首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Application of 1-aminocyclopropane-1-carboxylic acid (ACC) to rib segments excised from flowers of Ipomoea tricolor Cav. resulted in the formation of C2H4 in greater quantities than produced under natural conditions. The ability of ACC to enhance C2H4 production was independent of the physiological age of the tissue and its capacity to synthesize C2H4 without applied ACC. When ACC was fed to rib segments that had been treated with [14C]methionine, incorporation of radioactivity into C2H4 was reduced by 80%. Aminoethoxyvinylglycine and aminooxyacetic acid inhibited C2H4 production in rib segments of I. tricolor but had no effect on ACC-enhanced C2H4 production. Protoplasts obtained from flower tissue of I. tricolor did not form C2H4, even when incubated with methionine or selenomethionine. They produced C2H4 upon incubation with ACC, however. ACC-dependent C2H4 production in protoplasts was inhibited by n-propyl gallate, AgCl, CoCl2, KCN, Na2S, and NaN3. ACC-dependent C2H4 synthesis in rib segments and protoplasts was dependent on O2, the Km for O2 being 1.0 to 1.4% (v/v). These results confirm the following pathway for C2H4 biosynthesis in I. tricolor. methionine [selenomethionine] → S-adenosylmethionine [selenoadenosylmethionine] → ACC → C2H4.  相似文献   

2.
The effects of C2H2 metabolism on N2O production were examined in soil slurries. Enrichment of C2H2 consumption activity occurred only in aerobic incubations. Rapid disappearance of subsequent C2H2 additions, stimulation of CO2 production, and most-probable-number enumerations of C2H2 utilizers indicated enrichment of the population responsible. During C2H2 consumption in slurries incubated statically under air, maximal rates of N2O evolution were 19 times higher than those in anaerobic incubations. After 20 days of enrichment with C2H2, the production of N2O by slurries supplemented with C2H2 and nitrate was 10 times higher than that in the unenriched controls. A Nocardia- or Arthrobacter-like bacterium was isolated that grew on C2H2 but did not denitrify. The behavior of soil inoculated with this bacterium became similar to that of C2H2-enriched soil incubated aerobically. Ethanol, acetate, and acetaldehyde were identified in enrichment experiments, and denitrification in soil slurries was stimulated by addition of the supernatant from a pure culture grown on mineral medium with C2H2. These results indicate that denitrification can be stimulated by the actions of an aerobic, nondenitrifying C2H2-metabolizing population. Utilization of intermediate metabolites by denitrifiers and enhanced O2 consumption are two possible mechanisms for this stimulation.  相似文献   

3.
Ethylene production or content was compared to leaflet abscission in detached, compound leaves of Mèlia azédarach L. In late autumn, when abscission was progressing from basal leaves upward, the oldest leaves both produced ethylene at the highest rates and abscised their leaflets first. When C2H4 levels were measured in intercellular air removed immediately after leaves were harvested, C2H4 levels were also highest in basal leaves and declined progressively in more apical leaves. Levels as high as 1.8 microliters C2H4 liter−1 air were observed. Earlier in the season groups of leaves demonstrated a pattern of sequential initiation of abscission from base to apex, but the peak rates of C2H4 production followed an opposite trend, being highest in the youngest leaves. Peak rates of C2H4 production occurred after the initiation of leaflet abscission and presumably are related to either the auxin content or a climacteric-like, autocatalytic phase of C2H4 production not directly involved in the initiation of abscission. In these experiments, the early abscission of the older leaflets reflects their greater sensitivity to C2H4, presumably due to lower auxin content. C2H4 production rates in all experiments, with rare exceptions, exceeded 3 microliters per kilogram fresh weight per hour at least 24 hours before leaflet abscission reached 10%. This achieving of a threshold internal C2H4 level is viewed as an initiating event in leaflet abscission. Hypobaric conditions, to facilitate the escape of endogenous C2H4, delayed abscission compared to controls, and termination of hypobaric exposure allowed a normal progression of abscission as well as normal C2H4 synthesis rates. All of the data indicate that C2H4 initiates leaflet abscission in intact but detached leaves of Mèlia azédarach L. The seasonal patterns observed suggest that C2H4, in concert with those hormones which govern sensitivity to C2H4, regulate autumn leaf fall in this species.  相似文献   

