首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
It is known that tuber-specific expressions of many genes exist in the process of tuber development from stolon in potato (Solanum tuberosum). Study on the regulation of those gene expression will share light on the mechanism of organ-specific gene expression. Potato GBSS (granule-bound starch synthase) gene, which is solely responsive for the pres- ence of amylose in potato tuber, expression is tuber-specific. The paper describes the construction of a genomic library of a Chinese potato cultivar "Dongnong 303" in which 20 clones were isolated using partial GBSS gene sequence ampified by PCR. 5428 bp DNA sequence of one clone (GBSS17-1) was determined, including 1823 bp 5' flanking region. 2964 bp structure gene, and 641 bp 3' flanking region. It is highly homologious with reported GBSS gene sequence. In addition, the 730 bp most upstream sequence of 5' flanking region which was not reported previously contained stem and loop structures. The present result may provide some important information for further study in the molecular mechanism of organ specific gene expression.  相似文献   

3.
对从国家种质资源圃中选取的40份花莲种质资源的19个形态性状进行了观察。结果发现花型、花瓣数、雌蕊是否瓣化、雌蕊瓣化程度和根茎颜色与花蕾形状呈显著正相关,其中花型、花瓣数和根茎颜色与花蕾形状呈极显著高度相关。通径分析表明现蕾期对花型有显著正向效应(0.552),其次是花瓣数(0.516)和根茎颜色(0.368)。与花型呈显著负相关的性状有花瓣长(-0.801)、现花期(-0.558)和叶宽(-0.451)。主成分分析显示前四个成分累计贡献率达65.68%。聚类分析将所有材料分为四组。  相似文献   

4.
5.
Sacred lotus, Nelumbo nucifera (Gaertn.), is a basal eudicot with agricultural and medicinal importance. The secretome and proteins in some other subcellular locations including endoplasmic reticulum (ER), mitochondrion, chloroplast, and membrane of sacred lotus were predicted using a set of computational tools. The distribution of proteins in each subcellular location in sacred lotus was compared with proteins in five other plant species. Plant proteomes contained approximately 6–9 % of secreted proteins, 13–15 % membrane proteins, 12–20 % mitochondrial or chloroplast proteins, respectively. Plant secreted proteins consist of a large number of hydrolases and peroxidases which may contribute to cell wall formation, rhizome development and seed germination regulation. The information of secretome and other protein subcellular locations in sacred lotus and other species can be accessed at the PlantSecKB website (http://proteomics.ysu.edu/secretomes/plant.php).  相似文献   

6.
7.
试管藕诱导技术研究   总被引:6,自引:0,他引:6  
莲藕 ( Nelumbo nucifera Gaertn.)在我国有着悠久的栽培历史 ,分布极为广泛 ,是一种重要的水生蔬菜和水生观赏植物 ,但其繁殖系数较低 ( 1∶ 1 0 ) ,远途运输费用高。为此 ,我们已进行了快繁技术研究 [1 ] ,但试管苗的成活率较低 ,因此我们开展了试管藕的诱导工作。试管藕作为一种休眠和繁殖器官 ,利于成活 ,便于运输。此外 ,还可以进行离体保存及其他的生理、生化方面的研究工作 ,为这些研究提供一个可操作的简单系统。1  材料与方法1 .1  材料取国家种质水生蔬菜资源圃试验田的鄂莲一号和鄂莲四号的茎尖。1 .2  方法将取回的鄂莲一号…  相似文献   

8.
藕莲是莲(Nelumbo nucifera Gaertn.ssp.nucifera)的3种类型之一,在我国作为水生蔬菜栽培的历史愈两千年。对国家种质资源圃中来自17个省和直辖市的68份藕莲资源的19个形态和农艺性状进行了观察,并对其遗传变异进行了分析。结果发现整藕重与主藕重、主藕长和第三节粗成极显著正相关。通径分析结果表明主藕重对整藕重的正向效应最高(0.982)。主成分分析结果显示前4个成分占总变异的77.33%。结果还显示对整藕重负效应最高的是主藕重/整藕重(-0.296)。聚类分析发现所有藕莲资源可分为5组。  相似文献   

9.
藕莲是莲(Nelumbo nucifera Gaertn.ssp.nucifera)的3种类型之一,在我国作为水生蔬菜栽培的历史愈两千年。对国家种质资源圃中来自17个省和直辖市的68份藕莲资源的19个形态和农艺性状进行了观察,并对其遗传变异进行了分析。结果发现整藕重与主藕重、主藕长和第三节粗成极显著正相关。通径分析结果表明主藕重对整藕重的正向效应最高(0.982)。主成分分析结果显示前4个成分占总变异的77.33%。结果还显示对整藕重负效应最高的是主藕重/整藕重(-0.296)。聚类分析发现所有藕莲资源可分为5组。  相似文献   

