首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trypsin-mediated trypsinogen activation (autoactivation) facilitates digestive zymogen activation in the duodenum but may precipitate pancreatitis if it occurs prematurely in the pancreas. Autoactivation of human cationic trypsinogen is inhibited by a repulsive electrostatic interaction between the unique Asp218 on the surface of cationic trypsin and the conserved tetra-aspartate (Asp19-22) motif in the trypsinogen activation peptide (Nemoda, Z., and Sahin-Tóth, M. (2005) J. Biol. Chem. 280, 29645-29652). Here we describe that this interaction is regulated by chymotrypsin C (caldecrin), which can specifically cleave the Phe18-Asp19 peptide bond in the trypsinogen activation peptide and remove the N-terminal tripeptide. In contrast, chymotrypsin B, elastase 2A, or elastase 3A (proteinase E) are ineffective. Autoactivation of N-terminally truncated cationic trypsinogen is stimulated approximately 3-fold, and this effect is dependent on the presence of Asp218. Because chymotrypsinogen C is activated by trypsin, and chymotrypsin C stimulates trypsinogen activation, these reactions establish a positive feedback mechanism in the digestive enzyme cascade of humans. Furthermore, inappropriate activation of chymotrypsinogen C in the pancreas may contribute to the development of pancreatitis. Consistent with this notion, the pancreatitis-associated mutation A16V in cationic trypsinogen increases the rate of chymotrypsin C-mediated processing of the activation peptide 4-fold and causes accelerated trypsinogen activation in vitro.  相似文献   

2.
Evolution of trypsinogen activation peptides   总被引:2,自引:0,他引:2  
The activation peptide of mammalian trypsinogens contains a highly conserved tetra-aspartate sequence (D19-D20-D21-D22) preceding the K23-I24 scissile peptide bond, which is hydrolyzed as the first step in the activation process. Here, we examined the evolution and function of trypsinogen activation peptides through integrating functional characterization of disease-associated mutations with comparative genomic analysis. Activation properties of three chronic pancreatitis-associated activation peptide mutants (the novel D19A and the previously reported D22G and K23R) were simultaneously analyzed, for the first time, in the context of recombinant human cationic trypsinogen. A dramatic increase in autoactivation of cationic trypsinogen was observed in all three mutants, with D22G and K23R exhibiting the most marked increases. The physiological activator enteropeptidase activated the D19A mutant normally, activated the D22G mutant very poorly, and stimulated activation of the K23R mutant. The biochemical and structural data, taken together with a comprehensive sequence comparison, indicates that the tetra-aspartate sequence in mammalian trypsinogen activation peptides has evolved not only for optimal enteropeptidase recognition in the duodenum but also for efficient inhibition of trypsinogen autoactivation within the pancreas. Moreover, the use of lysine instead of arginine at the P1 position of activation peptides also has an advantageous effect against trypsinogen autoactivation. Finally, fixed substitutions in the key residues of the trypsinogen activation peptide may suggest the evolution of new functions unrelated to digestion, as found in the group III trypsinogens of cold-adapted fishes.  相似文献   

3.
M Rovery 《Biochimie》1988,70(9):1131-1135
In the 1950's, the specific cleavages of the peptide bonds occurring in bovine cationic chymotrypsinogen and trypsinogen were among the first examples of limited proteolyses. According to the split bond(s), the precursor is transformed into enzyme or different forms of zymogen or again into inert protein. The conversion of trypsinogen into trypsin triggers the activations of all the other enzyme precursors of pancreatic juice. In the pancreas, several factors oppose trypsinogen autoactivation, whereas, in the duodenum, all the conditions are favorable for trypsinogen activation by enteropeptidase.  相似文献   

