首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Many of the marine species that were introduced to the Baltic Sea during the Littorina stage (c. 8500–3000 years BP), e.g. Fucus vesiculosus and F. serratus, have adapted to the present low salinity. These marine species have gone from marine conditions into lower salinity environments. In this paper we ask why the recently discovered endemic brown alga Fucus radicans shows the opposite pattern. Fucus radicans is only present in the northern parts of the Baltic Sea, the low salinity Bothnian Sea (4–6 psu). Potentially, the fitness of F. radicans might be reduced in higher salinities if it is better adapted to brackish conditions. We hypothesize, however, that the southern distribution limit of F. radicans is set by biotic factors, e.g. competition with F. vesiculosus and higher grazing pressure by Idotea balthica and not by salinity. Our results show that the reproductive output of F. radicans is limited by low salinity (4 psu) but increases in higher salinities. However, the southern distribution limit, i.e. the northern Baltic Proper, is regulated by biotic factors, where the additive effects from shading by taller F. vesiculosus thalli and grazing on F. radicans by the isopod I. balthica limit the biomass production of F. radicans. We suggest that F. radicans still maintains marine traits due to its ability to propagate clonally and is restricted to the Bothnian Sea by interactions with F. vesiculosus and I. balthica. We also propose that increased precipitation due to climate change might affect the northern range limit and that the distribution of F. radicans could be expected to shift further south into the Baltic Proper.  相似文献   

2.
In the present study we compared the contents of water soluble organic compounds of the marine intertidal ecotype of Fucus vesiculosus (Phaeophyceae) from the Norwegian Sea (34 practical salinity units, psu) with the sublittoral ecotype of F. vesiculosus from the brackish Bothnian Sea (5 psu). Nuclear magnetic resonance spectra revealed that marine F. vesiculosus had additional types of water soluble organic compounds compared with brackish F. vesiculosus. The results suggested that glycine betaine in the marine ecotype could be the reason for this ecotype differentiation. Furthermore, the qualitative differences between the ecotypes were the same after one week's treatment of marine algae in brackish water and of brackish algae in marine water. These suggest that the additional types of water soluble organic compounds in marine F. vesiculosus are not caused by the salinity conditions at the growth sites. Further research concerning other environmental factors that may influence ecotype differentiation of water soluble organic compounds qualitative content and adaptation in F. vesiculosus is recommended.  相似文献   

3.
A study was made to find a better method of analyzing the glutamate pool in seaweeds than the use of HPLC, which provides unsatisfactory results with material rich in alginates and salts. A method recommended elsewhere (Inglis A, Bartone N, Finlayson J, 1988, J. Biochem. Biophys. Methods 15: 249–254) for physiological fluids has been assayed and improved for algal samples. It consisted of the addition of lithium acetate before the phenylisothiocyanate derivatization, omission of one drying step and extraction of the derivative with heptane before chromatographic analysis. Neither salt nor alginates interfered with analysis.  相似文献   

4.
The biogeochemistry of iodine in temperate coastal ecosystems is largely mediated by macroalgae, which act as a major biological sink and source of iodine. Their capacity to accumulate, retain and release iodine has been associated with abiotic and biotic stressors, but quantitative information is limited. We evaluated the seasonal iodine retention capacity of eleven macroalgal species belonging to different systematic groups, collected from two sites in Ireland. Iodine accumulation and retention were then further quantified in Fucus vesiculosus and Laminaria digitata in relation to I? concentrations in seawater and temperature. In general, iodine contents were ~101–102 μmol · (g dw)?1 for Laminariales, 100–101 μmol · (g dw)?1 for Fucales, 10?1–100 μmol · (g dw)?1 for Rhodophyta, and 10?1 μmol · (g dw)?1 for Chlorophyta. Typically, algal iodine contents were above average in winter and below average in summer. Iodine accumulation in F. vesiculosus and L. digitata depended on I? availability and followed the Michaelis‐Menten kinetic. The ratio of maximum accumulation rate to half accumulation coefficient (ρmax: K t) was 2.4 times higher for F. vesiculosus than for L. digitata , suggesting that F. vesiculosus was more efficient in iodine accumulation. Both species exhibited a temperature‐dependent net loss of iodine, and only an exposure to sufficient external I? concentrations compensated for this loss. This study revealed that both environmental (e.g., I? in seawater, temperature) and organismal (e.g., the status of the iodine storage pool) variables determine retention and variability in iodine in temperate seaweeds.  相似文献   

