首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary The presence of a coupled Na+/Ca2+ exchange system has been demonstrated in plasma membrane vesicles from rat pancreatic acinar cells. Na+/Ca2+ exchange was investigated by measuring45Ca2+ uptake and45Ca2+ efflux in the presence of sodium gradients and at different electrical potential differences across the membrane (=) in the presence of sodium. Plasma membranes were prepared by a MgCl2 precipitation method and characterized by marker enzyme distribution. When compared to the total homogenate, the typical marker for the plasma membrane, (Na++K+)-ATPase was enriched by 23-fold. Markers for the endoplasmic reticulum, such as RNA and NADPH cytochromec reductase, as well as for mitochondria, the cytochromec oxidase, were reduced by twofold, threefold and 10-fold, respectively. For the Na+/Ca2+ countertransport system, the Ca2+ uptake after 1 min of incubation was half-maximal at 0.62 mol/liter Ca2+ and at 20 mmol/liter Na+ concentration and maximal at 10 mol/liter Ca2+ and 150 mmol/liter Na+ concentration, respecitively. When Na+ was replaced by Li+, maximal Ca2+ uptake was 75% as compared to that in the presence of Na+. Amiloride (10–3 mol/liter) at 200 mmol/liter Na+ did not inhibit Na+/Ca2+ countertransport, whereas at low Na+ concentration (25 mmol/liter) amiloride exhibited dose-dependent inhibition to be 62% at 10–2 mol/liter. CFCCP (10–5 mol/liter) did not influence Na+/Ca2+ countertransport. Monensin inhibited dose dependently; at a concentration of 5×10–6 mol/liter inhibition was 80%. A SCN or K+ diffusion potential (=), being positive at the vesicle inside, stimulated calcium uptake in the presence of sodium suggesting that Na+/Ca2+ countertransport operates electrogenically, i.e. with a stoichiometry higher than 2 Na+ for 1 Ca2+. In the absence of Na+, did not promote Ca2+ uptake. We conclude that in addition to ATP-dependent Ca2+ outward transport as characterized previously (E. Bayerdörffer, L. Eckhardt, W. Haase & 1. Schulz, 1985,J. Membrane Biol. 84:45–60) the Na+/Ca2+ countertransport system, as characterized in this study, represents a second transport system for the extrusion of calcium from the cell. Furthermore, the high affinity for calcium suggests that this system might participate in the regulation of the cytosolic free Ca2+ level.  相似文献   

2.
Summary The ATP-dependent Ca2+ transport activity (T. Takuma, B.L. Kuyatt and B.J. Baum,Biochem. J. 227:239–245, 1985) exhibited by inverted basolateral membrane vesicles isolated from rat parotid gland was further characterized. The activity was dependent on Mg2+. Phosphate (5mm), but not oxalate (5mm), increased maximum Ca2+ accumulation by 50%. Half-maximal Ca2+ transport was achieved at 70nm Ca2+ in EGTA-buffered medium while maximal activity required >1 m Ca2+ (V max=54 nmol/mg protein/min). Optimal rates of Ca2+ transport were obtained in the presence of KCl, while in a KCl-free medium (mannitol or sucrose) 40% of the total activity was achieved, which could not be stimulated by FCCP. The initial rate of Ca2+ transport could be significantly altered by preimposed membrane potentials generated by K+ gradients in the presence of valinomycin. Compared to the transport rate in the absence of membrane potential, a negative (interior) potential stimulated uptake by 30%, while a positive (interior) potential inhibited uptake. Initial rates of Ca2+ uptake could also be altered by imposing pH gradients, in the absence of KCl. When compared to the initial rate of Ca2+ transport in the absence of a pH gradient, pH i =7.5/pH o =7.5; the activity was 60% higher in the presence of an outwardly directed pH gradient, pH i =7.5/pH o =8.5; while it was 80% lower when an inwardly directed pH gradient was imposed, pH i =7.5/pH o =6.2. The data show that the ATP-dependent Ca2+ transport in BLMV can be modulated by the membrane potential, suggesting therefore that there is a transfer of charge into the vesicle during Ca2+ uptake, which could be compensated by other ion movements.  相似文献   