4.
5.
Enteropeptidase is a membrane-bound serine protease that initiates the activation of pancreatic hydrolases by cleaving and activating trypsinogen. The enzyme is remarkably specific and cleaves after lysine residues of peptidyl substrates that resemble trypsinogen activation peptides such as Val-(Asp)4-Lys. To characterize the determinants of substrate specificity, we solved the crystal structure of the bovine enteropeptidase catalytic domain to 2.3 A resolution in complex with the inhibitor Val-(Asp)4-Lys-chloromethane. The catalytic mechanism and contacts with lysine at substrate position P1 are conserved with other trypsin-like serine proteases. However, the aspartyl residues at positions P2-P4 of the inhibitor interact with the enzyme surface mainly through salt bridges with the Nzeta atom of Lys99. Mutation of Lys99 to Ala, or acetylation with acetic anhydride, specifically prevented the cleavage of trypsinogen or Gly-(Asp)4-Lys-beta-naphthylamide and reduced the rate of inhibition by Val-(Asp)4-Lys-chloromethane 22 to 90-fold. For these reactions, Lys99 was calculated to account for 1.8 to 2.5 kcal mol(-1) of the free energy of transition state binding. Thus, a unique basic exosite on the enteropeptidase surface has evolved to facilitate the cleavage of its physiological substrate, trypsinogen.  相似文献   

6.
Enteropeptidase (synonym: enterokinase, EC 3.4.21.9) is a heterodimeric serine protease of the intestinal brush border that activates trypsinogen by highly specific cleavage of the trypsinogen activation peptide following the sequence (Asp)(4)-Lys. It has also great biotechnological interest because of the unique substrate specificity of the serine protease domain. The high degree of specificity exhibited by enteropeptidase makes it a suitable reagent for cleaving recombinant proteins to remove affinity or other tags. However often unwanted cleavages elsewhere in the protein occurred during cleavage of fusions when high amount of enzyme is required. In this study we have improved the efficiency of fusion proteins cleavage by enteropeptidase by substitution of the Lys residue by Arg in specific cleavage sequence (Asp)(4)-Lys. We have demonstrated that 3-6-fold lower amounts of the catalytic subunit of human and bovine enteropeptidase is required for 95% cleavage of Trx/TRAIL and Trx/FGF-2 fusions with (Asp)(4)-Arg cleavage sequence in comparison to native sequence (Asp)(4)-Lys. As a result, reduced amount of non-specifically cleaved peptide fragments were observed during cleavage of (Asp)(4)-Lys/Arg mutated fusions. These findings overcome limitations of enteropeptidase in tag removal processes during recombinant proteins purification and extend its commercial benefit in the biopharmaceutical industry.  相似文献   

7.
Human pancreatic secretions contain two major trypsinogen isoforms, cationic and anionic trypsinogen, normally at a ratio of 2 : 1. Pancreatitis, pancreatic cancer and chronic alcoholism lead to a characteristic reversal of the isoform ratio, and anionic trypsinogen becomes the predominant zymogen secreted. To understand the biochemical consequences of these alterations, we recombinantly expressed and purified both human trypsinogens and documented characteristics of autoactivation, autocatalytic degradation and Ca2+-dependence. Even though the two trypsinogens are approximately 90% identical in their primary structure, we found that human anionic trypsinogen and trypsin exhibited a significantly increased (10-20-fold) propensity for autocatalytic degradation, relative to cationic trypsinogen and trypsin. Furthermore, in contrast to the characteristic stimulation of the cationic proenzyme, acidic pH inhibited autoactivation of anionic trypsinogen. In mixtures of cationic and anionic trypsinogen, an increase in the proportion of the anionic proenzyme had no significant effect on the levels of trypsin generated by autoactivation or by enterokinase at pH 8.0 in 1 mm Ca2+- conditions that were characteristic of the pancreatic juice. In contrast, rates of trypsinogen activation were markedly reduced with increasing ratios of anionic trypsinogen under conditions that were typical of potential sites of pathological intra-acinar trypsinogen activation. Thus, at low Ca2+ concentrations at pH 8.0, selective degradation of anionic trypsinogen and trypsin caused diminished trypsin production; while at pH 5.0, inhibition of anionic trypsinogen activation resulted in lower trypsin yields. Taken together, the observations indicate that up-regulation of anionic trypsinogen in pancreatic diseases does not affect physiological trypsinogen activation, but significantly limits trypsin generation under potential pathological conditions.  相似文献   

