首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Species diversity is thought to stabilize functioning of plant communities. An alternative view is that stability depends more on dynamics of dominant species than on diversity. We compared inter-annual variability (inverse of stability) of aboveground biomass in paired restored and remnant tallgrass prairies at two locations in central Texas, USA. Data from these two locations were used to test the hypothesis that greater richness and evenness in remnant than restored prairies would reduce variability in aboveground biomass in response to natural variation in rainfall. Restored prairies were chosen to be similar to paired remnant prairies in characteristics other than species diversity that affect temporal variability in biomass. Variability was measured as the coefficient of variation among years (square root of variance/mean; CV), where variance in community biomass equals the sum of variances of individual plant species plus the summed covariances between species pairs. Species diversity over five years was greater by a factor of 2 or more in remnant than restored prairies because richness and evenness were greater in remnant than restored prairies. Still, the CV of community biomass during spring and CV of annual biomass production did not differ consistently between prairie types. Neither the sum of species covariances nor total community biomass differed between prairies. Biomass varied relatively little in restored compared to remnant prairies because biomass of the dominant species in restored prairies (the grass Schizachyrium scoparium ) varied less than did biomass of other dominant and sub-dominant species. In these grasslands, biomass response to natural variation in precipitation depended as much on characteristics of a dominant grass as on differences in diversity.  相似文献   

2.
Restored grasslands comprise an ever‐increasing proportion of grasslands in North America and elsewhere. However, floristic studies of restored grasslands indicate that our ability to restore plant communities is limited. Our goal was to assess the effectiveness of restoration seeding for recovery of key plant community components on former exotic, cool‐season pastures using a chronosequence of six restoration sites and three nearby remnant tallgrass prairie sites in West‐Central Iowa. We assessed trends in Simpson's diversity and evenness, richness and abundance of selected native and exotic plant guilds, and mean coefficient of conservatism (mean C). Simpson's diversity and evenness and perennial invasive species abundance all declined with restoration site age. As a group, restoration sites had greater richness of native C3 species with late phenology, but lower richness and abundance of species with early phenology relative to remnant sites. Total native richness, total native abundance (cover), mean C, and abundance of late phenology C3 plants were similar between restoration and remnant sites. Observed declines in diversity and evenness with restoration age reflect increases in C4 grass abundance rather than absolute decreases in the abundance of perennial C3 species. In contrast to other studies, restoration seeding appears to have led to successful establishment of tallgrass prairie species that were likely to be included in seeding mixtures. While several floristic measures indicate convergence of restoration and remnant sites, biodiversity may be further enhanced by including early phenology species in seeding mixes in proportion to their abundance on remnant prairies.  相似文献   

3.
Historic losses and fragmentation of tallgrass prairie habitat to agriculture and urban development have led to declines in diversity and abundance of plants and birds associated with such habitat. Prescribed burning is a management strategy that has potential for restoring and rejuvenating prairies in fragmented landscapes, and through such restoration, might create habitat for birds dependent upon prairies. To provide improved data for management decision-making regarding the use of prescribed fire in tallgrass prairies, we compared responses of plant and bird communities on five burned and five unburned tallgrass prairie fragments at the DeSoto National Wildlife Refuge, Iowa, USA, from 1995 to 1997. Overall species richness and diversity were unaffected by burning, but individual species of plants and birds were affected by year-treatment interactions, including northern bobwhite (Colinus virginianus) and ring-necked pheasant (Phasianus colchicus), which showed time-delayed increases in density on burned sites. Analyses of species/area relationships indicated that, collectively, many small sites did make significant contributions to plant biodiversity at landscape levels, supporting the overall conservation value of prairie fragments. In contrast, most birds species were present on larger sites. Thus, higher biodiversity in bird communities which contain area-sensitive species might require larger sites able to support larger, more stable populations, greater habitat heterogeneity, and greater opportunity for niche separation.  相似文献   