3.
Summary ATP-dependent Ca2+ uptake into isolated pancreatic acinar cells with permeabilized plasma membranes, as well as into isolated endoplasmic reticulum prepared from these cells, was measured using a Ca2+-specific electrode and45Ca2+. Endoplasmic reticulum was purified on an isopycnic Percoll gradient and characterized by marker enzyme distribution. When compared to the total homogenate, the typical marker for the rough endoplasmic reticulum RNA was enriched threefold and the typical marker for the plasma membrane Na+,K+(Mg2+)ATPase was decreased 20-fold. When different fractions of the Percoll gradient were compared,45Ca2+ uptake correlated with the RNA content and not with the Na+,K+(Mg2+)ATPase activity. The characteristics of nonmitochondrial Ca2+ uptake into leaky isolated cells and45Ca2+ uptake into isolated endoplasmic reticulum were very similar: Calcium uptake was maximal at 0.3 and 0.2 mmol/liter free Mg2+, at 1 and 1 mmol/liter ATP, at pH 6.0 and 6.5, and free Ca2+ concentration of 2 and 2 mol/liter, respectively. Calcium uptake decreased at higher free Ca2+ concentration.45Ca2+ uptake was dependent on monovalent cations (Rb+>K+>Na+>Li+>choline+) and different anions (Cl>Br>SO 4 2– >NO 3 >I>cyclamate>SCN) in both preparations. Twenty mmol/liter oxalate enhanced45Ca2+ uptake in permeabilized cells 10-fold and in vesicles of endoplasmic reticulum, fivefold. Calcium oxalate precipitates in the endoplasmic reticulum of both preparations could be demonstrated by electron microscopy. The nonmitochondrial Ca2+ pool in permeabilized cells characterized in this study has been previously shown to regulate the cytosolic free Ca2+ concentration to 0.4 mol/liter. Our results provide firm evidence that the endoplasmic reticulum plays an important role in the regulation of the cytosolic free Ca2+ concentration in pancreatic acinar cells.  相似文献   

4.
Summary 45Ca fluxes and free-cytosolic Ca2+ ([Ca2+] i ) measurements were used to study the effect of Ca2+-mobilizing hormones on plasma membrane Ca2+ permeability and the plasma membrane Ca2+ pump of pancreatic acinar cells. We showed before (Pandol, S.J., et al., 1987.J. Biol. Chem. 262:16963–16968) that hormone stimulation of pancreatic acinar cells activated a plasma membrane Ca2+ entry pathway, which remains activated for as long as the intracellular stores are not loaded with Ca2+. In the present study, we show that activation of this pathway increases the plasma membrane Ca2+ permeability by approximately sevenfold. Despite that, the cells reduce [Ca2+]i back to near resting levels. To compensate for the increased plasma membrane Ca2+ permeability, a plasma membrane Ca2+ efflux mechanism is also activated by the hormones. This mechanism is likely to be the plasma membrane Ca2+ pump. Activation of the plasma membrane Ca2+ pump by the hormones is time dependent and 1.5–2 min of cell stimulation are required for maximal Ca2+ pump activation. From the effect of protein kinase inhibitors on hormone-mediated activation of the pump and the effect of the phorbol ester 12-0-tetradecanoyl phorbol, 13-acetate (TPA) on plasma membrane Ca+ efflux, it is suggested that stimulation of protein kinase C is required for the hormone-dependent activation of the plasma membrane Ca2+ pump.  相似文献   