5.
6.
Protoplasts were isolated enzymatically from meristematic tissues of the brown algae, Fucus serratus, using a combination of 2% cellulase R-10 Onozuka, 0.5% macerozyme and 1% crude extract of gland gut of Aplysia vaccaria. The main factors affecting protoplast yield were identified. Protoplasts were produced in large quantities from apical region of thallus and from plantlets compared to mature explants. Yields were greatly improved by the addition of sodium citrate and bovine serum albumin in the enzymatic solution and could reach 5.8 × 106 protoplasts per gram of fresh wt. The applicability of these optimal parameters to other species Fucus vesiculosus was shown.  相似文献   

7.
While a variety of plant hormones from brown algae were described, there were few studies that examined the combined effects of these hormones on morphogenesis and photosynthetic physiology in developing fucoid embryos. We evaluated the effects of phytohormones to determine the extent, to which responses were similar to those of terrestrial plants. Kinetin, IAA, ABA, GA3, and kinetin + IAA were added to seawater at a physiological concentration (1 mg/L), and embryos of Fucus vesiculosus L. were grown for 10 days. Photosynthetic activity of single embryos or embryo cells were characterized using the following fluorescence parameters: minimum fluorescence yield (F 0), maximum quantum yield (F v/F m), relative maximum rate of electron transfer to photosystem II under saturation irradiances (rETRmax), photosynthetic efficiency under non-saturating irradiances (αETR) and saturation irradiance (E k). In addition, embryo length and diameter and apical hair length and number were determined. Morphological changes associated with hormone treatments included an increase in the embryo length in the presence of IAA, an increase in the embryo diameter in the presence of IAA, kinetin, and kinetin + IAA, an increase in the maximum hair length and number in the presence of kinetin + IAA, and a decrease in the hair length and number in the presence of ABA. With respect to fluorescence parameters, significant effects of phytohormones included an increase in the F 0 and F v/F m at kinetin treatment, a synergistic effect of kinetin + IAA on F v/F m, rETRmax, and αETR, a promotion of F v/F m by GA, and a decrease of the parameters by ABA. These results are consistent with the data on responses of land plants to the same hormones and suggest that brown algae have evolved regulatory mechanisms for morphogenesis and photosynthetic regulation similar to plants.  相似文献   

8.
To date, molecular markers have not settled the question of the specific status of the closely related, but phylogenetically unresolved, brown seaweeds, hermaphroditic Fucus spiralis and dioecious Fucus vesiculosus, nor their propensity for natural hybridization. To test the degree of species integrity and to assess effect of the mating system on the population genetic structure, 288 individuals coming from parapatric (discontinuous) and sympatric (contiguous) spatial configurations at two sites were genotyped with five microsatellite loci. Using a Bayesian admixture analysis, our results show that F. spiralis and F. vesiculosus comprise clearly distinct genetic entities (clusters) generally characterized by cosexual and unisexual individuals, respectively. Genetic diversity within each entity suggests that F. spiralis reproduces primarily through selfing while F. vesiculosus is characterized by an endogamous breeding regime. Nevertheless, aberrant sexual phenotypes were observed in each cluster, no diagnostic alleles were revealed and 10% of study individuals were intermediate between the two genetic entities. This pattern can be explained by recent divergence of two taxa with retention of ancestral polymorphism or asymmetrical, introgressive hybridization. However, given (i) coincident monomorphism at three loci in spiralis clusters and (ii) that significantly more intermediates were observed in sympatric stations than in parapatric stations, we argue that interspecific gene flow has occurred after divergence of the two taxa. Finally, we show that whether recently separated or recently introgressive, the divergent breeding systems probably contribute to species integrity in these two taxa.  相似文献   