8.
Mutations in human cationic trypsinogen (PRSS1) cause autosomal dominant hereditary pancreatitis. Increased intrapancreatic autoactivation of trypsinogen mutants has been hypothesized to initiate the disease. Autoactivation of cationic trypsinogen is proteolytically regulated by chymotrypsin C (CTRC), which mitigates the development of trypsin activity by promoting degradation of both trypsinogen and trypsin. Paradoxically, CTRC also increases the rate of autoactivation by processing the trypsinogen activation peptide to a shorter form. The aim of this study was to investigate the effect of CTRC on the autoactivation of clinically relevant trypsinogen mutants. We found that in the presence of CTRC, trypsinogen mutants associated with classic hereditary pancreatitis (N29I, N29T, V39A, R122C, and R122H) autoactivated at increased rates and reached markedly higher active trypsin levels compared with wild-type cationic trypsinogen. The A16V mutant, known for its variable disease penetrance, exhibited a smaller increase in autoactivation. The mechanistic basis of increased activation was mutation-specific and involved resistance to degradation (N29I, N29T, V39A, R122C, and R122H) and/or increased N-terminal processing by CTRC (A16V and N29I). These observations indicate that hereditary pancreatitis is caused by CTRC-dependent dysregulation of cationic trypsinogen autoactivation, which results in elevated trypsin levels in the pancreas.  相似文献   

9.
Enteropeptidase (synonym:enterokinase, EC 3.4.21.9) is a heterodimeric serine protease of the intestinal brush border that activates trypsinogen by highly specific cleavage of the trypsinogen activation peptide following the sequence (Asp)(4)-Lys. The DNA sequence encoding the light chain (catalytic subunit) of human enteropeptidase (GenBank Accession No. U09860) was synthesized from 26 oligonucleotides by polymerase chain reaction and cloned into plasmid pET-32a downstream to the gene of fusion partner thioredoxin immediately after the DNA sequence encoding enteropeptidase recognition site. The fusion protein thioredoxin/human enteropeptidase light chain was expressed in Escherichia coli BL21(DE3) strain in both soluble and insoluble forms. The soluble recombinant fusion protein failed to undergo autocatalytic cleavage and activation; however, autocatalytic cleavage and activation of recombinant human enteropeptidase light chain (L-HEP) were achieved by solubilization and renaturation of the fusion protein from inclusion bodies and the active L-HEP was purified on agarose-linked soybean trypsin inhibitor. The purified L-HEP cleaved the synthetic peptide substrate Gly-Asp-Asp-Asp-Asp-Lys-beta-naphthylamide with kinetic parameters K(m)=0.16 mM and k(cat)=115 s(-1) and small ester Z-Lys-SBzl with K(m)=140 microM, k(cat)=133 s(-1). L-HEP associated with soybean trypsin inhibitor slowly and small ester Z-Lys-SBzl cleavage was inhibited with K(i)(*)=2.3 nM. L-HEP digested thioredoxin/human epidermal growth factor fusion protein five times faster than equal activity units of bovine recombinant light chain (EKMax, Invitrogen) at the same conditions.  相似文献   

10.
Chymotrypsin C (CTRC) is a proteolytic regulator of trypsinogen autoactivation in humans. CTRC cleavage of the trypsinogen activation peptide stimulates autoactivation, whereas cleavage of the calcium binding loop promotes trypsinogen degradation. Trypsinogen mutations that alter these regulatory cleavages lead to increased intrapancreatic trypsinogen activation and cause hereditary pancreatitis. The aim of this study was to characterize the regulation of autoactivation of mouse trypsinogens by mouse Ctrc. We found that the mouse pancreas expresses four trypsinogen isoforms to high levels, T7, T8, T9, and T20. Only the T7 activation peptide was cleaved by mouse Ctrc, causing negligible stimulation of autoactivation. Surprisingly, mouse Ctrc poorly cleaved the calcium binding loop in all mouse trypsinogens. In contrast, mouse Ctrc readily cleaved the Phe-150–Gly-151 peptide bond in the autolysis loop of T8 and T9 and inhibited autoactivation. Mouse chymotrypsin B also cleaved the same peptide bond but was 7-fold slower. T7 was less sensitive to chymotryptic regulation, which involved slow cleavage of the Leu-149–Ser-150 peptide bond in the autolysis loop. Modeling indicated steric proximity of the autolysis loop and the activation peptide in trypsinogen, suggesting the cleaved autolysis loop may directly interfere with activation. We conclude that autoactivation of mouse trypsinogens is under the control of mouse Ctrc with some notable differences from the human situation. Thus, cleavage of the trypsinogen activation peptide or the calcium binding loop by Ctrc is unimportant. Instead, inhibition of autoactivation via cleavage of the autolysis loop is the dominant mechanism that can mitigate intrapancreatic trypsinogen activation.  相似文献   

