首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Genetic similarity and relatedness within the set of pear genotypes including autochthonous Circassian cultivars from North Caucasus, European cultivars, accessions of Pyrus caucasica Fed., and modern Russian cultivars were estimated on the basis of analysis of SSR loci. The level of polymorphism for the studied loci varied from 11 to 15 alleles per locus in the set of 29 samples of pears. A higher level of allelic polymorphism of SSR loci was revealed for a set of P. caucasica samples in comparison with modern cultivated cultivars: from 9 to 12 alleles for P. caucasica and from 6 to 8 alleles for modern cultivars. Specific alleles for the mentioned groups of pears were identified. UPGMA clustering revealed two distinct groups: one includes P. caucasica accessions and autochthonous Caucasian cultivars and the other group includes all cultivated European and Russian pear cultivar. The results support the hypothesis of an isolated gene pool formation of autochthonous pear cultivars of the North Caucasus and their probable origin from the wild P. caucasica.  相似文献   

2.
The pear (Pyrus communis L.) is a fruit species grown in many temperate regions of the world. Turkey harbours a rich and ancient pear germplasm adapted to diverse ecological regions of the country. The aim of this study was to genetically characterise locally grown Anatolian pear germplasm. We have analysed large numbers (228) of pear accessions originated from six eco‐geographically diverse regions using 18 simple sequence repeat (SSR) markers and identified 308 SSR alleles. Genetic similarities among the accessions examined were generally below 80%. The highest heterozygosity rate was obtained for the SSR locus ‘CH02D11’ derived from apples and ‘KA16’ and ‘NH0021a’ derived from pears. No identical or synonymous genotypes were found, while five homonymous genotypes were identified. Factorial correspondence analysis could not clearly separate different pear accession groups studied, suggesting that Anatolian pear accessions were intermixed possibly due to gene flow and/or germplasm movements between different eco‐geographical regions. However, most pear accessions were grouped according to their collection sites in structure analyses. The SSR data reported here for Anatolian pear accessions will be valuable for future germplasm management efforts as well as for comparative studies that investigate genetic relationships of pears from Anatolia and the surrounding regions.  相似文献   

3.
Apple simple sequence repeats (SSRs) were intergenerically applied to the characterization of 36 pear accessions, including 19 Japanese pears (Pyrus pyrifolia), 7 Chinese pears (P. bretschneideri, P. ussuriensis), 5 European pears (P. communis), 3 wild relatives (P. calleryana), and 2 hybrids between P. pyrifolia and P. communis. All of the tested SSR primers derived from apple produced discrete amplified fragments in all pear accessions. Nucleotide repeats were detected in the amplified bands by both Southern blot and sequencing analysis, and nucleotide sequences of pear were compared with those of apple. The differences in fragment size among pear or between pear and apple were, in many cases, due to the differences in repeat number. Interestingly, the DNA sequence of flanking regions in apple was highly conserved in pear. Hybrids from P. pyrifolia×P. communis showed one fragment inherited from each parent in all scorable cases, which suggested that each primer pair amplified fragments originating from the same locus. A total of 79 alleles were detected from seven SSR loci in pear, and all pear varieties except for the mutants could be differentiated. In conclusion, SSRs isolated from apple are highly conserved in pear and could be utilized as DNA markers in the latter genus. Received: 17 July 2000 / Accepted: 22 September 2000  相似文献   

4.
The Pyrus species exhibit the so-called S-RNase-based gametophytic self-incompatibility system, which is considered to be the most widespread self-incompatibility system among flowering plants. In this study, 57 Iranian pear (Pyrus communis L.) domestic cultivars and wild genotypes, plus 21 European pear cultivars used as references, were genotyped adopting a PCR-based genotyping assay using consensus and allele-specific primers. The results revealed traces of significant genetic contribution in the Iranian traditional varieties and genotypes from other Pyrus species; the genetic contribution of Japanese pear clearly emerged with the detection of some Pyrus pyrifolia S-RNase alleles. Moreover, our results highlighted the presence of three new S-RNase alleles (named S126, S127, and S128) that were not previously identified in P. communis, possibly introduced in the germplasm of cultivated pear through gene transfer from other cultivated or wild species.  相似文献   

5.
Fourteen microsatellite markers were developed from an enriched genomic library of Japanese pear (Pyrus pyrifolia) by selective hybridization. They were characterized using 17 Japanese pear cultivars. The expected heterozygosity and observed heterozygosity ranged from 0.21 to 0.74 and from 0 to 0.88, respectively. Two to 11 alleles were detected per locus, with IPPN09 and IPPN15 judged to amplify multiple loci. IPPN17 was the most informative locus with the lowest probability of identity (0.19). These primers exhibited a high cross‐species transferability between species and genera.  相似文献   