4.
Cyclopropane carboxylic acid (CCA) at 1 to 5 millimolar, unlike related cyclopropane ring analogs of 1-aminocyclopropane-1-carboxylic acid (ACC) which were virtually ineffective, inhibited C2H4 production, and this inhibition was nullified by ACC. Inhibition by CCA is not competitive with ACC since there is a decline, rather than an increase, in native endogenous ACC in the presence of CCA. Similarly, short-chain organic acids from acetic to butyric acid and α-aminoisobutyric acid inhibited C2H4 production at 1 to 5 millimolar and lowered endogenous ACC levels. These inhibitions, like that of CCA, were overcome with ACC. Inhibitors of electron transfer and oxidative phosphorylation effectively inhibited ACC conversion to C2H4 in pea and apple tissues. The most potent inhibitors were 2,4-dinitrophenol (DNP) and carbonyl cyanide m-chlorophenylhydrazone (CCCP) which virtually eliminated ACC-stimulated C2H4 production in both tissues. Still other inhibitors of the conversion of ACC to C2H4 were putative free radical scavengers which reduced chemiluminescence in the free radical-activated luminol reaction. These inhibitor studies suggest the involvement of a free radical in the reaction sequence which converts ACC to C2H4. Additionally, the potent inhibition of this reaction by uncouplers of oxidative phosphorylation (DNP and CCCP) suggest the involvement of ATP or the necessity for an intact membrane for C2H4 production from ACC. In the latter case, CCCP may be acting as a proton ionophore to destroy the membrane integrity necessary for C2H4 production.  相似文献   

5.
Hydrogenase activity of root nodules in the symbiotic association between Pisum sativum L. and Rhizobium leguminosarum was determined by incubating unexcised nodules with tritiated H2 and measuring tissue HTO. Hydrogenase activity saturated at 0.50 millimolar H2 and was not inhibited by the presence of 0.10 atmosphere C2H2, which prevented H2 evolution from nitrogenase. Total H2 production from nitogenase was estimated as net H2 evolution in air plus H2 exchange in 0.10 atmosphere C2H2. Although such an estimate of nitrogenase function may not be quantitatively exact, due to uncertain relationships between H2 exchange and H2 uptake activity of hydrogenase, differences observed in H2 exchange under various conditions represent an indication of changes in hydrogenase activity. Hydrogenase activity was lower in associations grown under higher photosynthetic photon flux densities and decreased relative to total H2 production by nitrogenase. Total H2 production and hydrogenase activity were maximum 28 days after planting. Thereafter, hydrogenase activity and H2 production declined, but the potential proportion of nitrogenase-produced H2 recovered by the uptake hydrogenase system increased. Of five R. leguminosarum strains tested two possessed hydrogenase activity. Strains which had the potential to reassimilate H2 had significantly higher rates of N2 reduction than those which did not exhibit hydrogenase activity.  相似文献   

6.
Effect of gamma radiation on the ripening of bartlett pears   总被引:3,自引:3,他引:0       下载免费PDF全文
Gamma radiation at doses of 300 Krad or more inhibits the ripening of Bartlett pears (Pyrus communis L.). Immediately after irradiation there is a transitory burst of C2H4, which subsequently declines in fruits subjected to inhibitory doses. Ethylene production associated with ripening begins at the same time in unirradiated fruits and those subjected to noninhibitory doses, but the latter produces much more C2H4 at the climacteric peak. Fruits subjected to inhibitory doses produce low levels of C2H4 unless subjected to exogenously applied C2H4, whereupon they produce enough of the gas to induce ripening in unirradiated fruits.

Pears subjected to 300 and 400 Krad of gamma rays did not ripen even when held in a flowing atmosphere containing 1000 ppm of C2H4 for 8 days at 20°. It is concluded that the action of gamma rays on Bartlett pears involves both an inhibition of C2H4 production and a decreased sensitivity of the fruit to the ripening action of the gas. Ripening of Bartlett pears is inhibited by gamma radiation only when applied to preclimacteric fruit.