4.
Patterns of Species Richness and Composition in Re-Created Grassland   总被引:1,自引:0,他引:1  
The success of many prairie restorations is not well documented. A restoration begun in 1975 at the Fermi National Accelerator Laboratory near Chicago, Illinois allows assessment of restoration efforts as well as changes through time. Data are presented on species richness and composition for 13 restorations planted in successive years between 1975 and 1990 and two remnant prairies. Presence of species was recorded using a stratified random design. Species richness at several scales and non‐metric multidimensional scaling ordination were used to assess trends in the vegetation. Species richness declined through time at all scales examined and was always less in the restored prairies than that found in the remnant prairies. Species composition changed with time but not in the direction of the composition found in the remnants. Our understanding of the maintenance of species richness is not sufficient to allow the re‐creation of patterns of species found in remnant grassland communities.  相似文献   

5.
Restoration efforts often focus on plants, but additionally require the establishment and long‐term persistence of diverse groups of nontarget organisms, such as bees, for important ecosystem functions and meeting restoration goals. We investigated long‐term patterns in the response of bees to habitat restoration by sampling bee communities along a 26‐year chronosequence of restored tallgrass prairie in north‐central Illinois, U.S.A. Specifically, we examined how bee communities changed over time since restoration in terms of (1) abundance and richness, (2) community composition, and (3) the two components of beta diversity, one‐to‐one species replacement, and changes in species richness. Bee abundance and raw richness increased with restoration age from the low level of the pre‐restoration (agricultural) sites to the target level of the remnant prairie within the first 2–3 years after restoration, and these high levels were maintained throughout the entire restoration chronosequence. Bee community composition of the youngest restored sites differed from that of prairie remnants, but 5–7 years post‐restoration the community composition of restored prairie converged with that of remnants. Landscape context, particularly nearby wooded land, was found to affect abundance, rarefied richness, and community composition. Partitioning overall beta diversity between sites into species replacement and richness effects revealed that the main driver of community change over time was the gradual accumulation of species, rather than one‐to‐one species replacement. At the spatial and temporal scales we studied, we conclude that prairie restoration efforts targeting plants also successfully restore bee communities.  相似文献   

6.
Restoring the diversity of plant species found in remnant communities is a challenge for restoration practitioners, in part because many reintroduced plant species fail to establish in restored sites. Legumes establish particularly poorly, perhaps because they depend on two guilds of soil microbial mutualists, rhizobial bacteria and arbuscular mycorrhizal (AM) fungi, that may be absent from restored sites. We tested the effect of soil microorganisms from remnant and restored prairies on legume growth by inoculating seedlings of Lespedeza capitata, Amorpha canescens, and Dalea purpurea with soil from 10 restored prairies and 6 remnant (untilled) prairies from southwest Michigan. We generally found support for the hypothesis that restored prairie soils lack microbes that enhance prairie plant growth, although there was variation across species and mutualist guilds. All three legumes grew larger and two legumes (Lespedeza and Amorpha) produced more nodules when inoculated with soil from remnant prairies, suggesting that low quantity and/or quality of rhizobial partners may limit the establishment of those species in restored prairies. In contrast, no legume experienced greater root colonization by AM fungi in remnant prairie soils, suggesting equivalent quantity (but not necessarily quality) of fungal partners in remnant and restored prairie soils. We detected no evidence of spontaneous recovery of the community of beneficial soil microbes in restorations. These results suggest that the absence of rhizobia, a largely overlooked component of prairie soils, could play a strong role in limiting restored prairie diversity by hindering legume establishment. Active reintroduction of appropriate rhizobial strains could enhance prairie restoration outcomes.  相似文献   

7.
1. The re-assembly of native animal communities in restored landscapes is a relatively unexplored phenomenon for many taxa. Specifically, ecologists lack the ability to generalize about how species traits, habitat size, habitat type (here, remnant prairie vs. restored grassland), and temporal variation interact to affect species diversity or species' persistence probabilities. 2. To investigate these relationships, moth communities from 10 prairie remnants and restorations were sampled over a 3-year interval and a combination of NMDS ordination, logistic regression, and repeated measures anova were used to test hypotheses regarding how life history variables and habitat characteristics determine the degree to which restored habitats develop a moth fauna similar to remnants. 3. Within sampling years, restored tallgrass prairies that were >or= 7 years old possessed lepidopteran species assemblages that were generally similar to those in prairie remnants. Community similarity, however, was driven by common moth species likely to also occur in the surrounding agricultural habitat. Species persistence was significantly influenced by a series of trait combinations identified using principal components analysis. Temporal variation independent of habitat type or patch size was the most significant determination of variation in species composition among sites. 4. These results suggest that lepidopteran persistence in restored landscapes is at least partially determined by species' life history attributes. The correlation between sampling year and species richness suggests that both weather effects on species voltinism and interannual differences in sampling bias may make it difficult for land managers to detect changes in species abundance following disturbance or habitat management. 5. Species may not necessarily possess specific life history traits that reduce extinction risk or enhance recolonization probabilities in the highly modified agricultural landscape of the Midwestern USA. Rather, voltinism, fecundity, body size, and host plant specialization may influence the ability of species to maintain populations in the greater agricultural landscape or to escape mass mortality following disturbances imposed by prairie management.  相似文献   