5.
Summary Electrical currents associated with sodium-coupled alanine transport in mouse pancreatic acinar cells were studied using the method of whole-cell recording with patch pipettes. Single cells or small clusters of (electrically coupled) cells were isolated by collagenase treatment. The composition of the intracellular solution could be controlled by internal perfusion of the patch pipette. In this way both inward and outward currents could be measured under zero-trans conditions, i.e., with finite concentrations of sodium andl-alanine on one side and zero concentrations on the other. Inward andoutward currents for equal but opposite concentration gradients were found to be of similar magnitude, meaning that the cotransporter is functionally nearly symmetric. The dependence of current on the concentrations of sodium andl-alanine exhibited a Michaelis-Menten behavior. From the sodium-concentration dependence of current as well as from the reversal potential of the current in the presence of an alanine-concentration, gradient, a sodium/alanine stoichiometric ratio of 1:1 can be inferred. The finding that N-methylated amino acids may substitute, forl-alanine, as well as the observed pH dependence of currents indicate that the pancreatic alanine transport system is similar to (or identical with) the A-system which is widespread in animal cells. The transport system is tightly coupled with respect to Na+; alanine-coupled inward flow of Na+ is at least 30 times higher than uncoupled Na+ flow mediated by the cotransporter. The current-voltage characteristic of the cotransporter could be (approximately) determined from the difference of transmembrane current in the presence and in the absence ofl-alanine. The sodium-concentration dependence of the current-voltage characteristic indicates that a Na+ ion approaching the binding site from the extracellular medium has to cross part of the transmembrane electric field.  相似文献   

6.
Summary The Ca2+-activated nonselective cation channel in mouse pancreatic acini has been studied with the help of patch-clamp single-channel current recording in both the cell-attached conformation and in excised inside-out membrane patches. In intact resting mouse pancreatic acinar cells no unitary activity was observed. Adding saponin to the bath solution to disrupt the plasma membrane (apart from the isolated patch membrane from which current recording was made) evoked unitary inward current steps when the free ionized Ca2+ concentration in the bath ([Ca2+] i ) was 5×10–8 m or above. When an electrically isolated patch membrane was excised and the internal aspects of the plasma membrane were exposed to the bath solution, channel activation could be obtained when [Ca2+] i was 10–7 m or above. However, with the passage of time the total inward current declined and about 1 min after excision no unitary current steps could be observed. At this stage Ca2+ in micromolar concentration was needed to open the channels and several hundred micromoles of Ca2+ per liter were required for maximal channel activation. Our results indicate that the Ca2+-activated nonselective cation channel is more sensitive to internal Ca2+ than hitherto understood and that it may therefore play a role under physiological conditions in intact cells.  相似文献   

7.
The aim of this study was to quantify the glucose modulation of the plasma membrane calcium pump (PMCA) function in rat pancreatic islets. Ca2+-ATPase activity and levels of phosphorylated PMCA intermediates both transiently declined to a minimum in response to stimulation by glucose. Strictly dependent on Ca2+ concentration, this inhibitory effect was fully expressed at physiological concentrations of the cation (less than 0.5 μM), then progressively diminished at higher concentrations. These results, together with those previously reported on the effects of insulin secretagogues and blockers on the activity, expression and cellular distribution of the PMCA, support the concept that the PMCA plays a key role in the regulation of Ca2+ signaling and insulin secretion in pancreatic islets.  相似文献   

8.
Cadmium inhibits plasma membrane calcium transport   总被引:6,自引:0,他引:6  
Summary The interaction of Cd2+ with the plasma membrane Ca2+-transporting ATPase of fish gills was studied. ATP-driven Ca2+-transport in basolateral membrane (BLM) vesicles was inhibited by Cd2+ with anI 50 value of 3.0nm at 0.25 m free Ca2+ using EGTA, HEEDTA and NTA to buffer Ca2+ and Cd2+ concentrations. The inhibition was competitive in nature since theK 0.5 value for Ca2+ increased linearly with increasing Cd2+ concentrations while theV max remained unchanged. The Ca2+ pump appeared to be calmodulin dependent, but we conclude that the inhibition by Cd2+ occurs directly on the Ca2+ binding site of the Ca2+-transporting ATPase and not via the Ca2+-binding sites of calmodulin. It is suggested that Cd2+-induced inhibition of Ca2+-transporting enzymes is the primary effect in the Cd2+ toxicity towards cells followed by several secondary effects due to a disturbed cellular Ca2+ metabolism. Our data illustrate that apparent stimulatory effects of low concentrations of Cd2+ on Ca2+-dependent enzymes may derive from increased free-Ca2+ levels when Cd2+ supersedes Ca2+ on the ligands.  相似文献   