10.
被子植物在黑暗中萌发生长不能合成叶绿素和建成光合系统,但是将莲(Nelumbo nucifera Geartn.)胚芽置于黑暗中萌发生长时,却可以清楚地观察到它的光合系统进行发育;首先,在原位低温荧光光谱上,LHCⅡ的荧光发射逐步红移变成典型的PSⅡ荧光发射,同时随着萌蝗延长,PSⅠ的荧光发射也从无到有,逐渐增强;其次,对暗萌发10d莲苗的叶绿体进行部分变性凝胶电泳分析也得到了PSⅠ的叶绿素蛋白复合物条带。通过Western blots的蛋白免疫检测,在暗萌发莲苗中也证实了LHCⅠ组分中有Lhca1的存在;最后,对暗萌发莲苗叶绿体的PSⅡ和PSⅠ电子传递活性测量结果表明,在暗中发育形成的PSⅡ和PSⅠ核心都是有光化学活性的。章讨论了莲胚芽暗萌发过程中进行光合系统发育的原因。  相似文献   

11.
BACKGROUND AND AIMS: Lotus (Nelumbo nucifera) has been cultivated as an ornamental and food plant in Japan for more than 1000 years. As large areas are required for its cultivation (approximately 2 m2 per plant), physiological research, such as into the effect of environmental factors on dormancy, has not been well studied until recently. In this paper, seedlings were used to examine environmental factors affecting dormancy induction. METHODS: In a first experiment, seeds were sown from 6 April to 6 October at 2-month intervals, and cultivated for 2 months in an unheated greenhouse. In a second experiment, seeds were prepared for germination on 16 November and 16 May and the seedlings were grown at 25 or 30 degrees C under natural daylength in phytotron growth rooms. After 1 month, the seedlings were cultivated at 20, 25 or 30 degrees C for a further month. The number of leaves and rhizome branches on the main stem were counted, and growth of rhizomes on the main stem was calculated using a rhizome enlargement index (= maximum internode diameter/internode length) after 2 months of culture in both experiments. KEY RESULTS: Rhizomes elongated without enlargement when the seeds were sown in April and June. Sowing the seeds in August and October resulted in rhizome enlargement from the tenth and fifth internodes, respectively. Rhizomes enlarged in the November-sowing but elongated in the May-sowing irrespective of temperature treatments under natural daylength in the phytotron rooms. The seedlings cultivated from May at 25-30 degrees C for 2 months had more leaves, and more rhizome branches and nodes than those cultivated from November. CONCLUSIONS: Short days led to induced dormancy in lotus.  相似文献   

12.
13.
During the Sino-Japanese conflict of the 1920s, Japanese botanist Ichiro Ohga was presented single-seeded fruit of Nelumbo nucifera var. China Antique collected by a local farmer from a dry lakebed in Northeast China (then, “Manchuria”). Ohga studied the fruit and published his findings. Years later, we tested the germination of Nelumbo fruit from the same locality. The oldest seed sprouted, having a germination time of ~3 days, was radiocarbon dated to be ~1300 years old. These cold- and drought-tolerant seeds exhibited shoot-before-root emergence and a primary green plumule capable of “dim-light” photosynthesis. Such traits and the notable long-term viability of the fruit spurred the interest of Ray Ming, University of Illinois that has now led to the sequencing of the Nelumbo genome. Analyses of this genome may provide insight into the biochemistry of Nelumbo on wax-biosynthesis genes, and application of aging-related thermostable proteins to the extension of seed-life and improvement of food quality of economic crops. Here, we review the history of these long-lived Nelumbo fruit, and their occurrence, discovery, collection, propagation, and methods of seedling care. The robust impermeable wax- and suberin-covered pericarp is a major factor contributing to their remarkable longevity. New findings are presented on the modern and 459- and 464-year-old pericarp anatomy, impermeability to water, and whole fruit and pericarp mechanical properties, and comparison of the mode of fruit weight-gain during imbibition and germination time relative to fruit maturity.  相似文献   

14.
Waxy wheat (Triticum aestivum L.) lacks the waxy protein, which is also known as granule-bound starch synthase I (GBSSI). The starch granules of waxy wheat endosperm and pollen do not contain amylose and therefore stain red-brown with iodine. However, we observed that starch from pericarp tissue of waxy wheat stained blue-black and contained amylose. Significantly higher starch synthase activity was detected in pericarp starch granules than in endosperm starch granules. A granule-bound protein that differed from GBSSI in molecular mass and isoelectric point was detected in the pericarp starch granules but not in granules from endosperm. This protein was designated GBSSII. The N-terminal amino acid sequence of GBSSII, although not identical to wheat GBSSI, showed strong homology to waxy proteins or GBSSIs of cereals and potato, and contained the motif KTGGL, which is the putative substrate-binding site of GBSSI of plants and of glycogen synthase of Escherichia coli. GBSSII cross-reacted specifically with antisera raised against potato and maize GBSSI. This study indicates that GBSSI and GBSSII are expressed in a tissue-specific manner in different organs, with GBSSII having an important function in amylose synthesis in the pericarp.  相似文献   

15.
《Genome biology》2013,14(5):R41

Background

Sacred lotus is a basal eudicot with agricultural, medicinal, cultural and religious importance. It was domesticated in Asia about 7,000 years ago, and cultivated for its rhizomes and seeds as a food crop. It is particularly noted for its 1,300-year seed longevity and exceptional water repellency, known as the lotus effect. The latter property is due to the nanoscopic closely packed protuberances of its self-cleaning leaf surface, which have been adapted for the manufacture of a self-cleaning industrial paint, Lotusan.