  相似文献   

7.
A laser-based photoacoustic method was used for determination of ethylene (C2H4) production of emasculated orchid (Cymbidium) flowers in a flow-through system. The laser photoacoustic equipment consisted of a line-tuneable CO2 laser in conjunction with a single-pass resonant acoustic cell. The minimum detection limit of the system for C2H4 in air was 0.03 nanoliter per liter. C2H4 production of intact Cymbidium (cv Mary Pinchess `Del Rey') flowers was very low (0.015 nanoliter per gram per hour) and showed an increase within 3 hours following emasculation (removal of pollinia plus anthercap). Production peaked (0.14 nanoliter per gram per hour) 8 hours after emasculation and decreased thereafter. Production again increased 45 hours after emasculation. Coloration of the labellum appeared shortly after the first peak; wilting of the petals and sepals appeared during the second rise in ethylene production. The use of the laser photoacoustic technique in plant physiological studies is discussed.  相似文献   

8.
Ethylene–vinyl acetate (EVA) copolymer was used to immobilize H2-producing sewage sludge for H2 production in a three-phase fluidized bed reactor (FBR). The FBR with an immobilized cell packing ratio of 10% (v/v) and a liquid recycle rate of 5 l/min (23% bed expansion) was optimal for dark H2 fermentation. The performance of the FBR reactor fed with sucrose-based synthetic medium was examined under various sucrose concentration (Cso) and hydraulic retention time (HRT). The best volumetric H2 production rate of 1.80 ± 0.02 H2 l/h/l occurred at Cso = 40 g COD/l and 2 h HRT, while the optimal H2 yield (4.26 ± 0.04 mol H2/mol sucrose) was obtained at Cso = 20 g COD/l and 6 h HRT. The H2 content in the biogas was stably maintained at 40% or above. The primary soluble metabolites were butyric acid and acetic acid, as both products together accounted for 74–83% of total soluble microbial products formed during dark H2 fermentation.  相似文献   

9.
Cohen E  Okon Y  Kigel J  Nur I  Henis Y 《Plant physiology》1980,66(4):746-749
The association between nitrogen-fixing bacteria from the genus Azospirillum and the grasses Zea mays and Setaria italica was investigated in sterilized Leonard-jar assemblies. Nitrogen-fixing bacteria isolated from Cynodon dactylon roots in Israel and Azospirillum brasilense (Sp-7, Sp-80, and Cd) were examined. C2H2 reduction activity was detected in systems containing 0.0 to 0.08 but not in those containing 0.16 gram per liter NH4NO3. The organisms tested significantly increased plant dry weight (50-100%), total N content of leaves (50-100%) and C2H4 production (300-1000 nanomoles C2H4 per plant per hour). Highest C2H2 reduction activities were obtained above 30 C and with high light intensities. Significant increases in S. italica dry weight (DW) and nitrogen (N) content were observed in sand (DW = 80%, N = 150%), sandy loam soil (DW = 80%, N = 75%) and loess (DW = 37%, N = 25%). The results obtained in this work clearly demonstrate the potential benefit of inoculating grasses with Azospirillum.  相似文献   

10.
The growth of lateral buds (tillers), which are undergoing release from apical dominance, was measured in upright and gravistimulated intact Avena sativa L. cv. `Victory' (oat) shoots as well as in isolated Avena stem segments treated with kinetin and sucrose. During release, the tiller bud initially shows a slow rate of elongation accompanied by swelling. It is followed by a more rapid rate of elongation. Ethylene (C2H4) production in shoot segments containing a tiller bud was found to occur at the onset of tiller swelling during gravistimulation as well as during inflorescence emergence. Exogenous application of indoleacetic acid or C2H4 inhibits kinetin-induced tiller bud swelling and elongation. However, stem segments pulsed for 24 hours in C2H4 or the C2H4 biosynthesis precursor, 1-amino-cyclopropane-1-carboxylic acid (ACC) and then transferred to kinetin and sucrose, showed a significant increase in swelling elongation as compared with segments maintained under the same conditions but without C2H4 or ACC in the pulse. Segments pulsed for 24 hours with kinetin and sucrose plus the ACC biosynthesis inhibitor, aminoethoxyvinylglycine, or the C2H4 action inhibitor, CO2, then transferred to kinetin and sucrose medium, showed inhibition of tiller swelling during the pulse and of subsequent elongation. These results indicate that C2H4 plays a role in promoting tiller swelling during the onset of tiller release from apical dominance and may act as a modulator hormone in promoting tiller elongation in the presence of cytokinin.  相似文献   