9.
Rabbit pancreatic acinar cells, permeabilized by saponin treatment, rapidly accumulated 3.5 nmol of Ca2+/mg protein in an energy-dependent pool when incubated at an ambient free Ca2+ concentration of 100 nm. Maximal loading of the internal stores was reached at 10 min and remained unchanged thereafter. Complete inhibition of the Ca2+ pump with thapsigargin revealed that this plateau was the result of a steady-state between slow Ca2+ efflux and ATP-driven Ca2+ uptake. Sixty percent of the pool could be released by Ins(1,4,5)P3, whereas GTP released another twenty percent. The striking finding of this study is that the energy-dependent store could also be released by ruthenium red. Uptake experiments in the presence of ruthenium red revealed that the dye, at concentrations below 100 m, selectively reduced the size of the Ins(1,4,5)P3-releasable pool. Ruthenium red had no effect on the half-maximal stimulatory concentration of Ins(1,4,5)P3. At concentrations beyond 100 m, the dye also affected the GTP-releasable pool. Comparison with thapsigargin revealed that ruthenium red released Ca2+ from stores loaded to steady-state at a rate markedly faster than can be explained by inhibition of the ATPase alone. From the data presented, we concluded that ruthenium red selectively releases Ca2+ from the Ins(1,4,5)P3-sensitive store by activating a Ca2+ release channel, whereas Ca2+ release from the GTP-sensitive store is predominantly caused by inhibition of the Ca2+ pump. The postulated ruthenium red-sensitive Ca2+ release channel might be similar to the ryanodine-receptor in muscle.The research of Dr. P.H.G.M. Willems has been made possible by a fellowship of the Royal Netherlands Academy of Arts and Sciences.  相似文献   

10.
Conclusions While it is generally accepted that Ca2+ plays an important regulatory role in the physiology of a number of non-excitable cells, the mechanisms which regulate intracellular [Ca2+ are far from well established. Ca2+ transporting mechanisms which distribute Ca2+ intracellularly as well as those which allow influx of extracellular Ca2+ are involved in mediating intracellular Ca2+ homestasis. In this paper we have described recent studies on the regulation of the Ca2+ influx system in the data, it appears that the process of Ca2+ entry is extremely complex and may involve several levels of regulation. Understanding the molecular basis of these regulatory mechanisms presents a challeging problem for future studies.  相似文献   

11.
The present study aimed to clarify the existence of a Na+/Ca2+ antiport device in kidney tubular epithelial cells discussed in the literature to represent the predominant mechanistic device for Ca2+ reabsorption in the kidney. (1) Inside-out oriented plasma membrane vesicles from tubular epithelial cells of guinea-pig kidney showed an ATP-driven Ca2+ transport machinery similar to that known to reside in the plasma membrane of numerous cell types. It was not affected by digitalis compounds which otherwise are well-documented inhibitors of Ca2+ reabsorption. (2) The vesicle preparation contained high, digitalis-sensitive (Na++K+-ATPase activities indicating its origin from the basolateral portion of plasma membrane. (3) The operation of Na+/Ca2+ antiport device was excluded by the findings that steep Ca2+ gradients formed by ATP-dependent Ca2+ accumulation in the vesicles were not discharged by extravesicular Na+, and did not drive 45Ca2+ uptake into the vesicles via a Ca2+-45Ca2+ exchange. (4) The ATP-dependent Ca2+ uptake into the vesicles became increasingly depressed with time by extravesicular Na+. This was not due to an impairment of the Ca2+ pump itself, but caused by Na+/Ca2+ competition for binding sites on the intravesicular membrane surface shown to be important for high Ca2+ accumulation in the vesicles. (5) Earlier observations on Na+-induced release of Ca2+ from vesicles pre-equilibrated with Ca2+, seemingly favoring the existence of a Na+/Ca2+ antiporter in the basolateral plasma membrane, were likewise explained by the occurrence of Na+/Ca2+ competition for binding sites. The weight of our findings disfavors the transcellular pathway of Ca2+ reabsorption through tubule epithelium essentially depending on the operation of a Na+/Ca2+ antiport device.  相似文献   