6.
An apple rootstock progeny raised from the cross between the very dwarfing ??M.27?? and the more vigorous ??M.116?? (??M.M.106???×???M.27??) was used for the construction of a linkage map comprising a total of 324 loci: 252 previously mapped SSRs, 71 newly characterised or previously unmapped SSR loci (including 36 amplified by 33 out of the 35 novel markers reported here), and the self-incompatibility locus. The map spanned the 17 linkage groups (LG) expected for apple covering a genetic distance of 1,229.5?cM, an estimated 91% of the Malus genome. Linkage groups were well populated and, although marker density ranged from 2.3 to 6.2?cM/SSR, just 15 gaps of more than 15?cM were observed. Moreover, only 17.5% of markers displayed segregation distortion and, unsurprisingly in a semi-compatible backcross, distortion was particularly pronounced surrounding the self-incompatibility locus (S) at the bottom of LG17. DNA sequences of 273 SSR markers and the S locus, representing a total of 314 loci in this investigation, were used to anchor to the ??Golden Delicious?? genome sequence. More than 260 of these loci were located on the expected pseudo-chromosome on the ??Golden Delicious?? genome or on its homeologous pseudo-chromosome. In total, 282.4?Mbp of sequence from 142 genome sequence scaffolds of the Malus genome were anchored to the ??M.27???×???M.116?? map, providing an interface between the marker data and the underlying genome sequence. This will be exploited for the identification of genes responsible for traits of agronomic importance such as dwarfing and water use efficiency.  相似文献   

7.
By use of Bayesian statistical inference and allelic data for 18 microsatellite loci, we analyzed the genetic structure of Chinese, Korean, and Japanese pear cultivars and of native populations of Pyrus ussuriensis. Although Japanese pear cultivars had a simple genetic structure, Chinese and Korean pear cultivars were admixures of Japanese pear and native P. ussuriensis from the Asian continent. Genetic differentiation between groups of native populations and those of cultivars was high, but cultivars were not well differentiated from each other. Chinese and Korean cultivars, which have traditionally been classified as either P. ussuriensis, P. bretschneideri, or P. pyrifolia, were much closer to Japanese cultivars, which have traditionally been classified as P. pyrifolia, than to native P. ussuriensis. We propose a new classification of cultivars by using the Group concept in accordance with the International Nomenclature for Cultivated Plants, namely, the Pyrus Ussurian pear group, the Pyrus Chinese white pear group, the Pyrus Chinese sand pear group, and the Pyrus Japanese pear group.  相似文献   

8.
Pyrus pyrifolia is considered one of the most important cultivated Pyrus species. Hundreds of landraces and bred cultivars have been developed through the natural and artificial hybridizations necessary due to self-incompatibility. In this study, the genetic diversity of 478 Pyrus accessions, including Chinese landraces, bred cultivars, and wild samples, as well as introduced pear cultivars from Japan and Korea, was investigated with a set of 17 simple sequence repeat (SSR) markers distributed across all 17 linkage groups of the pear genome. A total of 121 alleles were detected, including 4 rare alleles with a frequency lower than 5%. Diversity statistics indicated a high level of genetic variation as quantified by the average values of the observed heterozygosity, the expected heterozygosity, and Wright’s fixation index, at 0.76, 0.78, and 0.02, respectively. Population structure and discriminant analysis of principal component analysis implied extensive genetic communication between sand pears in China and revealed four contiguous geographical clusters with overlapping geographical regions. The diversity of the four clusters and approximate Bayesian computation (ABC) indicated that sand pear spread from west to east along the Pearl River and Yangtze River valleys. High diversity and polyphyletic genetic components of cultivars in southwestern China further support southwestern China as the probable center of divergence for Pyrus species. A core collection of 80 out of 470 cultivars was selected, accounting for about 17% of accessions, and capturing 91% of all alleles, including all rare alleles. Our research provides a comprehensive understanding of sand pear germplasm in East Asia and constructs a preliminary core collection, which will be useful for association genetics studies, germplasm conservation, and breeding programs.  相似文献   

9.
Thirteen polymorphic microsatellite loci were developed in the Japanese pear (Pyrus pyrifolia Nakai) by using an enriched genomic library. The obtained microsatellite loci showed a high degree of polymorphism in the Japanese pear with 3–6 alleles per locus. The average values of observed and expected heterozygosities among these 13 loci were 0.69 and 0.71, respectively. Ten microsatellites could successfully amplify loci in the European pear (Pyrus communis L.), which were highly polymorphic as well.  相似文献   