8.
9.
The ecological role of biodiversity in achieving successful restoration has been little explored in restoration ecology. We tested the prediction that we are more likely to create persistent, species‐rich plant communities by increasing the number of species sown, and, to some degree, by varying functional group representation, in experimental prairie plantings. There were 12 treatments consisting of 1‐, 2‐, 3‐, 4‐, 8‐, 12‐, and 16‐species mixtures of native perennials representing four functional groups (C4 grasses, C3 grasses, nitrogen‐fixing species, and late‐flowering composites) that predominate within Central Plains tallgrass prairies. In 2000, species were seeded into square plots (6 × 6 m), with five replicates per treatment, on former agricultural land. Annually, we measured total species richness and evenness, target species richness and cover, and richness and cover of resident species (i.e., those emerging from the seed bank). Both target species richness and rate of establishment of target communities were highest in the most species‐rich mixtures, but there was no additional benefit for treatments that contained more than eight species. Richness of resident species did not vary with target species richness; however, cover by resident species was lower in the higher target species treatments. Our results, indicating that establishment of species‐rich prairie mimics can be enhanced by starting with larger numbers of species at the outset, have implications for grassland restoration in which community biodiversity creation and maintenance are key goals.  相似文献   

10.
A primary reason for restoring plant communities is to increase biodiversity to previous levels. It is expected that restoring land with greater plant diversity will increase biodiversity at higher trophic levels, but high diversity seed mixes are expensive. In this study, we used one insect family, leafhoppers (Hemiptera: Cicadellidae) to assess the difference in leafhopper communities that result from establishing high compared with low plant richness restorations. We tested the hypotheses that: (1) the added effort of a high richness restoration leads to measurable increases in both diversity and richness of leafhoppers; and (2) that leafhopper community composition is more similar to remnant prairies in high richness than in low plant richness restorations. We found that higher plant richness led to 3‐ to 7‐fold increases in leafhopper and prairie‐dependent leafhopper diversity and richness in restorations. Leafhopper communities in high richness restorations were not more similar to remnant prairies, rather they were distinct among high and low richness restorations and prairie interior. Leafhopper richness and diversity correlated with plant richness, and leafhopper community composition differed among plant community assemblages, but not with the occurrence of single plant species. For our sites, species‐rich restorations provided better quality habitat for leafhoppers that was comparable to remnant prairie. Our results suggest that restorations with high plant species richness better support animal food webs.  相似文献   

11.
Recent losses and fragmentation of tallgrass prairie habitat to agriculture and urban development have led to corresponding declines in diversity and abundance of plants and birds associated with such habitat. Mowing and burning are alternative management strategies for restoring and rejuvenating prairies in fragmented landscapes, but their specific, comparative effects are the subjects of ongoing evaluation. We compared the responses of plant and bird communities on four sets of mowed, burned, and untreated sites of small (3–10 ha), fragmented tallgrass prairies at the DeSoto National Wildlife Refuge (DNWR), Iowa, U.S.A., during May–July in 1998 and 1999. Species richness and diversity of plants, resident grassland birds, and communities of birds associated with grassland edges (edge species) were independent of treatment. Although not affecting species richness and diversity in plant communities, mowed sites ranked lower in total plant coverage and total forb coverage than burned sites or untreated sites. In contrast, untreated sites had more coverage by shrubs, suggesting that mowing and burning did retard shrub encroachment. Overall, abundance and diversity of plants and birds were generally insensitive to management strategies. Small, fragmented sites of rare habitat may not respond in the short term to management treatments and may not be capable of supporting highly diverse communities, no matter how intensively manipulated. It is more probable that diversity of native prairie communities can be enhanced and restored only through long‐term efforts, acquisition of large land units capable of supporting stable populations, and deliberate reintroduction of species of high conservation value.  相似文献   