9.
Genetic diversity may play an analogous role to species diversity, as it can contribute to ecosystem function and stability, and provision of ecosystem services. In the Baltic Sea, perennial algal beds are often comprised of only Fucus vesiculosus and the amount of genetic variation in fitness‐related traits (i.e., the ability of the alga to photosynthesize or withstand stress) will thus determine the alga's local persistence in a changing environment. To study genetic variation in the crucial traits behind persistence we grew replicate vegetative branches that came from the same genotype in common gardens. We quantified osmotic stress tolerance and recovery responses by exposing branches to desiccation, freezing, and hyposalinity regimens. Our results show that genetic variation among genotypes was apparent for some photosynthetic parameters (maximal electron transport rate, saturation irradiance for electron transport, nonphotochemical quenching) and growth. Algae tolerated freezing (1,440 min at ?2.5°C) and hyposalinity (1,560 min at 2.5) well, but did not recover from desiccation (70 min at 12°C, causing ~94% water loss). Furthermore, we found very little if any evidence on genetic variation in tolerance to these stressors. Our results suggest that low salinity and cold winters in the northern marginal populations selected for hyposalinity and freezing tolerant genotypes, possibly eroding genetic variation in tolerance, but that tolerance to harsh desiccation has been lost, likely due to relaxed selection. The overall availability of genetic variation in fitness related traits might be supportive for F. vesiculosus during adaptation to gradual changes of its environment.  相似文献   

10.
Historically, the intertidal seaweeds Fucus serratus (Fs) and Fucus evanescens (Fe) were sympatric only along the western coast of Norway. In the mid-1890s, Fe (monoecious) was accidentally introduced into the Oslofjord. Putative hybridization with the endemic Fs (dioecious) was observed in Oslofjord by 1977 and in the Kattegat and western Baltic Seas by 1998. At Blushøj, Denmark (Kattegat Sea) putative Fs x Fe hybrids were present only when densities of Fe and Fs exceeded 14 and 2 m(-2), respectively. All of the 58 putative hybrids that were collected in 1999 were dioecious and intermediate in morphology. Essentially all (57 out of 58) were reproductively mature, but the oogonia possessed fewer and more variably sized eggs than either parent. Examination of each parental species and putative hybrids with nuclear, mitochondrial and chloroplast molecular markers confirmed the occurrence of hybridization. Furthermore, all of the hybrids possessed Fe-type chloroplasts and mitochondria, indicating that only the Fe egg x Fs sperm pairing was successful in the field. The reciprocal cross of Fs egg x Fe sperm was absent in the field and significantly less successful in laboratory crossings. Asymmetrical hybridization has also been reported for several species of plants and animals.  相似文献   

11.
12.
Exposure of Fucus spiralis germlings to precise copper concentrations (0 to 844?nM?Cu2+) in chemically defined medium demonstrated a relationship between ultrastructural changes and growth retardation with increasing copper concentration. Electron-translucent vesicles, present in ova, which normally disappear after fertilization, accumulated in germlings exposed to Cu2+ above 10.6?nM, suggesting that copper may inhibit a metabolic pathway involved in cell wall formation which is initiated by fertilization. No membrane damage was observed during the exposure period. During a post-exposure period in copper-free medium, recovery occurred (rhizoid extension, apical hair formation) in germlings previously exposed to concentrations below 106?nM?Cu2+ and electron-translucent vesicles became granular and disappeared. It is proposed that the electron-translucent vesicles contain a cell wall precursor and that copper inhibits its incorporation into the cell wall, preventing growth and development of the zygote.  相似文献   