11.
The time course profiles of C2H2 reduction by intact Scirpus olneyi (bulrush), Oryza sativa (rice) and Spartina alterniflora (cordgrass) with roots in atmospheres of N2 and 30-day-old Glycine max (soybean) in air were all immediately linear. This is the first report of immediately linear rates of C2H2 reduction by grass roots removed from soil. The immediately linear profile of C2H2 reduction by soil-free grass roots was achieved by preventing contact between the roots and air. Roots of soybeans and S. olneyi receiving pretreatments of O2 above normal environmental levels for 15 min before assay exhibited a short delay in C2H2 reduction. These initially nonlinear rates of C2H2 reduction are attributable to transient O2 inhibition of nitrogenase. Initial nonlinear rates of C2H2 reduction were also observed with immature soybean plants and with intact plant assays of O. sativa and S. olneyi in which C2H2 was injected into cylinders surrounding the plant tops. These results indicate that, apart from O2 inhibition of nitrogenase, the diffusion of C2H2 and C2H4 between the nitrogen-fixing sites and the sampling ports may cause initial nonlinear rates of C2H2 reduction. We conclude that in situ plant-associated nitrogenase activity should result in immediate reduction of C2H2 and that linear rates are observed when the proper assay conditions are used. Our data suggest that nitrogen fixation is closely associated with the roots of S. olneyi, O. sativa, and S. alterniflora growing in salt marsh sediment.  相似文献   

12.
The complex cations [Ru(C7H16N2)(C10H14)Cl]+, [Ru(C7H16N2)(C6H6)Cl]+, [Ru(C9H18N2)(C6H6)Cl]+, [Ru(C9H18N2)(C10H14)Cl]+ and [Ru(C14H16N2)(C10H14)Cl]+ have been synthesised from the reaction between the ruthenium-arene complexes [with C6H6 (benzene) or C10H14 (p-cymene)] and the respective chiral diamines [C7H16N2=(S)-(−)-2-aminomethyl-1-ethylpyrrolidine, C9H18N2=(S)-(+)-2-(pyrrolidinylmethyl)-pyrrolidine, or C14H16N2=(1R,2R)-(+)-1,2-diphenylethylenediamine], isolated and characterised as chloride salts using single-crystal X-ray diffraction. All complexes were fully characterised by elemental analysis, mass spectrometry, 13C and 1H NMR, and also found to exhibit catalytic activity in the transfer hydrogenation of acetophenone to 1-phenylethanol at 50 °C (enantiomeric excesses range from ca. 25% to 60%, and conversions from ca. 30% to 50%).  相似文献   

13.
Peters GA  Toia RE  Lough SM 《Plant physiology》1977,59(6):1021-1025
In order to characterize the reactions catalyzed by nitrogenase in the Azolla-Anabaena association, 15N2 fixation, C2H2 reduction, and ATP-dependent H2 production were measured in both the Azolla-Anabaena complex and in the alga isolated from the complex.  相似文献   

14.
Summary Ethylene production was induced in excised hypocotyl segments of etiolated mungbean seedlings in response to exogenous auxin. 1,2,3,4-14C-Methionine was efficiently incorporated into C2H4, although cold methionine added at substrate level did not enhance C2H4 production. Incorporation of labeled glucose into C2H4 was reduced when hypocotyl segments were incubated with cold methionine and homoserine, but the rate of labeling of CO2 was not affected. Feeding of labeled glucose to segments resulted in production of labeled methionine both in the presence and the absence of auxin, and auxin did not affect rate of methionine synthesis from glucose. The decrease in the amount of endogenous methionine during auxin treatment approximated the amount of C2H4 produced. The timecourse pattern of incorporation of radioactivity from labeled methionine into C2H4 during removal or re-addition of auxin was very similar to that of C2H4 production. The role of endogenous methionine as a C2H4 precursor is discussed.  相似文献   

15.
The role of uptake hydrogenase in providing reducing power to nitrogenase was investigated in Rhizobium leguminosarum bacteroids from nodules of Pisum sativum L. (cv. Homesteader). H2 increased the rate of C2H2 reduction in the absence of added substrates. Malate also increased nitrogenase (C2H2) activity while decreasing the effect of H2. At exogenous malate concentrations above 0.05 mM no effect of H2 was seen. Malate appeared to be more important as a source of reductant than of ATP. When iodoacetate was used to minimize the contribution of endogenous substrates to nitrogenase activity in an isolate in which H2 uptake was not coupled to ATP formation, H2 increased the rate of C2H2 reduction by 77%. In the presence of iodoacetate, an ATP-generating system did not enhance C2H2 reduction, but when H2 was also included, the rate of C2H2 reduction was increased by 280% over that with the ATP-generating system alone. The data suggest that, under conditions of substrate starvation, the uptake hydrogenase in R. leguminosarum could provide reductant as well as ATP in an isolate in which the H2 uptake is coupled to ATP formation, to the nitrogenase complex.  相似文献   