11.
The crystal structure of human pancreatic cationic trypsin showed the chemical modification of Tyr154, which was originally described as phosphorylation [Gaboriaud C, Serre L, Guy-Crotte O, Forest E & Fontecilla-Camps JC (1996) J Mol Biol259, 995-1010]. Here we report that Tyr154 is sulfated, not phosphorylated. Cationic and anionic trypsinogens were purified from human pancreatic juice and subjected to alkaline hydrolysis. Modified tyrosine amino acids were separated on a Dowex cation-exchange column and analyzed by thin layer chromatography. Both human cationic and anionic trypsinogens contained tyrosine sulfate, but no tyrosine phosphate, whereas bovine trypsinogen contained neither. Furthermore, incorporation of [(35)S]SO(4) into human cationic trypsinogen transiently expressed by human embryonic kidney 239T cells was demonstrated. Mutation of Tyr154 to Phe abolished radioactive sulfate incorporation, confirming that Tyr154 is the site of sulfation in cationic trypsinogen. Sulfated pancreatic cationic trypsinogen exhibited faster autoactivation than a nonsulfated recombinant form, suggesting that tyrosine sulfation of trypsinogens might enhance intestinal digestive zymogen activation in humans. Finally, sequence alignment revealed that the sulfation motif is only conserved in primate trypsinogens, suggesting that typsinogen sulfation is absent in other vertebrates.  相似文献   

12.
Since the identification in 1996 of a "gain of function" missense mutation, R122H, in the cationic trypsinogen gene (PRSS1) as a cause of hereditary pancreatitis, continued screening of this gene in both hereditary and sporadic pancreatitis has found more disease-associated missense mutations than expected. In addition, functional analysis has yielded interesting findings regarding their underlying mechanisms resulting in a gain of trypsin. A critical review of these data, in the context of the complicated biogenesis and complex autoactivation and autolysis of trypsin(ogen), highlights that PRSS1 mutations cause the disease by various mechanisms depending on which biochemical process they affect. The discovery of these mutations also modifies the classical perception of the disease and, more importantly, reveals fascinating new aspects of the molecular evolution and normal physiology of trypsinogen. First, activation peptide of trypsinogen is under strong selection pressure to minimize autoactivation in higher vertebrates. Second, the R122 primary autolysis site has further evolved in mammalian trypsinogens. Third, evolutionary divergence from threonine to asparagine at residue 29 in human cationic trypsinogen provides additional advantage. Accordingly, we tentatively assign, in human cationic trypsinogen, the strongly selected activation peptide as the first-line and the R122 autolysis site as the second-line of the built-in defensive mechanisms against premature trypsin activation within the pancreas, respectively, and the positively selected asparagine at residue 29 as an "amplifier" to the R122 "fail-safe" mechanism.  相似文献   

13.
Human pancreatic trypsinogens undergo post-translational sulfation on Tyr(154), catalysed by the Golgi-resident enzyme tyrosylprotein sulfotransferase 2. Sequence alignments suggest that the sulfation of Tyr(154) is facilitated by a unique sequence context which is characteristically found in primate trypsinogens. In the search for genetic variants that might alter this sulfation motif, we identified a single nucleotide polymorphism (c.457G>C) in the PRSS2 (serine protease 2, human anionic trypsinogen) gene, which changed Asp(153) to a histidine residue (p.D153H). The p.D153H variant is common in subjects of African origin, with a minor allele frequency of 9.2%, whereas it is absent in subjects of European descent. We demonstrate that Asp(153) is the main determinant of tyrosine sulfation in anionic trypsinogen, as both the natural p.D153H variation and the p.D153N mutation result in a complete loss of trypsinogen sulfation. In contrast, mutation of Asp(156) and Glu(157) only slightly decrease tyrosine sulfation, whereas mutation of Gly(151) and Pro(155) has no effect. With respect to the biological relevance of the p.D153H variant, we found that tyrosine sulfation had no significant effect on the activation of anionic trypsinogen or the catalytic activity and inhibitor sensitivity of anionic trypsin. Taken together with previous studies, the observations of the present study suggest that the primary role of trypsinogen sulfation in humans is to stimulate autoactivation of PRSS1 (serine protease 1, human cationic trypsinogen), whereas the sulfation of anionic trypsinogen is unimportant for normal digestive physiology. As a result, the p.D153H polymorphism which eliminates this modification could become widespread in a healthy population.  相似文献   

