 11q with variable sizes. The 11q losses varied between 7.44 Mb and 41.72 Mb in size and targeted ATM among others. Lost regions in 13q were generally smaller, spanning from 0.79 Mb to 29.33 Mb. The minimal common region (158 kb) in 13q14.3, which was also homozygously deleted in some cases, harbored five genes: TRIM13, KCNRG, DLEU2, DLEU1, and FAM10A4. Additionally, two micro-RNA genes (MIRN15A and MIRN16-1) locate to the region. New cryptic losses were detected in 1q23.2-->q23.3, 3p21.31, 16pter-->p13.3, 17p13.3-->p13.2, 17q25.3-->qter, and 22q11.22. In conclusion, our oligonucleotide aCGH study revealed novel aberrations and provided detailed genomic profiles of the altered regions.  相似文献   

17.
We analyzed a cohort of 61 follicular lymphomas (FL) with an abnormal G-banded karyotype by spectral karyotyping (SKY) to better define the chromosome instability associated with the t(14;18)(q32;q21) positive and negative subsets of FL and histologic grade. In more than 70% of the patients, SKY provided additional cytogenetic information and up to 40% of the structural abnormalities were revised. The six most frequent breakpoints in both SKY and G-banding analyses were 14q32, 18q21, 3q27, 1q11-q21, 6q11-q15 and 1p36 (15-77%). SKY detected nine additional sites (1p11-p13, 2p11-p13, 6q21, 8q24, 6q21, 9p13, 10q22-q24, 12q11-q13 and 17q11-q21) at an incidence of >10%. In addition to the known recurring translocations, t(14;18)(q32;q21) [70%], t(3;14)(q27;q32) [10%], t(1;14)(q21;q32) [5%] and t(8;14)(q24;q32) [2%] and their variants, 125 non-IG gene translocations were identified of which four were recurrent within this series. In contrast to G-banding analysis, SKY revealed a greater degree of karyotypic instability in the t(14;18) (q32;q21) negative subset compared to the t(14;18)(q32;q21) positive subset. Translocations of 3q27 and gains of chromosome 1 were significantly more frequent in the former subset. SKY also allowed a better definition of chromosomal imbalances, thus 37% of the deletions detected by G-banding were shown to be unbalanced translocations leading to gain of genetic material. The majority of recurring (>10%) imbalances were detected at a greater (2-3 fold) incidence by SKY and several regions were narrowed down, notably at gain 2p13-p21, 2q11-q21, 2q31-q37, 12q12-q15, 17q21-q25 and 18q21. Chromosomal abnormalities among the different histologic grades were consistent with an evolution from low to high grade disease and breaks at 6q11-q15 and 8q24 and gain of 7/7q and 8/8q associated significantly with histologic progression. This study also indicates that in addition to gains and losses, non-IG gene translocations involving 1p11-p13, 1p36, 1q11-q21, 8q24, 9p13, and 17q11-q21 play an important role in the histologic progression of FL with t(14;18)(q32;q21) and t(3q27).  相似文献   

18.
Breast cancer is a widespread disease in Japan and across the world. Breast cancer cells, as well as most other types of cancer cells, have diverse chromosomal aberrations. Clarifying the character of these chromosomal aberrations should contribute to the development of more suitable therapies, along with the predictions of metastasis and prognosis. Twenty-four breast cancer cell lines were analyzed by bacterial artificial chromosome (BAC) array comparative genomic hybridization (CGH). The array slide contained duplicate spots of 4030 BAC clone DNAs covering the entire human genome with 1 Mbp resolution. In all 24 breast cancer cell lines, frequent and significant amplifications as well as deletions were detected by BAC array CGH. Common DNA copy number gains, detected in 60% (above 15 cell lines) of the 24 breast cancer cell lines were found in 76 BAC clones, located at 1q, 5p, 8q, 9p, 16p, 17q, and 20q. Moreover, common DNA copy number loss was detected in 136 BAC clones, located at 1q, 2q, 3p, 4p, 6q, 8p, 9p, 11p, 13q, 17p, 18q, 19p, Xp, and Xq. The DNA copy number abnormalities found included abnormality of the well-known oncogene cMYC (8q24.21); however, most of them were not reported to relate to breast cancer. BAC array CGH has great potential to detect DNA copy number abnormalities, and has revealed that breast cancer cell lines have substantial heterogeneity.  相似文献   

19.
In order to explore whether specific cytogenetic abnormalities can be used to stratify tumors with a distinctly different clinical course, we performed comparative genomic hybridization (CGH) of tumors from patients who were diagnosed with metastatic disease after an interval of less than 2 years or who remained free from distant metastases for more than 10 years. All patients presented with distant metastases after mastectomy indicating that none of the patients in this study was cured and free of remaining tumor cells. Tumors in the group of short-term survivors showed a higher average number of chromosomal copy alterations compared to the long-term survivors. Of note, the number of sub-chromosomal high-level copy number increases (amplifications) was significantly increased in the group of short-term survivors. In both short- and long-term survivors recurrent chromosomal gains were mapped to chromosomes 1q, 4q, 8q, and 5p. Copy number changes that were more frequent in the group of short-term survivors included gains of chromosome 3q, 9p, 11p and 11q and loss of 17p. Our results indicate that low- and high grade malignant breast adenocarcinomas are characterized by a specific pattern of chromosomal copy number changes. Furthermore, immunohistochemical evaluation of the expression levels of Ki-67, p27KIP1, p21WAF1, p53, cyclin A and cyclin E revealed a correlation between increased proliferative activity and poor outcome.  相似文献   

20.
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract. Current criteria for the diagnosis of malignant GISTs do not always reliably predict patient outcomes. In order to search for genetic markers with prognostic potential, chromosomal imbalance aberrations (CIAs) were analyzed in 28 subjects with GIST using comparative genomic hybridization and correlated with clinicopathological features. Except for a small rectal tumor, CIAs were identified in all GISTs, including 14 from the stomach, 11 from the small intestine, 1 from the esophagus, and 1 from the rectum. Losses were more common than gains. The median number of CIAs in high-risk GISTs was significantly higher than that in low-risk GISTs (5.60±2.59 vs. 3.38±2.55; p<0.05), especially for losses (4.60±1.84 vs. 2.63±2.13; p<0.01). Loss of 14q was the most common CIA in both low-risk and high-risk GISTs, and can be regarded as an early event of GIST development. Losses of 1p and 15q were also very common, often coexisting, and were slightly more frequent in high-risk GISTs than in low-risk GISTs. Other recurrent CIAs, including losses of 10q, 13q, 15q, 18q, and 22q and gains of 5p, 12q, 17q, and 20q were relatively less common in this series. Among these CIAs, losses of 13q, 10q (with minimal overlapping on q11–q22), and 22q were most likely the chromosomal loci potentially harboring the tumor suppressor gene(s) which may be related to early recurrence and/or metastasis during malignant transformation of GISTs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号