12.
The effect of clozapine on the intracellular concentration of calcium ([Ca2+](i)) in rat submandibular acinar cells was tested. By itself clozapine had no effect on the mobilization of intracellular pools of calcium or on the uptake of extracellular calcium. It inhibited the increase of the [Ca2+](i) in response to carbachol (half-maximal inhibitory concentrations, IC(50)=100nM) and to norepinephrine and epinephrine (IC(50)=10nM) without affecting the response to substance P, extracellular ATP or thapsigargin. Clozapine inhibited the uptake of extracellular calcium in response to epinephrine but not to substance P, ATP or thapsigargin. It also decreased the production of inositol phosphates elicited by epinephrine but not by substance P or fluoride. It is concluded that, by itself, clozapine has no effect on the [Ca2+](i) in rat salivary acinar cells. It selectively inhibits muscarinic and adrenergic receptors in the acinar plasma membrane.  相似文献   

13.
The effect of viruses on plasma membrane function has been studied in two types of situation: (i) during the toxin-like action of paramyxoviruses when fusing with susceptible cells, and (ii) during an infectious cycle initiated by different viruses in various cell types. The nature of the permeability changes induced during the toxin-like action of viruses, and its modulation by extra-cellular Ca2+, are described: membrane potential collapses, intracellular ions and metabolites leak out of, and extracellular ions leak into cells, but lysis does not take place. The biological significance of such changes, and their relation to changes induced by other pore-forming agents, are discussed. Changes in membrane permeability such as those mentioned above have not been detected during infection of cultured cells by paramyxo (Sendai, measles, mumps), orthomyxo (influenza), rhabdo (vesicular stomatitis), toga (Semliki Forest) or herpes viruses. On the contrary, sugar uptake is increased when BHK cells are infected with vesicular stomatitis virus, semliki forest virus or herpes virus. Cultured neurones infected with herpes simplex virus show changes in electrical activity. The pathophysiological significance of these alterations in membrane function, which occur in viable cells, is discussed. It is concluded that clinical symptoms may result from cell damage caused by virally induced alterations of plasma membrane function in otherwise intact cells.  相似文献   

14.
15.
Summary A systematic study was made of the action of 4-acetamido-4-isothiocyanostilbene-2,2-disulfonic acid (SITS) and 4,4-diisothiocyanostilbene-2,2-disulfonic acid (DIDS) on active Ca2+ transport of human erythrocytes. Pumping activity was estimated in inside-out vesicles (IOV's) by means of Ca2+-selective electrodes or use of tracer45Ca2+. The stilbenes exhibited an approximately equal inhibitory potency and their action could be overcome by carbonyl cyanidep-trifluoromethoxyphenylhydrazone (FCCP) at low but not at high stilbene concentrations. In the absence of DIDS. Ca2+ transport was not affected upon addition of valinomycin, but it was appreciably reduced when vesicles were preincubated with low DIDS concentrations. Such an effect was strictly dependent on the external K+ concentration and it was abolished when valinomycin was added together with FCCP. Similar results were obtained using IOV's prepared from intact cells which had been previously exposed to the stilbene. The findings clearly demonstrate the presence in human red cells of a partially electrogenic Ca2+ pump, exchanging one Ca2+ ion for one proton.  相似文献   

16.
Summary In this paper, the results of the preceding electrophysiological study of sodium-alanine cotransport in pancreatic acinar cells are compared with kinetic models. Two different types of transport mechanisms are considered. In the simultaneous mechanism the cotransporterC forms a ternary complexNCS with Na+ and the substrateS; coupled transport of Na+ andS involves a conformational transition between statesNCS andNCS with inward- and outward-facing binding sites. In the consecutive (or ping-pong) mechanism, formation of a ternary complex is not required; coupled transport occurs by an alternating sequence of association-dissociation steps and conformational transitions. It is shown that the experimentally observed alanine- and sodium-concentration dependence of transport rates is consistent with the predictions of the simultaneous model, but incompatible with the consecutive mechanism. Assuming that the association-dissociation reactions are not rate-limiting, a number of kinetic parameters of the simultaneous model can be estimated from the experimental results. The equilibrium dissociation constants of Na+ and alanine at the extracellular side are determined to beK N <-64mm andK S <-18mm. Furthermore, the ratioK N /K N S of the dissociation constants of Na+ from the binary (NC) and the ternary complex (NCS) at the extracellular side is estimated to be <-6. This indicates that the binding sequence of Na+ andS to the transporter is not ordered. The current-voltage behavior of the transporter is analyzed in terms of charge translocations associated with the single-reaction steps. The observed voltage-dependence of the half-saturation concentration of sodium is consistent with the assumption that a Na+ ion that migrates from the extracellular medium to the binding site has to traverse part of the transmembrane voltage.  相似文献   