14.
Human pancreatic cationic trypsinogen has been purified to homogenity from an acetone powder of pancreatic tissue. After an initial ion exchange chromatography step on sulfopropyl (SP)-Sephadex at pH 2.6, cationic trypsinogen was separated from the majority of trypsin activity by passage through an affinity column of lima bean trypsin inhibitor-agarose at high ionic strength. The zymogen was then further purified by affinity chromatography on the same material at low ionic strength. Highly purified trypsinogen was resolved from containing chymotrypsinogen by ion exchange chromatography on SP-Sephadex at pH 6.0. The purified zymogen was shown to be homogeneous by polyacrylamide gel electrophoresis at pH 2.1 and at pH 4.3 as well as by discontinuous sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The autoactivation of human trypsinogen was investigated at pH 5.6 and at pH 8.0. The rate of autoactivation of the human zymogen is rapid at pH 5.6 and is maximal in approximately 1 mM Ca2+. These results are in marked contrast to those previously reported for autoactivation of bovine trypsinogen, which is extremely slow at pH 5.6 and which shows a dependence on at least 50 mM Ca2+ for maximum rate of activation (MacDonald, M. R., AND Kunitz, M. (1941) J. Gen. Physiol. 25, 53-73).  相似文献   

15.
Comparative substrate analysis of full-length bovine enteropeptidase and trypsin, bovine and human enteropeptidase light chains was performed using model N-terminal dodecapeptides corresponding to wild-type human trypsinogen and pancreatitis-associated mutant trypsinogens K23R and D22G. The substitution of Lys residue by Arg at P1 leads to 2-fold increase in the efficiency of enteropeptidase hydrolysis; the absence of the negatively charged residue at P2 reduces the efficiency of such hydrolysis by two orders of magnitude. The difference in efficiency of peptide chain hydrolysis after Lys/Arg residues by enteropeptidase compared to trypsin is equal to the difference in hydrolysis by serine proteases of different primary specificity of their specific substrates.  相似文献   

16.
Hereditary pancreatitis (HP), an autosomal dominant disorder, has been associated with mutations in the cationic trypsinogen gene. Here we demonstrate that the two most frequent HP mutations, Arg117 --> His and Asn21 --> Ile, significantly enhance autoactivation of human cationic trypsinogen in vitro, in a manner that correlates with the severity of clinical symptoms in HP. In addition, mutation Arg117 --> His inhibits autocatalytic inactivation of trypsin, while mutation Asn21 --> Ile has no such effect. The findings strongly argue that increased trypsinogen activation in the pancreas is the common initiating step in both forms of HP, whereas trypsin stabilization might also contribute to HP associated with the Arg117 --> His mutation.  相似文献   