10.
In order to understand the genetic diversity of wild Ussurian pears in China, chloroplast DNA (cpDNA) of 186 wild accessions from 12 populations in Inner Mongolia, Heilongjiang and Jilin Provinces and 51 Chinese and European pear cultivars including Pyrus ussuriensis, Pyrus pyrifolia, Pyrus bretschneideri, Pyrus sinkiangensis and Pyrus communis were investigated. Each accession was classified into one of three types (types A, B and C) based on two large deletions in the hypervariable regions between the accD–psaI and rps16–trnQ genes. Thirty haplotypes were identified by 32 mutations including 17 gaps (in/dels) and 15 base changes. Haplotype network analysis revealed that wild Chinese Ussurian pears could be grouped into subgroup I of type A. A haplotype, Hcp3, in subgroup I detected in Heilongjiang and Jilin Provinces was considered to be a divergent centre in Chinese Ussurian pears. However, the genetic diversity of wild accessions revealed by the two hypervariable regions was quite low. In particular, 98 % of wild Ussurian accessions in Inner Mongolia shared an identical haplotype Hcp1 and are, therefore, monomorphic. In comparison, Chinese pear cultivars were more divergent. These results suggest that the cpDNAs from wild Ussurian pears in Inner Mongolia have specifically differentiated compared to those from pears of other areas. The number of wild Ussurian pears has been decreasing because of desertification and land development, therefore conservation is needed.  相似文献   

11.
Using five SSR markers, polymorphism of microsatellite loci was examined in 46 cultivars and five species of pear (Pyrus ussuriensis, P. bretscgneideri, P. pyraster, and P. elaegnifolia). Most of the accessions examined showed the presence of unique allele sets. The degree of relationship between Russian and Western European pear cultivar was established. It was demonstrated that P. ussuriensis and its first generation progeny were genetically distant from typical cultivars of P. communis, as well as from the P. communis × P. ussuriensis hybrids of later generations. SSR estimates of the cultivar relatedness were shown to correlate with the corresponding pedigree-based estimates. A number of SSR alleles specific to P. ussuriensis were identified. Based on the analysis of microsatellite loci, the allelic composition was determined for each cultivar examined. These data can serve as a molecular certificate of the cultivar.  相似文献   

12.
 We have identified, isolated, and characterized microsatellite/simple sequence repeat (SSR) loci in trembling aspen (Populus tremuloides) by screening partial genomic libraries. We have also examined the compatibility and use of the P. tremuloides SSR primers to resolve microsatellites in other Populus species. Fourteen microsatellites were identified from 1600 clones screened. The TC/AG microsatellites were the most abundant. A total of 29 alleles were detected in 36 P. tremuloides individuals at the four SSR loci (two each of di- and tri-nucleotide repeats) characterized. The number of alleles at the SSR loci ranged from 5 to 11, with an average of 7.25 alleles per locus, and the observed heterozygosity ranged from 0.19 to 0.82, with a mean of 0.46 per locus. Although the highest polymorphism was observed for a dinucleotide SSR locus, the trinucleotide SSR loci showed substantial polymorphism. There were 34 unique multilocus genotypes among the 36 P. tremuloides individuals examined, and 89% of the individuals had unique multilocus genotypes. Two pairs of SSR primers were successful in PCR, amplifying genomic DNA and resolving microsatellites of comparable size from Populus deltoides, P. nigra, Pcanadensis, and P. maximowiczii. The microsatellite DNA markers developed could be used for clonal fingerprinting, certification of controlled crosses, genome mapping, marker-assisted early selection, genetic diversity assessments, and conservation and sustainable management of poplar genetic resources. Received: 14 November 1997 / Accepted: 17 November 1997  相似文献   

13.
梨砧木种质资源的SSR遗传多样性分析   总被引:1,自引:0,他引:1  
用9对SSR特异性引物对74份梨砧木种质资源进行遗传多样性分析,结果表明:9对SSR引物扩增得到57个等位基因,平均6.33个,可以区分除K11、K12、杜梨-13和杜梨-15以外的70份梨资源样本。聚类分析结果显示,74份样本的相似系数的变化范围为0.41~1.00,表现出较高的遗传多样性。供试品种在相似系数0.67处被分为7大类群,与品种的系谱来源和地理分布基本吻合。  相似文献   

14.
15.
This study reports the development and characterization of 19 microsatellite primer pairs developed from genomic DNA of European pear (Pyrus communis) and their transferability to other Pyrus and Malus material. The primers were designed from two different genomic libraries enriched for di‐ and trinucleotide repeats. When tested in six P. communis cultivars and 15 other Pyrus species, 13 primers revealed single‐locus polymorphism and six showed more complex patterns that suggest multiple loci. Two to 18 alleles were detected per locus and two primer pairs were sufficient to discriminate all accessions. Transferability of nine primer pairs to Malus was demonstrated through amplification of discrete products in two accessions.  相似文献   