16.
Carbon dioxide stimulates tuberization of isolated potato (Solanum tuberosum L.) stolons cultured in vitro. The stimulatory effect is inhibited by C2H4 which is by itself also inhibitory of tuberization. Furthermore, C2H4 inhibits kinetin-induced tuber initiation. Both the formation and elongation of roots are inhibited by C2H4. The antagonistic actions of CO2 and C2H4 on tuberization are discussed.  相似文献   

17.
Using intact cells of Chlorella pyrenoidosa it is possible to obtain oxygen by the reduction of certain reducible materials other than carbon dioxide. Of these, benzaldehyde was studied in some detail. This reduction does not involve the production of carbon dioxide from the benzaldehyde. Stoichiometrical relationships as expressed by the following equation: 2C6H5CHO + 2H2O → 2C6H5CH2OH + O2 are somewhat difficult to obtain because the benzaldehyde can disappear from the reaction mixtures by dark reactions. The technique is now available which permits detailed studies of the oxygen-liberating mechanisms in photosynthesis.  相似文献   

18.
Acid-catalyzed condensations of 1,19-diunsubstituted 1,19-dideoxybiladiene-ac dihydrobromides with aldehydes, R · CHO, afford the corresponding meso-substituted porphyrins (R = C6H5, p-Me·C6H4, p-MeO·C5H4, p-O2N·C6H4, p-HOC·C6H4, p-(MeO)2CH·C6H4, Me, n-Pr, CO2Et), mostly in good yield.  相似文献   

19.
In the present work the hydrogenesis in the anaerobic alkalithermophilic bacterium Thermobrachium celere was studied. The impact of several factors on hydrogen production during glucose fermentation was investigated in batch conditions. The optimal hydrogen production occurred at pH67 °C 8.2 with phosphate buffer concentration of 50 mM. Hydrogen yield reached the highest value of 3.36 mol H2/mol glucose when the partial pressure in the gas headspace was reduced. Supplementation of nitrogen sources and iron affected hydrogen production. Under optimized conditions, the maximum H2 accumulation and H2 production rate were estimated to be respectively 124.3 mmol H2/l culture and 20.7 mmol H2/l/h. Considering the efficient and rapid hydrogen evolution, and the ability to grow in extreme environments, T. celere might be a good candidate for biohydrogen production in open (non-sterile) bioprocess system.  相似文献   

20.
A series of m-terphenylphosphines TerphPCl2, TerphPH2 and TerphPMe2 (Terph = 2,6-Mes2C6H3-, 2,6-(4-t-BuC6H4)2C6H3-, 2,6-(3,5-Me2C6H3)2C6H3-, 2,6-(2,6-Et2C6H3)2C6H3-, and 2,6-(2,6-i-Pr2C6H3)2C6H3-; Mes = 2,4,6-Me3C6H2-) was prepared and fully characterized. The structural investigation by X-ray crystallography and density functional theory revealed significant distortions in the environment of the ipso carbon and phosphorus centers. These can be traced back to steric interactions and repulsions of the chlorine and methyl substituents on phosphorus with one of the flanking arenes of the m-terphenyl substituents. The primary phosphine 2,6-Mes2C6H3PH2, 6, and the dimethylphosphine 2,6-(3,5-Me2C6H3)2C6H3PMe2, 9, readily form complexes with the Cl2Ru(p-cymene) complex fragment, whereas the larger phosphine 2,6-Mes2C6H3PMe2, 8, does not. Heating of the complexes TerphPR2Ru(Cl2)(p-cymene) 11 and 12 and the mixture of 8 and {(p-cymene)RuCl2}2 lead to expulsion of the p-cymene ligand and intramolecular η6 coordination of one of the flanking arene rings to the ruthenium center to afford the complexes Cl2RuP(H2)C6H3-2-η6-Mes-6-Mes, 13, Cl2RuP(Me2)C6H3-2-η6-Mes-6-Mes, 14, and Cl2RuP(H2)C6H3-2-η6-(3,5-Me2C6H3)-6-(3,5-Me2C6H3), 15. All complexes were characterized by NMR spectroscopy and complexes 14 and 15 also by X-ray crystallography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号