12.
Keystone species restoration, or the restoration of species whose effect on an ecosystem is much greater than their abundance would suggest, is a central justification for many wildlife reintroduction projects globally. Following restoration, plains bison (Bison bison L.) have been identified as a keystone species in the tallgrass prairie ecoregion, but we know of no research to document similar effects in the mixed‐grass prairie where restoration efforts are ongoing. This study addresses whether Northern Great Plains (NGP) mixed‐grass prairie plant communities exhibit traits consistent with four central keystone effects documented for bison in the tallgrass prairie. We collected species composition, diversity, abundance, bare ground cover, and plant height data in three treatments: where livestock (Bos taurus L.) continuously grazed, livestock were removed for 10 years, and bison have been introduced and resident for 10 years. We observed mixed support for bison acting as keystone species in this system. Supporting the keystone role of bison, we observed higher species richness and compositional heterogeneity (β‐diversity) in the bison treatment than either the livestock retention or livestock removal treatments. However, we observed comparable forb, bare ground, and plant height heterogeneity between bison‐restored sites and sites where livestock were retained, contradicting reported keystone effects in other systems. Our results suggest that after 10 years of being restored, bison partially fulfill their role as a keystone species in the mixed‐grass prairie, and we encourage continued long‐term data collection to evaluate their influence in the NGP.  相似文献   

13.
In tallgrass prairie, plant species interactions regulated by their associated mycorrhizal fungi may be important forces that influence species coexistence and community structure; however, the mechanisms and magnitude of these interactions remain unknown. The objective of this study was to determine how interspecific competition, mycorrhizal symbiosis, and their interactions influence plant community structure. We conducted a factorial experiment, which incorporated manipulations of abundance of dominant competitors, Andropogon gerardii and Sorghastrum nutans, and suppression of mycorrhizal symbiosis using the fungicide benomyl under two fire regimes (annual and 4-year burn intervals). Removal of the two dominant C4 grass species altered the community structure, increased plant species richness, diversity, and evenness, and increased abundance of subdominant graminoid and forb species. Suppression of mycorrhizal fungi resulted in smaller shifts in community structure, although plant species richness and diversity increased. Responses of individual plant species were associated with their degree of mycorrhizal responsiveness: highly mycorrhizal responsive species decreased in abundance and less mycorrhizal responsive species increased in abundance. The combination of dominant-grass removal and mycorrhizal suppression treatments interacted to increase synergistically the abundance of several species, indicating that both processes influence species interactions and community organization in tallgrass prairie. These results provide evidence that mycorrhizal fungi affect plant communities indirectly by influencing the pattern and strength of plant competitive interactions. Burning strongly influenced the outcome of these interactions, which suggests that plant species diversity in tallgrass prairie is influenced by a complex array of interacting processes, including both competition and mycorrhizal symbiosis. Received: 7 April 1999 / Accepted: 30 July 1999  相似文献   

14.
Little of the historical extent of tallgrass prairie ecosystems remains in North America, and therefore there is strong interest in restoring prairies. However, slow‐growing prairie plants are initially weak competitors with the fast‐growing yet short‐lived weedy plant species that are typically abundant in recently established prairie restorations. One way to aid establishment of slow‐growing plant species is through adding soil amendments to prairie restorations before planting. Arbuscular mycorrhizal (AM) fungi form mutualisms with the roots of most terrestrial plants and are particularly important for the growth of slow‐growing prairie plant species. As prairie ecosystems are adapted to fires that leave biochar (charred organic material) in the soil, adding biochar as well as AM fungal strains from undisturbed remnant prairies into the soil of prairie restorations may improve restoration outcomes. Here, we test this prediction during the first four growing seasons of a prairie restoration. When prairie plant seedlings were inoculated prior to planting into the field with AM fungi derived from remnant prairies, that one‐time inoculation significantly increased growth of five of the nine tested plant species through at least two growing seasons. This long‐term benefit of AM fungal inoculation was unaffected by biochar addition to the soil. Biochar application rates of at least 10 tons/ha significantly decreased Coreopsis tripteris growth but acted synergistically with AM fungal inoculation to significantly improve survival of Schizachyrium scoparium. Overall, inoculation with native AM fungi can help promote prairie plant establishment, but concomitant use of biochar soil amendments had relatively little effect.  相似文献   