17.
Mutation Asn-21 --> Ile in human cationic trypsinogen (Tg-1) has been associated with hereditary pancreatitis. Recent studies with rat anionic Tg (Tg-2) indicated that the analogous Thr-21 --> Ile mutation stabilizes the zymogen against autoactivation, whereas it has no effect on catalytic properties or autolytic stability of trypsin (Sahin-Tóth, M. (1999) J. Biol. Chem. 274, 29699-29704). In the present paper, human cationic Tg (Asn-21-Tg) and mutants Asn-21 --> Ile (Ile-21-Tg) and Asn-21 --> Thr (Thr-21-Tg) were expressed in Escherichia coli, and zymogen activation, zymogen degradation, and trypsin autolysis were studied. Enterokinase activated Asn-21-Tg approximately 2-fold better than Ile-21-Tg or Thr-21-Tg, and catalytic parameters of trypsins were comparable. At 37 degrees C, in 5 mm Ca(2+), all three trypsins were highly stable. In the absence of Ca(2+), Asn-21- and Ile-21-trypsins suffered autolysis in an indistinguishable manner, whereas Thr-21-trypsin exhibited significantly increased stability. In sharp contrast to observations with the rat proenzyme, at pH 8.0, 37 degrees C, autoactivation kinetics of Asn-21-Tg and Ile-21-Tg were identical; however, at pH 5. 0, Ile-21-Tg autoactivated at an enhanced rate relative to Asn-21-Tg. Remarkably, at both pH values, Thr-21-Tg showed markedly higher autoactivation rates than the two other zymogens. Finally, autocatalytic proteolysis of human zymogens was limited to cleavage at Arg-117, and no digestion at Lys-188 was detected. The observations indicate that zymogen stabilization by Ile-21 as observed in rat Tg-2 is not characteristic of human Tg-1. Instead, an increased propensity to autoactivation under acidic conditions might be relevant to the pathomechanism of the Asn-21 --> Ile mutation in hereditary pancreatitis. In the same context, faster autoactivation and increased trypsin stability caused by the Asn-21 --> Thr mutation in human Tg-1 might provide a rationale for the evolutionary divergence from Thr-21 found in other mammalian trypsinogens.  相似文献   

18.
Bovine enterokinase (enteropeptidase) activates trypsinogen to trypsin at pH 8.0. In the presence of chicken ovomucoid, a stable complex of ovomucoid-trypsin is produced, inactivating trypsin and eliminating autoactivation of trypsinogen. The molecular size of trypsin (24,000 Da) is increased twofold on forming the ovomucoid-trypsin complex (52,000 Da). Size-exclusion chromatography on a Toya Soda TSK G2000SW column in an HPLC system and with computer-assisted analyses gives a direct quantitative determination of the amount of substrate (trypsinogen) and product (ovomucoid-trypsin). The rate of disappearance of substrate is equal to the rate of formation of product in agreement with kinetic theory. The simultaneous determination of both rates increases the reliability of the assay. The HPLC assay has an extended linear range for the velocity of the activation process as a function of enzyme concentration. The assay is reliable and accurate for highly purified preparations, samples at different steps in the purification scheme, and for a direct assay of the intestinal contents. The assay should be useful in clinical analyses.  相似文献   

19.
One of ostrich (Struthio camelus) trypsinogen genes was cloned from pancreatic cDNA. Its amino acid sequence compared to known trypsin sequences from other species shows high identity and suggests that it is a member of the phylogenetically anionic trypsinogen I subfamily. After cytoplasmic over expression in Escherichia coli and renaturation, the activation properties of ostrich trypsinogen were studied and compared to those of human trypsinogen 1 (also called as human cationic trypsinogen). Ostrich trypsinogen undergoes bovine enterokinase activation and autoactivation much faster than human trypsinogen 1 and exhibits on a synthetic substrate a somewhat higher enzymatic activity than the latter one. The most interesting property of ostrich trypsin is its relatively fast autolysis that can be explained via a mechanism different from the common mechanism for rat and human 1 trypsins. The latter proteases have a site, Arg117-Val118, where the autolysis starts and then goes on in a zipper-like fashion. This is absent from ostrich trypsin. Instead it has a couple of cleavage sites within regions 67-98, including two unusual ones, Arg76-Glu77 and Arg83-Ser84. These appear to be hydrolysed fast in a non-consecutive manner. Such an autolysis mechanism could not be inhibited by a single-site mutation which in humans is proposed to lead to pancreatitis.  相似文献   

20.
Escherichia coli inorganic pyrophosphatase (E-PPase) is a homohexamer formed from two trimers related by a two-fold axis. The residue Asp26 participates in intertrimeric contacts. Kinetics of MgPPi hydrolysis by a mutant Asp26Ala E-PPase is found to not obey Michaelis-Menten equation but can be described within the scheme of activation of hydrolysis by a free PPi binding at an effectory subsite. Existence of such a subsite is confirmed by the finding that the free form of methylenediphosphonate activates MgPPi hydrolysis though its magnesium complex is a competitive inhibitor. The Asp26Ala variant is the first example of hexameric E-PPase demonstrated to have an activatory subsite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号