17.
We have examined the effect of the Ca2+ (Mg2+)-ATPase inhibitors thapsigargin (TG) and vanadate on ATP-dependent 45Ca2+ uptake into IP3-sensitive Ca2+ pools in isolated microsomes from rat pancreatic acinar cells. The inhibitory effect of TG was biphasic. About 40–50% of total Ca2+ uptake was inhibited by TG up to 10 nm (apparent Ki4.2 nm, Ca2+ pool I). An additional increase of inhibition up to 85–90% of total Ca2+ uptake could be achieved at 15 to 20 nm of TG (apparent Ki12.1 nm, Ca2+ pool II). The rest was due to TG-insensitive contaminating plasma membranes and could be inhibited by vanadate (apparent Ki10 m). In the absence of TG, increasing concentrations of vanadate also showed two phases of inhibition of microsomal Ca2+ uptake. About 30–40% of total Ca2+ uptake was inhibited by 100 m of vanadate (apparent Ki18 m, Ca2+ pool II). The remaining 60–70% could be inhibited either by vanadate at concentrations up to 1 mm (apparent Ki300 m) or by TG up to 10 nm (Ca2+ pool I). The amount of IP3-induced Ca2+ release was constant at 25% over a wide range of Ca2+ filling. About 10–20% remained unreleasable by IP3. Reduction of IP3 releasable Ca2+ in the presence of inhibitors showed similar dose-response curves as Ca2+ uptake (apparent Ki 3.0 nm for IP3-induced Ca2+ release as compared to 4.2 nm for Ca2+ uptake at TG up to 10 nm) indicating that the highly TG-sensitive Ca2+ pump fills the IP3-sensitive Ca2+ pool I. At TG concentrations >10 nm which blocked Ca2+ pool II the apparent Ki values were 11.3 and 12.1 nm, respectively. For inhibition by vanadate up to 100 m the apparent Ki values were 18 m for Ca2+ uptake and 7 m for Ca2+ release (Ca2+ pool II). At vanadate concentrations up to 1 mm the apparent Ki values were 300 and 200 m, respectively (Ca2+ pool I). Both Ca2+ pools I and II also showed different sensitivities to IP3. Dose-response curves for IP3 in the absence of inhibitors (control) showed an apparent Km value for IP3 at 0.6 m. In the presence of TG (inhibition of Ca2+ pool I) the curve was shifted to the left with an apparent Km for IP3 at 0.08 m. In the presence of vanadate (inhibition of Ca2+ pool II), the apparent Km for IP3 was 2.1 m. These data allow the conclusion that there are at least three different Ca2+ uptake mechanisms present in pancreatic acinar cells: TG- and IP3 insensitive but highly vanadate-sensitive Ca2+ uptake occurs into membrane vesicles derived from plasma membranes. Two Ca2+ pools with different TG-, vanadate- and IP3-sensitivities are most likely located in the endoplasmic reticulum at different cell sites, which could have functional implications for hormonal stimulation of pancreatic acinar cells.This work was supported by the Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 246. The authors wish to thank Dr. KlausDieter Preuß for valuable discussions and Mrs. Gabriele Mörschbächer for excellent secretarial help.  相似文献   