13.
14.
15.
Human‐induced ocean warming and acidification have received increasing attention over the past decade and are considered to have substantial consequences for a broad range of marine species and their interactions. Understanding how these interactions shift in response to climate change is particularly important with regard to foundation species, such as the brown alga Fucus vesiculosus. This macroalga represents the dominant habitat former on coastal rocky substrata of the Baltic Sea, fulfilling functions essential for the entire benthic community. Its ability to withstand extensive fouling and herbivory regulates the associated community and ecosystem dynamics. This study tested the interactive effects of future warming, acidification, and seasonality on the interactions of a marine macroalga with potential foulers and consumers. F. vesiculosus rockweeds were exposed to different combinations of conditions predicted regionally for the year 2100 (+?5°C, +?700 μatm CO2) using multifactorial long‐term experiments in novel outdoor benthic mesocosms (“Benthocosms”) over 9–12‐week periods in four seasons. Possible shifts in the macroalgal susceptibility to fouling and consumption were tested using consecutive bioassays. Algal susceptibility to fouling and grazing varied substantially among seasons and between treatments. In all seasons, warming predominantly affected anti‐fouling and anti‐herbivory interactions while acidification had a subtle nonsignificant influence. Interestingly, anti‐microfouling activity was highest during winter under warming, while anti‐macrofouling and anti‐herbivory activities were highest in the summer under warming. These contrasting findings indicate that seasonal changes in anti‐fouling and anti‐herbivory traits may interact with ocean warming in altering F. vesiculosus community composition in the future.  相似文献   

16.
Agatha S 《PloS one》2011,6(8):e22466
Oligotrichids and choreotrichids are ciliate taxa contributing to the multi-step microbial food web and episodically dominating the marine microzooplankton. The global diversity and distribution of aloricate Oligotrichea are unknown. Here, the geographic ranges of the 141 accepted species and their synonyms in marine and brackish sea water are analyzed, using hundreds of taxonomical and ecological studies; the quality of the records is simultaneously evaluated. The aloricate Oligotrichea match the moderate endemicity model, i.e., the majority (94) of morphospecies has a wide, occasionally cosmopolitan distribution, while 47 morphospecies show biogeographic patterns: they are restricted to single geographic regions and probably include 12 endemic morphospecies. These endemics are found in the Antarctic, North Pacific, and Black Sea, whereas the "flagship" species Strombidinopsis cercionis is confined to the Caribbean Sea. Concerning genera, again several geographic patterns are recognizable. The species richness is distinctly lower in the southern hemisphere than in the northern, ranging from nine morphospecies in the South Pacific to 95 in the North Atlantic; however, this pattern is probably caused by undersampling. Since the loss of species might affect higher trophical levels substantially, the aloricate Oligotrichea should not any longer be ignored in conservation issues. The ecophysiological diversity is considerably larger than the morphological, and even tops the richness of SSrRNA and ITS haplotypes, indicating that probably more than 83-89% of the diversity in aloricate Oligotrichea are unknown. The huge challenge to discover all these species can only be managed by combining the expertises of morphological taxonomists, molecular biologists, ecologists, and physiologists.  相似文献   