15.
Switchgrass (Panicum virgatum) has been planted extensively for habitat restoration across the United States, such as with the Conservation Reserve Program (CRP). However, genetic profiles of these populations have never been studied nor compared with those of remnant prairies or cultivars. In this study, we sampled 16 CRP and 17 prairie populations across eastern Kansas. We assessed ploidy levels of all populations and compared genetic diversity and structure of 10 prairies, 10 CRP areas, and 5 standard cultivars, using nine simple sequence repeat (SSR) DNA markers. All CRP and prairie populations were octaploid (8x), except two prairies with both hexaploid (6x) and octaploid (8x) individuals. Based on the results of SSR analyses, there were no significant differences between CRP and prairie populations in genetic diversity, and 94% of total variation was partitioned within populations. Similarities among prairie and CRP populations were also observed in Bayesian clustering algorithms and principal coordinate analysis, suggesting that they had similar genetic compositions. In addition, positive spatial autocorrelations were detected up to 42 and 46 km among prairie and among CRP populations, respectively. To conclude, the CRP and prairie populations shared similar genetic profiles. However, remnant prairies still harbored unique genotypes and a high level of genetic diversity, highlighting the importance of seed sources for restoration efforts, that is using local wild seeds or cultivars from the same geographical region. A popular tetraploid (4x) cultivar known as “Kanlow” was genetically distinct from the prairie populations and therefore is not recommended for habitat restoration in this region.  相似文献   

16.
Aboveground Hemiptera and Orthoptera communities were compared among three native and three restored mesic tallgrass prairies along the Platte River in central Nebraska to assess both the relative success of restored sites and the relationship between insect and plant communities. Hemiptera and Orthoptera were sampled using sweep nets in early June, mid-July, and mid-August 2000. Plant species composition was assessed in early June and mid-August. A total of 89 Auchenorrhyncha (71 Cicadellidae, 15 Fulgoroidea, and 3 Membracidae) and 23 orthopterans (15 Acrididae and 8 Tettigoniidae) were collected. Eighty-five plant species were observed in combined study sites. Shannon diversity was significantly higher at restored prairie for Cicadellidae ( H '= 1.38), Fulgoroidea ( H '= 0.796), and Membracidae ( H '= 0.290), which comprised the majority of individual insects collected, but significantly higher at native prairie for Acrididae ( H '= 0.560) and Tettigoniidae ( H '= 0.480) ( p ≤ 0.05). Species richness was comparable except for Acrididae which were significantly higher in restored prairie. Density of insects generally followed species diversity but was only significantly higher in restored areas for Membracidae. The number of remnant-dependent species collected was comparable for both native prairie ( n = 15) and restored prairie ( n = 15). These results suggest that, at least for Hemiptera, differences in insect communities between native and restored prairie may best be explained by the presence of insect host plants rather than by whether a site is native or restored.  相似文献   

17.
Understanding the degree to which species assemblages naturally vary over time will be critically important when assessing whether direct management effects or contingency is responsible for species gain or loss. In this study, we tested three predictions related to short‐term variation in prairie moth communities: (1) communities would only exhibit significant temporal variation in newly restored sites (1–3 years old); (2) prairie size and age would positively influence community reassembly, with larger, older restorations sampling a greater proportion of the regional species pool; and (3) older restorations (7–10 years old) would have yet to converge on the community composition of prairie remnants. Moths were sampled from 13 Tallgrass prairie restorations and remnants in central Iowa in 2004–2005. Repeated measures analysis of variance revealed significant effects of sampling year on moth species richness and abundance as well as on the richness of two functional groups, but difference among prairie types was only observed in 2005. Rarefaction analysis revealed that older restorations and prairie remnants supported higher species richness compared to recently planted sites, and nonmetric, multidimensional scaling ordination indicated that restorations older than 7 years were clearly converging on the species composition of remnants. These results suggest that moth communities in restorations and remnants are highly variable in time but that as restorations age, they appear to reaccumulate moth species found in prairie remnants. The long‐term persistence of a particular species assemblage within a given site, however, might be a difficult endpoint to attain in central Iowa prairies because of significant annual variation in species occurrence.  相似文献   