18.
Pancreatic acinar cells possess a very large Ca2+ store in the endoplasmic reticulum, but also have extensive acidic Ca2+ stores. Whereas the endoplasmic reticulum is principally located in the baso-lateral part of the cells, although with extensions into the granular area, the acidic stores are exclusively present in the apical part. The two types of stores can be differentiated pharmacologically because the endoplasmic reticulum accumulates Ca2+ via SERCA pumps, whereas the acidic pools require functional vacuolar H+ pumps in order to maintain a high intra-organellar Ca2+ concentration. The human disease acute pancreatitis is initiated by trypsinogen activation in the apical pole and this is mostly due to either complications arising from gall bladder stones or excessive alcohol consumption. Attention has therefore been focussed on assessing the acute effects of bile acids as well as alcohol metabolites. The evidence accumulated so far indicates that bile acids and fatty acid ethyl esters - the non-oxidative products of alcohol and fatty acids - exert their pathological effects primarily by excessive Ca2+ release from the acidic stores. This occurs by opening of the very same release channels that are also responsible for normal stimulus-secretion coupling, namely inositol trisphosphate and ryanodine receptors. The inositol trisphosphate receptors are of particular importance and the results of gene deletion experiments indicate that the fatty acid ethyl esters mainly utilize sub-types 2 and 3.  相似文献   

19.
We have identified a whole-cell Cl current activated by hyposmotic stress in rat lacrimal acinar cells using the patch-clamp technique. Superfusion of isolated single cells with hyposmotic solution (80% of control osmolarity) caused a gradual increase of the current, which was reversed on return to the control solution. The current-voltage relationship showed outward rectification, and the current showed time and voltage dependence: slowly activated by depolarizing voltages and rapidly inactivated by hyperpolarizing voltages. The increase in current was not observed when intracellular Ca2+ was chelated with EGTA. It was also inhibited by the absence of extracellular Ca2+, or the presence of gadolinium ions (20 m Gd3+). We conclude that in rat lacrimal acinar cells hyposmotic stress activates Ca2+-dependent Cl channels as a result of Ca2+ influx through a Gd3+-sensitive pathway. The Cl channels involved appear to be indistinguishable from those activated by muscarinic stimulation. The inhibitory effect of Gd3+ suggests that stretch-activated nonselective cation channels may be responsible for the Ca2+ influx.The authors are grateful to Prof. R.M. Case, Dr. A.C. Elliott and Dr. K.R. Lau for helpful discussion. This work was supported by the US Cystic Fibrosis Foundation, Wellcome Trust and Medical Research Council.  相似文献   

20.
Partially purified plasma membrane fractions were prepared from guinea-pig pancreatic acini. These membrane preparations were found to contain an ATP-dependent Ca2+-transporter as well as a heterogenous ATP-hydrolytic activity. The Ca2+-transporter showed high affinity for Ca2+ (KCa 2+ = 0.04 ± 0.01 M), an apparent requirement for Mg2+ and high substrate specificity. The major component of ATPase activity could be stimulated by either Ca2+ or Mg2+ but showed a low affinity for these cations. At low concentrations, Mg2+ appeared to inhibit the Ca2+-dependent ATPase activity expressed by these membranes. However, in the presence of high Mg2+ concentration (0.5–1 mM), a high affinity Ca2+-dependent ATPase activity was observed (KCa 2+ = 0.08 ± 0.02 M). The hydrolytic activity showed little specificity towards ATP. Neither the Ca2+-transport nor high affinity Ca2+-ATPase activity were stimulated by calmodulin. The results demonstrate, in addition to a low affinity Ca2+ (or Mg+)-ATPase activity, the presence of both a high affinity Ca2+-pump and high affinity Ca2+-dependent ATPase. However, the high affinity Ca2+-ATPase activity does not appear to be the biochemical expression of the Ca2+-pump.Abbreviations Ca2+-ATPase calcium-activated, magnesium-dependent adenosine triphosphatase - CaM calmodulin - CDTA trans-1,2-diaminocyclohexane-N,N,N,N-tetraacetate - EDTA ethylene-diaminetetraacetate - EGTA ethylene glycol bis(-aminoethyl ether)-N,N,N,N-tetraacetate - NADPH reduced form of nicotinamide adenine dinucleotide phosphate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号