17.
Ocean acidification and warming (OAW) are occurring globally. Additionally, at a more local scale the spreading of hypoxic conditions is promoted by eutrophication and warming. In the semi-enclosed brackish Baltic Sea, occasional upwelling in late summer and autumn may expose even shallow-water communities including the macroalga Fucus vesiculosus to particularly acidified, nutrient-rich and oxygen-poor water bodies. During summer 2014 (July–September) sibling groups of early life-stage F. vesiculosus were exposed to OAW in the presence and absence of enhanced nutrient levels and, subsequently to a single upwelling event in a near-natural scenario which included all environmental fluctuations in the Kiel Fjord, southwestern Baltic Sea, Germany (54°27 ´N, 10°11 ´W). We strove to elucidate the single and combined impacts of these potential stressors, and how stress sensitivity varies among genetically different sibling groups. Enhanced by a circumstantial natural heat wave, warming and acidification increased mortalities and reduced growth in F. vesiculosus germlings. This impact, however, was mitigated by enhanced nutrient conditions. Survival under OAW conditions strongly varied among sibling groups hinting at a substantial adaptive potential of the natural Fucus populations in the Western Baltic. A three-day experimental upwelling caused severe mortality of Fucus germlings, which was substantially more severe in those sibling groups which previously had been exposed to OAW. Our results show that global (OAW), regional (nutrient enrichment) and local pressures (upwelling), both alone and co-occurring may have synergistic and antagonistic effects on survival and/or growth of Fucus germlings. This result emphasizes the need to consider combined stress effects.  相似文献   

18.
Recent discovery of humic acid (HA) in the free-living, brown algaPilayella littoralis has prompted a search for HA in other live plants. Marine algaeCodium fragile andMonostoma oxyspermum (greens),Chondrus crispus,Palmaria palmata andPolysiphonia lanosa (reds),Ascophyllum nodosum, Fucus vesiculosus andLaminaria saccharina (browns) andZostera marina (marine angiosperm) were investigated for their HA content. Only the brown algae and the marine angiosperm contained HA, which was extracted by a standard procedure augmented with necessary removal of alginic acid (where applicable). The isolated products were identified as HA by comparison of their analytical data, uv-visible, FTIR,1H NMR spectra and morphologies with those of authentic HA isolated from municipal compost.Authors for correspondence  相似文献   

19.
The effects of salinity on growth, maturation and photosynthesis were examined in the filamentous alga Rhizoclonium sp. (Cladophoraceae, Chlorophyta) growing in a brackish water habitat in a canal draining into Tokyo Bay, Japan. In this habitat Rhizoclonium sp. was exposed to a wide salinity range, both daily, 5–23‰ during November 1996, and hourly, 6–24‰ during the spring tide day. From the results of culture experiments, growth and maturation of Rhizoclonium sp. occurred in the wide salinity range of 10–40‰ at 20 μmol photons m‐2s‐1 at 20°C, but did not occur at salinity of 0‰. Light saturation on the photosynthesis‐irradiance curve at 20°C at 20‰ was reached at 100 μmol photons m‐2s‐1, which is characteristic for shade‐adapted algae. On the photosynthesis‐salinity curve at 20°C at saturated irradiance (160 μmol photons m‐2s‐1), the net photosynthetic rate increased with increasing salinity up to 30‰ but decreased at 40‰. On the photosynthesis–salinity curve at 20°C at 20 μmol photons m‐2s‐1 (at near in situ irradiance), the photosynthetic rates were almost the same in the salinity range from 0 to 40‰. Therefore, this species is able to grow, reproduce and photosynthesize with a relative efficiency in a wide salinity range, which shows that it is well adapted to a brackish water environment.  相似文献   

20.
Chapman  A. R. O. 《Hydrobiologia》1990,204(1):205-209
Fucus spiralis forms a conspicuous belt in the upper intertidal on rocky shores of the NW Atlantic. The objective of this study was to determine whether competition among congeners plays a role in restricting the distribution of F. spiralis to the upper shore. A replacement series design was used to test the growth performance of F. spiralis and F. vesiculosus in monocultures and in mixtures set up in the mid shore level on an exposed rocky coast. For F. spiralis and F. vesiculosus, all individual and relative crowding coefficients were < 1 and > 1, respectively. Hence, F. vesiculosus succeeded relative to F. spiralis in all mixtures tested. This finding was confirmed by graphical analysis. Ratio diagrams showed that the outcome of long term interaction among the species is extinction of F. spiralis. The results lead to the conclusion that interaction among congeners is a major determinant of the restricted distribution of F. spiralis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号