18.
Many early attempts at tallgrass prairie reconstruction failed to achieve the high species diversity of remnant prairies, and instead consist primarily of C4 grasses. We hypothesized that frequent mowing of established prairie grasses could create sufficient gaps in the aboveground and belowground environment to allow for the establishment of native forbs from seed. We studied forb seedling establishment in a 25‐year‐old prairie planting in northern Iowa that was dominated by native warm‐season grasses. In winter 1999, 23 species of native forbs were broadcast into the recently burned sod at a rate of 350 viable seeds/m2. Treatment plots were mowed weekly for either one or two growing seasons, and control plots were unmowed. Mowed plots had greater light availability than controls, especially when warm‐season grasses began to flower. Overwinter seedling mortality was 3% in mowed treatments compared to 29% in the controls. Forbs in mowed plots had significantly greater root and shoot mass than those in control plots in the first and second growing seasons but were not significantly more abundant. By the fourth growing season, however, forbs were twice as abundant in the mowed treatments. No lasting negative impacts of frequent mowing on the grass population were observed. Mowing a second year influenced species composition but did not change total seedling establishment. Experimental evidence is consistent with the idea that mowing reduced competition for light from large established grasses, allowing forb seedlings the opportunity to reach sufficient size to establish, survive, and flower in the second and subsequent years.  相似文献   

19.
Prairie reconstruction has become a common method for reestablishing tallgrass prairie communities in the central United States. With the objective of creating plant communities that approximate remnant (reference) prairies, managers are interested in identifying: (1) best methods for reconstructing reference community conditions; (2) the rate of change in plant communities through time following reconstruction; and (3) species present in remnant communities but missing from reconstructed communities. This information is important in the development of adaptive management strategies during active reconstruction. We used a chronosequence approach to assess the success of two reconstruction methods in emulating local, reference remnant prairie plant communities. We compared broadcast dormant seeding following two types of site preparation, agricultural cropping (Crop) or herbicide control in existing grass assemblages (Grass), and remnant communities. The Crop site preparation method resulted in a rapid increase in richness shortly following seeding. Although more similar to remnant assemblages initially, the Grass method took longer for mean coefficient of conservatism and floristic quality index to approach conditions of the reference communities. However, neither method resulted in plant community compositions that converged with the reference through time. Further, indicator species analysis identified a diverse assemblage of species lacking from the reconstructed prairies. These results suggest the need to develop management strategies for establishing the “missing” species during reconstruction and provide further support for protection and conservation of existing remnant prairies.  相似文献   

20.
To develop a better understanding of how biodiversity loss and productivity are related, we need to consider ecologically realistic rarity (i.e. reduced evenness and increased dominance) and extinction (i.e. reduced richness) scenarios. Furthermore, we need to identify and better understand the factors that influence species and community yielding behaviors because the general conditions for overyielding are the same as those for coexistence. We established experimental tallgrass prairie plots in Iowa to determine how two ecologically realistic rarity–extinction scenarios influenced aboveground net primary productivity (ANPP) and disassembly. Equal‐mass seedlings of six tallgrass prairie species were transplanted into field plots to establish realistic declining species evenness (high, medium, low) and richness (4, 1) treatments. Across declining evenness treatments, the relative abundance of the ubiquitous tall species Andropogon gerardii increased, the relative abundance of the tall species Salvia azurea was constant, and the relative abundance of two short (dissimilar height scenario) or two tall species (tall scenario) decreased. Monocultures of Andropogon represented a continuation of this trend until there was complete dominance by Andropogon and extinction of all other species. Our treatments also allowed us to test if variation in plant height contributes to the complementarity effect. Niche partitioning in plant height was not positively related to complementarity. The effects of declining species evenness and richness on the diversity–productivity relationship were different for these two ecologically realistic rarity–extinction scenarios. Specifically, as diversity declined across treatments, ANPP and the selection effects decreased in tall communities, but not in dissimilar communities. Additionally, differences between these two scenarios revealed that decreased species yielding behavior is associated with two tallgrass prairie extinction risk factors, rarity and short height. The differences between these scenarios demonstrate the importance of incorporating the known patterns of diversity declines into future studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号