Results

The genome of the China Antique variety of the sacred lotus was sequenced with Illumina and 454 technologies, at respective depths of 101× and 5.2×. The final assembly has a contig N50 of 38.8 kbp and a scaffold N50 of 3.4 Mbp, and covers 86.5% of the estimated 929 Mbp total genome size. The genome notably lacks the paleo-triplication observed in other eudicots, but reveals a lineage-specific duplication. The genome has evidence of slow evolution, with a 30% slower nucleotide mutation rate than observed in grape. Comparisons of the available sequenced genomes suggest a minimum gene set for vascular plants of 4,223 genes. Strikingly, the sacred lotus has 16 COG2132 multi-copper oxidase family proteins with root-specific expression; these are involved in root meristem phosphate starvation, reflecting adaptation to limited nutrient availability in an aquatic environment.

Conclusions

The slow nucleotide substitution rate makes the sacred lotus a better resource than the current standard, grape, for reconstructing the pan-eudicot genome, and should therefore accelerate comparative analysis between eudicots and monocots.  相似文献   

16.
Single-seeded fruit of the sacred lotus Nelumbo nucifera Gaertn var. China Antique from NE China have been shown to remain viable for as long as ~1,300 years, determined by direct radiocarbon-dating, and to have a germination rate of 84 %. The pericarp, a fruit tissue that encloses the single seeds of Nelumbo, is one of the major factors contributing to fruit longevity. Proteins that are heat stable and have a protective function are equally important to such centuries-long seed viability. We document proteins of Nelumbo fruit that are able to withstand heating, 32 % of which remained soluble in the 110 °C-treated embryo axis of a 549-year-old fruit and 76 % retained fluidity in its cotyledons. The genome of Nelumbo has recently been published and annotated. The amino-acid sequences of 11 “thermal proteins” (soluble at 100 °C) of modern Nelumbo embryo axes and cotyledons, identified by mass spectrometry, Western blot and bioassay, are assembled and aligned with those of an archaeal hyperthermophile Methancaldococcus jannaschii (“Mj,” an anaerobic methanogen having a growth optimum of 85 °C) and with those of five mesophile angiosperms. These thermal proteins have roles in protection and repair under stress. More than half (55 %) of the durable Nelumbo thermal proteins are present in the archaean Mj, indicating their ancient history. One Nelumbo protein-repair enzyme exhibits activity at 100 °C, having a heat-tolerance higher than the comparable enzyme of Arabidopsis. A list of 30 sequenced but unassembled thermal proteins of Nelumbo is appended.  相似文献   

17.
It is well known that no chlorophyll synthesis and photosystem biogenesis have been detected in dark-grown angiosperm seedlings. However, in this report, we showed that both PSⅡ and PSⅠ could be formed in dark-grown lotus ( Nelumbo nucifera Gaertn.) seedlings. Lots of evidence were given: First, during the dark-grown period, the single fluorescence emission peak at 679 nm in lotus embryo red-shifted and transformed into the normal PSⅡ fluorescence emission; Simultaneously, PSⅠ fluorescence emission at 730 nm appeared and increased obviously; Second, with partial denaturing SDS-PAGE method, PSⅠ chlorophyll-protein complex could be clearly separated from 10 days dark-grown lotus seedlings; Third, the existence of Lhca1 was also proved by Western blots. Moreover, measurements of electron transfer rate demonstrated that both PSⅡand PSⅠ core in dark-grown lotus seedlings were photochemically active.  相似文献   

18.
19.
The granule-bound starch synthase I (GBSSI or waxy) enzyme catalyzes one of the enzymatic steps of starch synthesis. This enzyme is responsible for the synthesis of amylose and is also involved in building the final structure of amylopectin. Little is known about expression of GBSSI genes in tissues other than storage organs, such as seeds, endosperm, and tuber. We have isolated a gene encoding the GBSSI from snapdragon (Antirrhinum majus). This gene is present as a single copy in the snapdragon genome. There is a precise spatial and developmental regulation of its expression in flowers. GBSSI expression was observed in all floral whorls at early developmental stages, but it was restricted to carpel before anthesis. These results give new insights into the role of starch in later reproductive events such as seed filling. In leaves the mRNA level of GBSSI is regulated by an endogenous circadian clock, indicating that the transition from day to night may be accompanied by abolition of expression of starch synthesis genes. This mechanism does not operate in sink tissues such as roots when grown in the dark.  相似文献   

20.
The laticifers of Nelumbo nucifera Gaertn. (Nelumbonaceae) occurin vascular bundles and separately from these in the groundparenchyma. In common with laticifers in some other plants,they pass through a stage when they contain numerous small vacuoles,or vesicles, which later merge with the central vacuole. Osmiophilicglobules are formed in the small vacuoles and later releasedinto the central one. Partial disintegration of protoplaststakes place in the central vacuole, apparently by autophagy.The globules are retained. The laticifers are long thin-walledcells. Many show single perforations in the end walls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号