16.
A set of 120 simple sequence repeats (SSRs) was developed from the newly assembled pear sequence and evaluated for polymorphisms in seven genotypes of pear from different genetic backgrounds. Of these, 67 (55.8 %) primer pairs produced polymorphic amplifications. Together, the 67 SSRs detected 277 alleles with an average of 4.13 per locus. Sequencing of the amplification products from randomly picked loci NAUPy31a and NAUpy53a verified the presence of the SSR loci. When the 67 primer pairs were tested on 96 individual members of eight species in the Rosaceae family, 61.2 % (41/67) of the tested SSRs successfully amplified a PCR product in at least one of the Rosaceae genera. The transferability from pear to different species varied from 58.2 % (apple) to 11.9 % (cherry). The ratio of transferability also reflected the closer relationships within Maloideae over Prunoideae. Two pear SSR markers, NAUpy43c and NAUpy55k, could distinguish the 20 different apple genotypes thoroughly, and UPGMA cluster analysis grouped them into three groups at the similarity level of 0.56. The high level of polymorphism and good transferability of pear SSRs to Rosaceae species indicate their promise for application to future molecular screening, map construction, and comparative genomic studies among pears and other Rosaceae species.  相似文献   

17.
Using five SSR markers, polymorphism ofmicrosatellite loci was examined in 46 cultivars and five species of pear (Pyrus ussuriensis, P. bretscgneideri, P. pyraster, and P. elaegnifolia). Most of the accessions examined demonstrated the presence of unique allele sets. The degree of relationship between Russian and Western European pear cultivar was established. It was demonstrated that P. ussuriensis and its first generation progeny were genetically distant from typical cultivars of P. communis, as well as from the P. communis x P. ussuriensis hybrids of later generations. SSR estimates of the cultivar relatedness were shown to correlate with the corresponding pedigree-based estimates. A number of SSR alleles specific to P. ussuriensis were identified. Based on the analysis of microsatellite loci, the allelic composition was determined for each cultivar examined. These data can serve as a molecular certificate of the cultivar.  相似文献   

18.
China, one of the primary centers of genetic diversity for the genus Malus, is very rich in wild apple germplasm. In this study, genetic diversity in 29 Malus accessions, including 12 accessions from 7 Chinese Malus species, 4 Chinese landraces, and 13 introduced apple cultivars, was assessed using a set of 19 single-locus simple sequence repeat (SSR) markers distributed across all 17 linkage groups of the apple genome. The number of alleles detected at each locus ranged from 2 to 11, with an average of 5.3 per SSR marker. In some accessions, 16 unique alleles were identified. Ten out of these 16 unique alleles (62.5%) were detected exclusively in wild species, indicating that these Chinese wild apple species have considerable genetic diversity and can be used in breeding programs to increase the genetic diversity of apple cultivars. Using 19 SSRs, an unweighted pair-group method with arithmetic average cluster analysis was conducted, and the resulting dendrogram revealed that all cultivars, except for E??peMeBckoe, were clustered together in the same group. The Russian cultivar E??peMeBckoe was closely related to the Chinese crabapple Baihaitang (M. prunifolia), with a high similarity coefficient value of 0.94. Of the two M. sieversii accessions used, one accession showed a close relationship to apple cultivars, while the other accession was closely related to wild apple species, suggesting the presence of a wider genetic diversity in Chinese M. sieversii species. The influence of SSR marker selection on genetic diversity analysis in this Malus collection was also discussed.  相似文献   

19.
We constructed a high-density genetic linkage map of bronze loquat (Eriobotrya deflexa) by using a three-way cross of loquat (Eriobotrya japonica) × (loquat × bronze loquat) and simple sequence repeat (SSR) and random amplified polymorphic DNA (RAPD) markers. The positions of the SSR loci used in this study were previously identified on reference maps of pears (Pyrus spp.) and apples (Malus spp.). The map of bronze loquat (‘Taiwan loquat No. 1’) consisted of 308 loci including 167 SSRs (8 loquat, 57 pear, and 102 apple SSRs), 140 RAPDs, and the loquat canker resistance gene Pse-a on 19 linkage groups covering a genetic distance of 1036 cM. Almost all loquat linkage groups were aligned to the pear consensus map by using at least two pear or apple SSRs, suggesting that positions and linkages of SSR loci were well conserved between loquat and pear and between loquat and apple. The constructed map may be used to determine the location of genes and quantitative trait loci of interest and to analyze genome synteny in the tribe Pyreae, subfamily Spiraeoideae of the family Rosaceae.  相似文献   

20.
Using SSR markers designed for Malus × domestica Borkh. genetic polymorphism of 43 pear accessions cultivated in Belarus was examined. A total of 217 alleles were identified with the mean number of 12.8 alleles per marker. The mean PIC value was 0.81; the mean number of informative alleles, 6.49. The heterozygosity level ranged from 0.30 to 0.84. Genetic diversity of SSR alleles in pear and apple genomes was compared. A method of identification of commercial pear cultivars using a set of six SSR markers was suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号